Aprendizado de Máquina e Avaliação de Desempenho: uma dupla dinâmica engajada da teoria à prática #### Edmundo de Souza e Silva¹ Universidade Federal do Rio de Janeiro ¹Programa de Engenharia de Sistemas e Computação, COPPE 2015 # Performance Evaluation and Machine Learnig: The Dynamic Duo - What is Computer System Modeling and Analysis? - What is Machine Learning? - Can we take advantage of both areas? - What problems we address? - Is this useful in practice? - What is Computer System Modeling and Analysis? - What is Machine Learning? - Can we take advantage of both areas? - What problems we address? - Is this useful in practice? - What is Computer System Modeling and Analysis? - What is Machine Learning? - Can we take advantage of both areas? - What problems we address? - Is this useful in practice? - What is Computer System Modeling and Analysis? - What is Machine Learning? - Can we take advantage of both areas? - What problems we address? - Is this useful in practice? - What is Computer System Modeling and Analysis? - What is Machine Learning? - Can we take advantage of both areas? - What problems we address? - Is this useful in practice? - Modeling and analysis is an essential ingredient of the design process of most systems - Devising new systems: generally needs analysis of its performance - What are the advantages of the new architecture? - which scheduling policies to use? - what speed to operate servers? - On what conditions can the system efficiently operate - We want to predict behavior of - an algorithm - a protocol - a new computer architecture - customers accessing some system - : - We want to perform tradeoff analysis - Modeling and analysis is an essential ingredient of the design process of most systems - Devising new systems: generally needs analysis of its performance - What are the advantages of the new architecture? - which scheduling policies to use? - what speed to operate servers? - On what conditions can the system efficiently operate - We want to predict behavior of - an algorithm - a protocol - a new computer architecture - customers accessing some system - : - We want to perform tradeoff analysis - Modeling and analysis is an essential ingredient of the design process of most systems - Devising new systems: generally needs analysis of its performance - What are the advantages of the new architecture? - which scheduling policies to use? - what speed to operate servers? - On what conditions can the system efficiently operate - We want to predict behavior of - an algorithm - a protocol - a new computer architecture - customers accessing some system - : - We want to perform tradeoff analysis - Modeling and analysis is an essential ingredient of the design process of most systems - Devising new systems: generally needs analysis of its performance - What are the advantages of the new architecture? - which scheduling policies to use? - what speed to operate servers? - On what conditions can the system efficiently operate - We want to predict behavior of - an algorithm - a protocol - a new computer architecture - customers accessing some system - • - We want to perform tradeoff analysis ## Examples including research work of our group - Assume that the MTBF of a single disk is 300.000 hours. Probabilidade that a failure occurs in one disk unit during one hour = 3.33310⁻⁶. (in one month: 0.0023942) - Question: if you have 1000 disks, what is the probability that one disk fails in one month? - Answer: 0.90902 - Question: if you have 100.000 disks, what is the probability that one disk fails in one hour? (common in disc clusters) - Answer: 0.99966 → you WILL have a disk failed somewhere in your cluster!!! - Assume that the MTBF of a single disk is 300.000 hours. Probabilidade that a failure occurs in one disk unit during one hour = 3.33310⁻⁶. (in one month: 0.0023942) - Question: if you have 1000 disks, what is the probability that one disk fails in one month? - Answer: 0.90902 - Question: if you have 100.000 disks, what is the probability that one disk fails in one hour? (common in disc clusters) - Answer: 0.99966 → you WILL have a disk failed somewhere in your cluster!!! - Assume that the MTBF of a single disk is 300.000 hours. Probabilidade that a failure occurs in one disk unit during one hour = 3.33310⁻⁶. (in one month: 0.0023942) - Question: if you have 1000 disks, what is the probability that one disk fails in one month? - Answer: 0.90902 - Question: if you have 100.000 disks, what is the probability that one disk fails in one hour? (common in disc clusters) - Answer: 0.99966 → you WILL have a disk failed somewhere in your cluster!!! - Assume that the MTBF of a single disk is 300.000 hours. Probabilidade that a failure occurs in one disk unit during one hour = 3.33310⁻⁶. (in one month: 0.0023942) - Question: if you have 1000 disks, what is the probability that one disk fails in one month? - Answer: 0.90902 - Question: if you have 100.000 disks, what is the probability that one disk fails in one hour? (common in disc clusters) - Answer: 0.99966 → you WILL have a disk failed somewhere in your cluster!!! - Assume that the MTBF of a single disk is 300.000 hours. Probabilidade that a failure occurs in one disk unit during one hour = 3.33310⁻⁶. (in one month: 0.0023942) - Question: if you have 1000 disks, what is the probability that one disk fails in one month? - Answer: 0.90902 - Question: if you have 100.000 disks, what is the probability that one disk fails in one hour? (common in disc clusters) - Answer: 0.99966 → you WILL have a disk failed somewhere in your cluster!!! - Data centers consume a lot of power - Question: How can we reduce power consumption? - Note: not all data in a large data center is accessed simultaneously → disks are not used all the time. - Question: can we reduce power consumption by putting some disks to sleep? - Answer: YES, but there are tradeoffs to investigate. - What are the tradeoffs? - Data centers consume a lot of power - Question: How can we reduce power consumption? - Note: not all data in a large data center is accessed simultaneously → disks are not used all the time. - Question: can we reduce power consumption by putting some disks to sleep? - Answer: YES, but there are tradeoffs to investigate. - What are the tradeoffs? - Data centers consume a lot of power - Question: How can we reduce power consumption? - Note: not all data in a large data center is accessed simultaneously → disks are not used all the time. - Question: can we reduce power consumption by putting some disks to sleep? - Answer: YES, but there are tradeoffs to investigate. - What are the tradeoffs? - Data centers consume a lot of power - Question: How can we reduce power consumption? - Note: not all data in a large data center is accessed simultaneously → disks are not used all the time. - Question: can we reduce power consumption by putting some disks to sleep? - Answer: YES, but there are tradeoffs to investigate. - What are the tradeoffs? - Data centers consume a lot of power - Question: How can we reduce power consumption? - Note: not all data in a large data center is accessed simultaneously → disks are not used all the time. - Question: can we reduce power consumption by putting some disks to sleep? - Answer: YES, but there are tradeoffs to investigate. - What are the tradeoffs? - Data centers consume a lot of power - Question: How can we reduce power consumption? - Note: not all data in a large data center is accessed simultaneously → disks are not used all the time. - Question: can we reduce power consumption by putting some disks to sleep? - Answer: YES, but there are tradeoffs to investigate. - What are the tradeoffs? - 2 movie theaters competing with each other. They show the same movie - Customers that arrive to see movie choose one of the theaters with equal probability (theaters are identical) - Question: after some time: - () both theathers will receive approx. same amount of customers (and make approx. same amount of money() one theater will get much more customers (make much more money) than the other - Question: can we calculate the probability that one theater makes more than *D* dollars than the other? - Answer: YES. - 2 movie theaters competing with each other. They show the same movie - Customers that arrive to see movie choose one of the theaters with equal probability (theaters are identical) - Question: after some time: - () both theathers will receive approx. same amount of customers (and make approx. same amount of money() one theater will get much more customers (make much more money) than the other - Question: can we calculate the probability that one theater makes more than *D* dollars than the other? - Answer: YES. - 2 movie theaters competing with each other. They show the same movie - Customers that arrive to see movie choose one of the theaters with equal probability (theaters are identical) - Question: after some time: - () both theathers will receive approx. same amount of customers (and make approx. same amount of money () one theater will get much more customers (make much more money) than the other - Question: can we calculate the probability that one theater makes more than D dollars than the other? - Answer: YES. - 2 movie theaters competing with each other. They show the same movie - Customers that arrive to see movie choose one of the theaters with equal probability (theaters are identical) - Question: after some time: - () both theathers will receive approx. same amount of customers (and make approx. same amount of money - () one theater will get much more customers (make much more money) than the other - Question: can we calculate the probability that one theater makes more than D dollars than the other? - Answer: YES. - 2 movie theaters competing with each other. They show the same movie - Customers that arrive to see movie choose one of the theaters with equal probability (theaters are identical) - Question: after some time: - () both theathers will receive approx. same amount of customers (and make approx. same amount of money () one theater will get much more customers (make much - () one theater will get much more customers (make much more money) than the other - Question: can we calculate the probability that one theater makes more than D dollars than the other? - Answer: YES. - 2 movie theaters competing with each other. They show the same movie - Customers that arrive to see movie choose one of the theaters with equal probability (theaters are identical) - Question: after some time: - () both theathers will receive approx. same amount of customers (and make approx. same amount of money - () one theater will get much more customers (make much more money) than the other - Question: can we calculate the probability that one theater makes more than D dollars than the other? - Answer: YES. After a long time there is a 80% chance one of the theaters got more than 20.000 customers than the other! ### **Modeling Cycle** ## Machine Learning ### **Big Data** - Large amount of data produced and consumed everyday - social networks - online video streaming - microblogging - genome information - measurements - How to obtain insights from data? - What can we learn from the data? ## **Machine Learning** #### What is Murphy: Set is methods that can automatically detect patterns in data ## **Big Data** Large amount of data produced and consumed everyday - social networks - online video streaming - microblogging - genome information - measurements How to obtain insights from data? ## **Machine Learning** #### What is #### Murphy: Set is methods that can automatically detect patterns in data - Uncovered patterns →: - predict future data - perform decision making - planning # **Machine Learning** #### What is #### Murphy: Set is methods that can automatically detect patterns in data - Uncovered patterns →: - predict future data - perform decision making - planning ## **Obtaining insights from traces** - Machine learning = automatic pattern recognition - Performance evaluation = model building and analysis - machine learning tools can help to solve performance evaluation problems (and vice versa) - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - • - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - • - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - • - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? - Given a time series, how to parameterize model to predict future values? - inferring customer behavior - modeling network channel losses - modeling traffic - generating workload - • - Note: we have traces of time series of one or more variables. - Is there a structure behind the data? ## **Summary** - Recall from Performance Evaluation - Machine Learning # Summary - Recall from Performance Evaluation - Machine Learning # Projects of our Group ## **Distance Learning Initiative** P&D - service videoaula@RNP - More than 800 videolectures (approximately 40-90 minutes each) - Technology completely developed at the university - CEDERJ Computer Science course started in 2005 - It has been a service of the RNP since 2011: Videoaula@RNP - Designs started as a research project (CNPq FAPER) projects) and later made into a product (supported by RNP) and transfered to RNP. - More than 800 videolectures (approximately 40-90 minutes each) - Technology completely developed at the university - CEDERJ Computer Science course started in 2005 - It has been a service of the RNP since 2011: Videoaula@RNP - Designs started as a research project (CNPq FAPER) projects) and later made into a product (supported by RNP) and transfered to RNP. - More than 800 videolectures (approximately 40-90 minutes each) - Technology completely developed at the university - CEDERJ Computer Science course started in 2005 - It has been a service of the RNP since 2011: Videoaula@RNP - Designs started as a research project (CNPq FAPER) projects) and later made into a product (supported by RNP) and transfered to RNP. - More than 800 videolectures (approximately 40-90 minutes each) - Technology completely developed at the university - CEDERJ Computer Science course started in 2005 - It has been a service of the RNP since 2011: Videoaula@RNP - Designs started as a research project (CNPq FAPERJ projects) and later made into a product (supported by RNP) and transfered to RNP. # The Service videoaula@RNP Preliminaries Modeling Machine Learning **Projects** Startup - TGR Summary 00000000000 #### The Service videoaula@RNP **Example** # Videoaula@RNP Service Usage - Daily access: almost 7,000 accesses in one day (Feb) - Reached more than 110,000 accesses in one month # **Project supported by GOOGLE** #### **Project** An Intelligent Recommendation System based on Video Lectures for Distance Education ### **Project supported by Google** Empresa investe em estudos académicos do... ... ao comportamento de alunos de videoaulas ### **Project supported by Google** ## **Project supported by Google** - Reportagem Folha do estado de São Paulo, 10 de Junho de 2015 - http://www1.folha.uol.com.br/tec/2015/06/ 1633848-google-dara-bolsas-de-mestrado-edoutorado-em-computacao-no-brasil.shtml # Project: Recommendation System for Videolectures Our Objectives - Develop an Intelligent Recommendation System based on VideoLectures for Distance Education - Research Goals: - To adapt the videolecture material according to individual user's needs - Automatically make suggestions to each student in realtime: - additional exercises - Give important feedback to faculty involved on each class # Project: Recommendation System for Videolectures Our Objectives - Develop an Intelligent Recommendation System based on VideoLectures for Distance Education - Research Goals: - To adapt the videolecture material according to individual user's needs. - Automatically make suggestions to each student in realtime: - additional written material on the subject - additional explanation from short videos - additional exercises - Give important feedback to faculty involved on each class # **Project: Recommendation System for Videolectures** **Our Objectives** - Develop an Intelligent Recommendation System based on VideoLectures for Distance Education - Research Goals: - To adapt the videolecture material according to individual user's needs. - Automatically make suggestions to each student in realtime: - additional written material on the subject - additional explanation from short videos - additional exercises - Give important feedback to faculty involved on each class # Project: Recommendation System for Videolectures Our Objectives - Develop an Intelligent Recommendation System based on VideoLectures for Distance Education - Research Goals: - To adapt the videolecture material according to individual user's needs. - Automatically make suggestions to each student in realtime: - additional written material on the subject - additional explanation from short videos - additional exercises - Give important feedback to faculty involved on each class # **Project: Recommendation System for Videolectures** - Develop an Intelligent Recommendation System based on VideoLectures for Distance Education - Research Goals: **Our Objectives** - To adapt the videolecture material according to individual user's needs. - Automatically make suggestions to each student in realtime: - additional written material on the subject - additional explanation from short videos - additional exercises - Give important feedback to faculty involved on each class # Project: Recommendation System for Videolectures - Develop an Intelligent Recommendation System based on VideoLectures for Distance Education - Research Goals: **Our Objectives** - To adapt the videolecture material according to individual user's needs. - Automatically make suggestions to each student in realtime: - additional written material on the subject - additional explanation from short videos - additional exercises - Give important feedback to faculty involved on each class ### **The System** ## Startup - Measurements and Planning TGR - Tecnologia em Gestão e Planejamento de Redes Measurements and Analysis # Parceria Universidade/Empresa #### Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. # Parceria Universidade/Empresa - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. # Parceria Universidade/Empresa - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Communications of the ACM November 2012 - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" Impact of Home Networks on End-to-End Performance (HomNets 2010) - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" Broadband Internet Performance: A View From the - Gateway (ACM/SIGCOMM 2011) - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" Speed Measurements of Residential Internet Access (IEEE/PAM 2012) - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" Measuring Home Broadband Performance - (Communications of the ACM November 2012) - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - The Realities of Home Broadband (CACM Nov 2012) - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Mixture Models of Endhost Network Traffic (Infocom 2013) - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" Prodicting user dissatisfaction with Internet application - Predicting user dissatisfaction with Internet application performance at end-hosts (Infocom 2013) - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. - Assunto científico de interesse internacional: - Artigos recentes têm sido publicados em veículos internacionais de renome (2012, 2013) - "much remains to be done to improve our understanding of broadband services" - Transferência de novas técnicas desenvolvidas no LAND para TGR - Desenvolvimento teórico aliado a experimentação em campo - Ganhos para a sociedade: tópico de interesse para formuladores de políticas públicas e consumidores - Pesquisa de ponta: Tese de mestrado 2015: Caracterização e modelos para avaliar o desempenho de redes de acesso residencial baseados em aprendizado de máquina. - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. Garantia de Qualidade → economia de recursos - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção Redução de custos - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede Planejamento futuro → economia de recursos - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente Planejamento → economia de recursos - Entender o comportamento do usuário de banda larga - Ferramenta de medição e diagnóstico da qualidade da banda larga. - Software para diagnosticar problemas de instalação e manutenção - Software para dimensionamento da capacidade da rede - Conhecer o tráfego do cliente - Entender o comportamento do usuário de banda larga ### **Projeto** ## Implementação do software no firmware da INTEL (gateway embedded solution) - INTEL - Implementação do software no firmware em escala global Modeling Startup - TGR 0000000000 ## Gateway Inteligente ## Research/Development in our Group - Fault Tolerance is Essencial - Performance always matter Stuart Feldman ACM's Software System Award, Vice-President Eng. Google ## Research/Development in our Group - Fault Tolerance is Essencial - Performance always matter Stuart Feldman ACM's Software System Award, Vice-President Eng Google ## Research/Development in our Group - Fault Tolerance is Essencial - Performance always matter Stuart Feldman ACM's Software System Award, Vice-President Eng. Google #### FIM # OBRIGADO! PERGUNTAS? www.abc.org.br/~edmundo www.land.ufrj.br/~edmundo