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Many do not believe,  
but the elephants really fly!! 
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 Introduction 

 

The core idea of the Flying Elephants method is  
the smoothing of a given non-differentiable problem. 
 

In a sense, the process whereby this is achieved is  
a generalization and a new interpretation of a  
smoothing scheme, called Hyperbolic Smoothing (HS). 
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 Introduction 

 

The new name of the methodology, Flying Elephants, 
is definitively  not associated to any analogy with the 
biology area. 
It is  only a metaphor, but this name is 
fundamentally associated with properties of the 
method.  
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 Introduction 

 

The Flying feature is directly derived from the complete 
differentiability property of the method, which has the 
necessary power to make the flight of the heavy elephant 
feasible. 
Moreover, it permits intergalactic trips into spaces with large 
number of dimensions, differently from the short local 
searches associated to traditional heuristic algorithms. 
On the other side, the convexification feature also associated 
to the FE method is analogous to the local action of the 
Elephant landing, eliminating a lot of local minima points. 
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Fundamental  
 
Smoothing  
 
Procedures 
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There  are  only  two   
Fundamental  Smoothing Procedures 

Fundamental Smoothing Procedures 

The main principle is always to perform 
transformations on the original formulation  to 
make  possible to use these two fundamental 
procedures in order to obtain  a succedaneous   
problem completely differentiable . 
 
This is the idea!!  
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Smoothing of the absolute value function 
 

2/122 )(),(   uu

To smooth the absolute value function 
we use the function: 

u
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 Fundamental Smoothing Procedures 

Function     has the following properties: 
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
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 Fundamental Smoothing Procedures 

Smoothing of the absolute value function 
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 Fundamental Smoothing Procedures 

Now, we will present the smoothing procedure of 
the function                            . For this purpose, 
let us define the function 

),0max(),( yy  

2/)(),,( 222   yyy

for          and        .   y 0
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 Fundamental Smoothing Procedures 

Function     has the following properties: 
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 Fundamental Smoothing Procedures 

Smoothing of the function 
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Geometry  
 
Distance  
 
Problem 
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 Geometry Distance Problem 

Let               denote a graph, in which for each              , 
it is associated a measure         . 
The problem consists of associating a vector           for 
each knot       , basically addressed to represent the 
position of this knot into a n - dimensional space, so that 
Euclidean distances between knots,           , corresponds 
appropriately to the given measures       
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 Geometry Distance Problem 

For solving the previous problem  by using the Flying 
Elephant technique it is only necessary to use the function                   
and             to define                  : 

  2
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Geometry Distance  Problem 

Moré-Wu Instance 
 s=4 
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3 27 81 198 0 - 0.1 8 

4 64 192 888 6 0.27E-6 0.7 5 

5 125 375 2800 8 0.29E-5 2.8 7 

6 216 648 7110 8 0.19E-4 7.6 4 

7 343 1029 15582 5 0.16E-4 19 5 

8 512 1536 30688 8 0.29E-3 45 3 

9 729 2187 55728 6 0.86E-3 97 0 

10 1000 3000 94950 7 0.95E-3 45 1 

11 1331 3993 153670 6 0.17E-2 81 0 

s 3sm  33sn  p .Occur Medf Time snOcc ..

 Results of FE Technique Applied to    
 Moré-Wu Instance 
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12 1728 5184 238392 8 0.15E-1 143 0 

13 2197 6591 356928 7 0.32E-1 222 - 

14 2744 8232 518518 8 0.18E-1 380 - 

15 3375 10125 733950 6 0.65E-1 543 - 

16 4096 12288 1015680 7 0.42E-1 835 - 

17 4913 14739 1377952 6 0.16E0 1270 - 

18 5832 17496 1836918 7 0.21E0 1853 - 

19 6859 20577 2410758 8 0.24E0 2335 - 

20 8000 24000 3119800 8 0.59E0 3187 - 

s 3sm  33sn  p .Occur Medf Time snOcc ..

 Results of FE Technique applied to    
 Moré-Wu Instance 



22 

  

Covering 
 
Problems  
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Pages 493-504 , Springer,  http://dx.doi.org/10.1007/s10898-
004-0737-8 
  
 
  

Publications 

http://dx.doi.org/10.1007/s10898-004-0737-8
http://dx.doi.org/10.1007/s10898-004-0737-8
http://dx.doi.org/10.1007/s10898-004-0737-8
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http://dx.doi.org/10.1007/s10898-004-0737-8
http://dx.doi.org/10.1007/s10898-004-0737-8
http://dx.doi.org/10.1007/s10898-004-0737-8


24 

 Covering Problem Conceptualization 

Coverages of Brazil 
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 Covering Problems 

We consider the special case of covering a finite plane 
domain     optimally by a given number    of circles. We 
first discretize the domain     into a finite set of      points  
                      . Let                      be the centres of the 
circles that must cover this set of points 

s
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q
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2ij
,,1m,1,j

* x-s min  max  minarg
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X q
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Original Problem:
Non-differentiable 

Non-Linear 
Programming 
Problem with 
Constraints

remodel

Parameters

,,, 

Completely 
Differentiable 

Non Linear 
Programming 

Problem 

WITHOUT 
Constraints

Flying Elephants Transformations 
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 Covering Problems 

By performing an     perturbation and by using the FE 
approach, the three-level strongly nondifferentiable  
                           problem can be transformed in a one-
level completely smooth one: 



  mj

z

,,1   ,,x-s-z    :subject to
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2ij 
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 Covering Problems 

Coverages of Netherlands 
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 Covering Problems 

Coverages of the state of New York 
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Covering Problems 
 

Coverages of Dionisio Torres District – Fortaleza - Brazil 
 

64 circles 



31 

Coverages of Dionisio Torres District – Fortaleza - Brazil 

Covering Problems 
 

64 circles 
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Clustering 
 
Problems 
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 Clustering Problems 

Let    denote a set of     patterns or observations from an 
Euclidean n-space, to be clustered into a given number  
of disjoint clusters. Let                      be the centroids of 
the clusters, where each            . Given a point    of   , 
we initially calculate the Euclidean distance from    to the 
nearest center. This is given by                                . 
The most frequent measurement of the quality of a 
clustering associated to a specific position of q centroids 
is provided by the minimum sum of the squares (MSSC) 
of these distances: 

s m
q
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 Clustering Problems 

The minimum sum of the squares (MSSC) of these 
distances: 

mj

z
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 Clustering Problems 

By using FE approach, it is possible to use the Implicit 
Function Theorem to calculate each component  
                       as a function of the centroid variables  
                    . In this way, the unconstrained problem 





m

j

j xzxf
1

2)()(     minimize

mjz j ,,1, 
qixi ,,1, 

where each           is obtained by the calculation of a zero of  
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Clustering 5000000 Synthetic 
Observations with n = 10 Dimensions 
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    q      fAHSC-L2 Occur. EMean    TMean  

2 0.456807E7 3 0.94 16.12 

3 0.373567E7 1 1.21 24.69 

4 0.323058E7 1 0.91 32.90 

5 0.274135E7 1 0.09 26.06 

6 0.248541E7 1 0.04 36.55 

7 0.222897E7 1 0.19 43.24 

8 0.197977E7 2 0.12 45.38 

9 0.173581E7 2 0.10 42.78 

10 0.149703E7 10 0.00 32.98 

c 0.150000E7   -    -    -  
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Fermat-Weber Problem 
 
(Multisource Weber Problem) 
 
(continuous p-center Problem) 
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Xavier, V.L., França, F.M.G., Xavier, A.E. and Lima, P.M.V., "A 
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accepted for publication on the Special Issue of Journal of 
Global Optimization  dedicated to EURO XXV 2012, Vilnius, 
Lithuania.  
 

Publications 
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 Fermat-Weber Problem 

Let                        denote a set of     cities or locations 
in an Euclidean planar space      , with a corresponding 
set of demands                          to be attended by    a 
given number of facilities. To formulate the Fermat-Weber 
problem as a min - sum - min problem, we proceed as 
follows. Let                     be the locations of facilities or 
centroids,             . Given a point           , we initially 
calculate the Euclidean distance from     to the nearest 
centroid:                                . 

},,{ 1 mssS  m
2
},,{ 1 mwwW  q

qixi ,,1, 
2ix Ss j 
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2ij,,1 x-s min qijz 
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 Fermat-Weber Problem 

The Fermat-Weber problem considers the placing of 
facilities in order to minimize the total transportation 
cost: 

q
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m

j
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,,1   ,x-sminz    :subject to

     minimize
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q,1,i
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 Fermat-Weber Problem 

By using FE approach, it is possible to use the Implicit 
Function Theorem to calculate each component               
as a function of the centroid variables                  . In 
this way, the unconstrained problem is obtained 

mjz j ,,1, 
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 Fermat-Weber Problem 

Where each          results from the calculation of the 
single zero of each equation below, since each term   
above strictly increases together with variable      : 

)(xz j



mjxszxzh
m
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 Fermat-Weber Problem – Pla85900 

2 0.163625E11 6 0.27 25.33 

3 0.127835E11 10 0.00 50.91 

4 0.108063E11 10 0.00 74.62 

5 0.984539E10 7 0.11 121.02 

6 0.902515E10 10 0.00 156.63 

7 0.836416E10 3 0.18 206.71 

8 0.778239E10 10 0.00 260.89 

9 0.737264E10 9 0.09 317.09 

10 0.704126E10 1 0.19 381.33 

15 0.576935E10 10 0.00 937.84 

20 0.502191E10 1 0.13 1690.06 

30 0.411982E10 2 0.08 4062.92 

40 0.358238E10 1 0.11 8169.64 

BestFEfq .occur MeanE
MeanTime
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Continuous  
Hub Location 
Problem 
 
(multiple allocation p-Hub median problem) 
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Contínua Tipo P-Medianas Usando a Abordagem de Suavização 
Hiperbólica”, M.Sc. thesis - COPPE - UFRJ, Rio de Janeiro, 2012. 
  
Adilson Elias Xavier, Claudio Martagão Gesteira e Vinicius Layter 
Xavier, “Solving the Continuous Multiple Allocation p-Hub Median 
Problem by the Hyperbolic Smoothing Approach”, accepted for 
publication in Optimization: A Journal of Mathematical 
Programming and Operations Research Optimization, Taylor 
& Francis, Special Issue of Optimization dedicated to EURO 
XXV 2012, Vilnius, Lithuania 

Publications  
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 Hub location Problems 

The continuous p-hub median problem is a location problem which requires  
finding a set of  p  hubs in a planar region, in order to minimize a particular  
transportation cost function. 
 
The assumption is that each pair of cities is directly connected  
by the shortest distance route between them. 
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 Hub location Problems 

The connections between each pair of cities   j  and  l, 
have always three parts: 
1 - from the origin city   j  to a first hub  a;  
2 - from   hub   a   to  a second hub  b;  
3 - from  hub  b  to destination city   l. 
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 Hub location Problems 

Let                     denote a set of m cities or consumer 
points in a planar region. Let       be the demand 
between two points   and    . Let                   be the 
hubs, where each            . 

},,{ 1 mssS 

jlw
j l pixi ,,1, 

2ix
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 Hub location Problems 

The set of possible connections between  city    j   and city   l.  

Multiple allocation is permitted!  
 



53 

 Hub location Problems 

The p-hub median problem corresponds to minimizing the 
total cost between all pairs of cities taking the unitary 
cost value for all connections: 

mjz
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,,1   , minz    :subject to

     minimize
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Where                                                            and  
is the reduction factor:             . 

222 |||||||||||| lbbaajjabl sxxxxsz   
10 
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 Hub location Problems 

By using FE approach, it is possible to use once more the 
Implicit Function Theorem to calculate each component  
                        as a function of the centroid variables    
                  . So, we obtain the unconstrained problem 

mljz jl ,,1,, 
qixi ,,1, 


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
m

j
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1 1
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 Hub location Problems 

German Towns: coordinates 
of 59 towns  (Späth, 1980) 
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Hub location Problems  
Alpha=0. => Fermat Weber problem 
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Hub location Problems  
Alpha=0.25 
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Hub location Problems  
Alpha=0.5 
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 Hub location Problems 

Hub Location Problem - dsj1000 TSPLIB instance 5.0

2 0.342083E12 10 0.00 376.66 

3 0.285747E12 10 0.00 1296.32 

4 0.263992E12 9 0.07 3754.33 

5 0.248652E12 4 0.35 8234.88 

p
BestFEf .occur MeanE MeanTime
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Conclusions 

 



Performance of the  
Flying Elephants Method 

The performance of Flying Elephants Method can be attributed  

to the complete differentiability of the approach.  

 
So, the succedaneum formulation can be comfortably solved  
by using the most powerful and efficient algorithms, such as 
conjugate gradient or quasi-Newton algorithms. 

 
Computational experiments for all 5 related problems obtained 
unprecedented results, which exhibits a high level performance  
according to the different criteria of consistency, robustness and 
efficiency. 
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Additional Effect Produced 
by the Smoothing Procedures: 

Elimination of Local Minimum Points 
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Max-Cut 
Problem 
 
(repto lançado pelo  
Prof. Manoel Campelo –UFC - Fortaleza) 
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 Max-Cut Problem 

The max-cut problem specification: 

Temos um grafo  G=(V,E),  onde  V  é  o  conjunto de  n  nós  
                                                E  é  o  conjunto de  arcos  
 
O problema é particionar  o  conjunto de nós  V  em duas 
partes  V1  e  V2,   de  maneira  que  a  Soma  dos  Pesos   
dos  Arcos  entre   V1   e   V2   seja  máxima. 
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 Max-Cut Problem 

A cada nó  i  é associada uma variável 
que é igual a  1  se  o nó pertence à partição  V1 
      e igual a  0  em caso contrário.         

  x-x     maximize

)x-x,x-xmax(     maximize
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 Max-Cut Problem 

Problema Suavizado 

    ,,       maximize
),(

 ji

ji

ij xxc

ix

01  ix



END 
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Convexification effect by the Hyperbolic 
Smoothing approach 
Geometric distance problem 



Smoothing of the objective function terms 
of a specific classification problem 



Smoothing of the objective function terms 
of a specific classification problem 



Smoothing of the objective function terms 
of a specific classification problem: 

Global Effect on the Objective Function 



Quasi-Convexification effect by the Hyperbolic 
Smoothing approach associated to the Covering 
of a Region with Equal Circles Problem 

         


