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In January 2014, Professor Simone introduced me to Professor Sylvain.

New game: Timber Game in caterpillars.
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In Grenoble, in addition to working on Timber Game, we started working
on Coloring Game.

Working together with:

@ Clément Charpentier;
@ Simon Schmidt.

@ Math a modeler team.
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Goal

@ Many researchers have been studying winning strategies in 2-player
combinatorial games.

@ We study the Timber Game and the Coloring Game in a caterpillar.

@ Moreover, we study the Nordhaus-Gaddum type inequality to the
parameter of these game.
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Steven Brams.
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Coloring Game

What is Coloring Game?

@ The coloring game is a two player
non-cooperative game conceived by
Steven Brams.

o Firstly published in 1981 by Martin
Gardner.

@ Reinvented in 1991 by Bodlaender, who
studied the game in the context of
graphs.

SCIENTIFIC
AMERICAN
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Coloring Game

Who wins?

@ Alice wins when the graph is completely colored with t colors;
otherwise, Bob wins.

e The game chromatic number Xxz(G) of G is the smallest number t of
colors that ensures that Alice wins (when Alice starts the game).

X(G) < xg(G) < A(G) +1
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Coloring Game

Simple results

° X(G) < xg(G) <A(G)+1
° Xg(K,,):n
o Xg(Sn) =1

Xg('Dl) =1, Xg(P2) = Xg(P3) =2

e For n > 4, we have that x,(P,) =3

° xg(Cr)=3

The stars K1 , with p > 1 are the only connected graphs satlsfymg
xg(G) =2
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Coloring Game

Different graph classes studied

planar graphs: 7 < x,(P) < 17;

e outerplanar graphs: 6 < x,(0) < 7;

toroidal grids: x4(TG) = 5;

partial k-trees: xg(P) < 3k +2;

the cartesian products of some classes of graphs: for example,
Xg(Tllj T2) S 12,
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Literature for trees

o Bodlaender (1991): xg(T) < 5.
o Faigle et al. (1993): x.(F) < 4.

@ Dunn et al.(2015): criteria for determining xz(F), for a forest
without vertex of degree 3, in polynomial time.
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Our problem

@ Due to the difficulty concerning this subject, the problem of
characterizing forests with xz(F) = 3 remains open.

@ In our work, we contribute to this study by analyzing the caterpillar.
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Coloring Game

Caterpillar
e A caterpillar cat(ky, ko, ..., ks) is a tree which is obtained from a
central path vi, vy, v3, ..., vs (called spine), and by joining v; to k; new
vertices, i = 1,...,s.
@ L

Figure: cat(0,2,1,1,0,3,0).
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Coloring Game

Why caterpillars?

@ Example presented in Bodlaender (1991) to prove the existence of a
tree Hy with xg(Hq) > 4:

@ Dunn et al.(2015) proved that this caterpillar is the smallest tree such
that x4(T) = 4.

e We are interested in characterizing when x(H) is 3 or 4.
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Coloring Game Caterpillar

What did we do?

@ We have determined:

e two sufficient conditions for xz(H) = 4 for any caterpillar H;

e two necessary conditions for x,(H) = 4 for any caterpillar H.

o Caterpillars

e with maximum degree 3;
e without vertex of degree 2;
e without vertex of degree 3;

e with vertices of degree 1, 2, 3 and 4.
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Caterpillar with maximum degree 3

Theorem (Furtado et al., 2017)

Let H be the caterpillar cat(ki, ..., ks) with A(H) = 3. We have that H
has xg(H), Xg(H) < 3. Moreover, let F be the forest where each

connected component is a caterpillar and A(F) = 3. We have that F has
xg(F) <3.
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Caterpillar without vertex of degree 2

Theorem (Furtado et al., 2017)

Let H be the caterpillar without vertex of degree 2. We have that
xg(H) = Xg(H) =4 if, and only if, H is caterpillar cat(ki, ..., ks), such
that ki = ks =0, ki #0, Vi € {2,...,s — 1}, and there are at least four
vertices of degree at least 4.




Coloring Game Caterpillar without vertex of degree 3

Caterpillar without vertex of degree 3

Let Family Q be the set of caterpillars Hy, Hss, H[a] U H[ﬁ]' H[a][B] and
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Caterpillar without vertex of degree 3

Theorem

A caterpillar H without vertex of degree 3 has xg(H) = 4 if, and only if, H
has a caterpillar of Family Q as an induced subcaterpillar.
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Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q' be the set of caterpillars {H[’a] U H/ H[’a]

8]’ U Hs, H3 U Hs,
H}, and H[/a][ﬁ]’ His}.
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Caterpillar with vertices of degree 1, 2, 3 and 4

U Hs, H3 U Hs,

Let Family Q' be the set of caterpillars {H[/a] U H[/ﬂ]’ Hy

[o]
H}, and H[/a][ﬁ]’ His}.
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Caterpillar with vertices of degree 1, 2, 3 and 4

Theorem (Furtado et al., 2017)

Let H be a caterpillar with vertices of 1, 2, 3 and 4. If H has a caterpillar
of Family Q" as a induced subcaterpillar, then xz(H) = 4.




Coloring Game ~ Summary

Summary
A(H) | xg(H) =1 xg(H)=2 xg(H) =3 Xg(H) =4
0 P1 - - -
1 - P - -
2 - P3 Pn, n> 4 -
3 - star not a star -
4 - star see next Figure see next Figure




Summary

Coloring Game ~ Summary

H without vertex of degree 2 H without vertex of degree 3

H with exactly
four vertices
of degree 4 except Hy

Family Q except H,

Family Q'

Figure: Caterpillars with A(H) =4 and xg(H) = 4.




Coloring Game Forest

Xg(F)

Theorem (Furtado et al., 2017)

Let F be a forest composed by r trees T1, ..., T,. Assume that
Xg(T1) < xz(T2) < ... <xg(Tr), and, if there exist two trees with the

same game chromatic number, then T; and T; are ordered in a way that

Xg(T,-) < Xg(T-), for i < j. We have that:
Q 1Fxg(Tr) > x3(Tr)s xg(Tr-1), then xg(F) = x3(T;);
I xg(Tr) = xg(Tr-1) > x3(T:), then xg(F) = xg(T,),
Ifxg(Ty) = xg then Xg(F) =X2(T,) = x3(T);
) < Xg
)

/fxg(

Ifx3(Tr) < X3
max {XZ,(F\T, )

<

© ©6 00

;) and Y2721 |V(T;)| is odd, then xg(F) =

(T,
a(T,
2(T,
). X3(T)}

r)
) and Y iC |V( T;i)| is even, then x¢(F) = XZ(Tr);
)

)‘
e UFRD
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What are Nordhaus-Gaddum type inequalities?

@ Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:
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What are Nordhaus-Gaddum type inequalities?

@ Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then 2,/n < x(G) + x(G) < n+ 1. These
bounds are best possible for infinitely many values of n.

@ Survey by Aouiche and Hansen (2013): 360 articles.

@ To the best of our knowledge, the only Nordhaus-Gaddum type
inequality existing for invariants related to games on graphs is by Alon
et al.(2002) and concerns the game domination number.
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Nordhaus-Gaddum type inequalities to xz(G) + x(G)

Theorem (Furtado et al., 2017)

For any graph G of order n, we have that 2,/n < x¢(G) + x¢(G) < [32].
Moreover, the bounds are best possible asymptotically:

@ for infinitely many values of n, there are graphs G of order n with

4n
(€ + (@)= | 4| -1
@ for infinitely many values of n, there are graphs G of order n with
Xg(G) + xg(G) =2v2n— 1.
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Nordhaus-Gaddum type inequalities to xz(G) + x(G)

Theorem (Furtado et al., 2017)

For any graph G of order n, we have that 2,/n < x¢(G) + x¢(G) < [32].
Moreover, the bounds are best possible asymptotically:

@ for infinitely many values of n, there are graphs G of order n with

4n
(€ + (@)= | 4| -1
@ for infinitely many values of n, there are graphs G of order n with
Xg(G) + xg(G) =2v2n— 1.

The lower bound follows from Theorem of Nordhaus and Gaddum (1965)
and the inequality x(G) < xg(G).
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Nordhaus-Gaddum type inequalities to other games

@ We determine the Nordhaus-Gaddum type inequalities to

o the number of P-positions of a caterpillar (Timber Game);
e the game coloring number of any graph G (Marking Game).
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Nordhaus-Gaddum type inequalities to other games

@ We determine the Nordhaus-Gaddum type inequalities to

o the number of P-positions of a caterpillar (Timber Game);
o the game coloring number of any graph G (Marking Game).

@ Marking Game is a “colorblind” version of the coloring game.

@ All bounds are tight, except the upper bound for the number of
P-positions of a caterpillar.
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Why games?

Figure: Salon International de la Culture
et des jeux mathématiques, Paris, 2015.

Figure: Festival da Matematica, Rio de
Janeiro, 2017.
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THANK YOU!
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Antena Brasileira de MatematiCa
http://www.antenabrasil.uff.br/

ma{fn-d o ™

http://mathsamodeler.ujf-grenoble.fr/
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