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Simon Schmidt.
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Graphs and Combinatorial Games

Goal

Many researchers have been studying winning strategies in 2-player
combinatorial games.

We study the Timber Game and the Coloring Game in a caterpillar.

Moreover, we study the Nordhaus-Gaddum type inequality to the
parameter of these game.

16 / 44



Graphs and Combinatorial Games

Goal

Many researchers have been studying winning strategies in 2-player
combinatorial games.

We study the Timber Game and the Coloring Game in a caterpillar.

Moreover, we study the Nordhaus-Gaddum type inequality to the
parameter of these game.

16 / 44



Graphs and Combinatorial Games

Goal

Many researchers have been studying winning strategies in 2-player
combinatorial games.

We study the Timber Game and the Coloring Game in a caterpillar.

Moreover, we study the Nordhaus-Gaddum type inequality to the
parameter of these game.

16 / 44



Coloring Game

Summary

1 Academic trajectory

2 Graphs and Combinatorial Games

3 Coloring Game

4 Nordhaus-Gaddum type inequalities

17 / 44



Coloring Game

What is Coloring Game?

The coloring game is a two player
non-cooperative game conceived by
Steven Brams.

Firstly published in 1981 by Martin
Gardner.

Reinvented in 1991 by Bodlaender, who
studied the game in the context of
graphs.
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How to play?

Given t colors, Alice and Bob take turns properly coloring an uncolored
vertex.

Alice X Bob

minimizer X maximizer
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Coloring Game

Who wins?

Alice wins when the graph is completely colored with t colors;
otherwise, Bob wins.

The game chromatic number χg (G ) of G is the smallest number t of
colors that ensures that Alice wins (when Alice starts the game).

χ(G ) ≤ χg (G ) ≤ ∆(G ) + 1
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Coloring Game

Simple results

χ(G ) ≤ χg (G ) ≤ ∆(G ) + 1

χg (Kn) = n
χg (Sn) = 1

χg (P1) = 1, χg (P2) = χg (P3) = 2

For n ≥ 4, we have that χg (Pn) = 3

χg (Cn) = 3

The stars K1,p with p ≥ 1 are the only connected graphs satisfying
χg (G ) = 2
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Coloring Game

Different graph classes studied

planar graphs: 7 ≤ χg (P) ≤ 17;

outerplanar graphs: 6 ≤ χg (O) ≤ 7;

toroidal grids: χg (TG ) = 5;

partial k-trees: χg (P) ≤ 3k + 2;

the cartesian products of some classes of graphs: for example,
χg (T1�T2) ≤ 12;
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Coloring Game

Literature for trees

Bodlaender (1991): χg (T ) ≤ 5.

Faigle et al. (1993): χg (F ) ≤ 4.

Dunn et al.(2015): criteria for determining χg (F ), for a forest
without vertex of degree 3, in polynomial time.
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Coloring Game

Our problem

Due to the difficulty concerning this subject, the problem of
characterizing forests with χg (F ) = 3 remains open.

In our work, we contribute to this study by analyzing the caterpillar.
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Coloring Game

Caterpillar

A caterpillar cat(k1, k2, . . . , ks) is a tree which is obtained from a
central path v1, v2, v3, ..., vs (called spine), and by joining vi to ki new
vertices, i = 1, . . . , s.

Figure: cat(0, 2, 1, 1, 0, 3, 0).
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Coloring Game

Why caterpillars?

Example presented in Bodlaender (1991) to prove the existence of a
tree Hd with χg (Hd) ≥ 4:

Dunn et al.(2015) proved that this caterpillar is the smallest tree such
that χg (T ) = 4.

We are interested in characterizing when χg (H) is 3 or 4.
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Coloring Game Caterpillar

What did we do?

We have determined:

two sufficient conditions for χg (H) = 4 for any caterpillar H;

two necessary conditions for χg (H) = 4 for any caterpillar H.

Caterpillars

with maximum degree 3;

without vertex of degree 2;

without vertex of degree 3;

with vertices of degree 1, 2, 3 and 4.
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Coloring Game Caterpillar with maximum degree 3

Caterpillar with maximum degree 3

Theorem (Furtado et al., 2017)

Let H be the caterpillar cat(k1, ..., ks) with ∆(H) = 3. We have that H
has χa

g (H), χb
g (H) ≤ 3. Moreover, let F be the forest where each

connected component is a caterpillar and ∆(F ) = 3. We have that F has
χa
g (F ) ≤ 3.
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Coloring Game Caterpillar without vertex of degree 2

Caterpillar without vertex of degree 2

Theorem (Furtado et al., 2017)

Let H be the caterpillar without vertex of degree 2. We have that
χa
g (H) = χb

g (H) = 4 if, and only if, H is caterpillar cat(k1, ..., ks), such
that k1 = ks = 0, ki 6= 0, ∀i ∈ {2, ..., s − 1}, and there are at least four
vertices of degree at least 4.
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Coloring Game Caterpillar without vertex of degree 3

Caterpillar without vertex of degree 3

Let Family Q be the set of caterpillars Hd , H33, H[α] ∪ H[β], H[α][β] and
H[α]3[β].

Figure: Caterpillars (a) H33 (b) H[3] (c)H[3][4] (d)H[3]3[4].
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Coloring Game Caterpillar without vertex of degree 3

Caterpillar without vertex of degree 3

Theorem

A caterpillar H without vertex of degree 3 has χg (H) = 4 if, and only if, H
has a caterpillar of Family Q as an induced subcaterpillar.
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Coloring Game Caterpillar with vertices of degree 1, 2, 3 and 4

Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q ′ be the set of caterpillars {H ′[α] ∪ H ′[β], H
′
[α] ∪ H3, H3 ∪ H3,

H ′22 and H ′[α][β],H
′
23}.

Figure: Caterpillars (a) H ′
[6] (b) H ′

3 (c)H ′
22 (d)H[6][3] (e)H ′

23.
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Coloring Game Caterpillar with vertices of degree 1, 2, 3 and 4

Caterpillar with vertices of degree 1, 2, 3 and 4

Theorem (Furtado et al., 2017)

Let H be a caterpillar with vertices of 1, 2, 3 and 4. If H has a caterpillar
of Family Q ′ as a induced subcaterpillar, then χg (H) = 4.
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Coloring Game Summary

Summary

∆(H) χg (H) = 1 χg (H) = 2 χg (H) = 3 χg (H) = 4

0 P1 - - -
1 - P2 - -
2 - P3 Pn, n ≥ 4 -
3 - star not a star -
4 - star see next Figure see next Figure
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Coloring Game Summary

Summary

Figure: Caterpillars with ∆(H) = 4 and χg (H) = 4.
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Coloring Game Forest

χg(F )

Theorem (Furtado et al., 2017)

Let F be a forest composed by r trees T1, ..., Tr . Assume that
χa
g (T1) ≤ χa

g (T2) ≤ ... ≤ χa
g (Tr ), and, if there exist two trees with the

same game chromatic number, then Ti and Tj are ordered in a way that
χb
g (Ti ) ≤ χb

g (Tj), for i < j . We have that:

1 If χb
g (Tr ) > χa

g (Tr ), χb
g (Tr−1), then χg (F ) = χa

g (Tr );

2 If χb
g (Tr ) = χb

g (Tr−1) > χa
g (Tr ), then χg (F ) = χb

g (Tr );

3 If χa
g (Tr ) = χb

g (Tr ), then χg (F ) = χa
g (Tr ) = χb

g (Tr );

4 If χb
g (Tr ) < χa

g (Tr ) and
∑r−1

i=1 |V (Ti )| is even, then χg (F ) = χa
g (Tr );

5 If χb
g (Tr ) < χa

g (Tr ) and
∑r−1

i=1 |V (Ti )| is odd, then χg (F ) =

max
{
χa
g (F\Tr ), χb

g (Tr )
}

.
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Nordhaus-Gaddum type inequalities

Summary

1 Academic trajectory

2 Graphs and Combinatorial Games

3 Coloring Game

4 Nordhaus-Gaddum type inequalities
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Nordhaus-Gaddum type inequalities

What are Nordhaus-Gaddum type inequalities?

Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then 2
√
n ≤ χ(G ) + χ(G ) ≤ n + 1. These

bounds are best possible for infinitely many values of n.

Survey by Aouiche and Hansen (2013): 360 articles.

To the best of our knowledge, the only Nordhaus-Gaddum type
inequality existing for invariants related to games on graphs is by Alon
et al.(2002) and concerns the game domination number.
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inequality existing for invariants related to games on graphs is by Alon
et al.(2002) and concerns the game domination number.
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Nordhaus-Gaddum type inequalities to χg(G ) + χg(G )

Theorem (Furtado et al., 2017)

For any graph G of order n, we have that 2
√
n ≤ χg (G ) + χg (G ) ≤

⌈
3n
2

⌉
.

Moreover, the bounds are best possible asymptotically:

1 for infinitely many values of n, there are graphs G of order n with

χg (G ) + χg (G ) =

⌈
4n

3

⌉
− 1;

2 for infinitely many values of n, there are graphs G of order n with
χg (G ) + χg (G ) = 2

√
2n − 1.

The lower bound follows from Theorem of Nordhaus and Gaddum (1965)
and the inequality χ(G ) ≤ χg (G ).
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Nordhaus-Gaddum type inequalities to other games

We determine the Nordhaus-Gaddum type inequalities to

the number of P-positions of a caterpillar (Timber Game);
the game coloring number of any graph G (Marking Game).

Marking Game is a “colorblind” version of the coloring game.

All bounds are tight, except the upper bound for the number of
P-positions of a caterpillar.
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Why games?

Figure: Salon International de la Culture
et des jeux mathématiques, Paris, 2015.

Figure: Festival da Matemática, Rio de
Janeiro, 2017.
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THANK YOU!
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http://www.antenabrasil.uff.br/

http://mathsamodeler.ujf-grenoble.fr/
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