
PER VERTEX BRDF ACQUISITION

Daniel Pinto Coutinho

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Ricardo Guerra Marroquim

Rio de Janeiro

Fevereiro de 2015

Coutinho, Daniel Pinto

Per Vertex BRDF Acquisition/Daniel Pinto Coutinho.

– Rio de Janeiro: UFRJ/COPPE, 2015.

XVI, 72 p.: il.; 29, 7cm.

Orientador: Ricardo Guerra Marroquim

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2015.

Referências Bibliográficas: p. 68 – 72.

1. BRDF. 2. Interactive. 3. Computer Graphics.

I. Marroquim, Ricardo Guerra. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. T́ıtulo.

iii

To my family

iv

Acknowledgement

First of all, I would like to thank my family. Their immense support and com-

prehension of my departure to pursue my master’s degree were of a great value to

me. They were helping in every decision and I am certain that they will continue

doing it throughout the rest of my journey.

I want to thank everybody of the Visual Computing Lab of CNR-ISTI in Pisa. They

were generously helpful during my stay there and great companions to eat pizza. I

would like to specially thank Matteo Dellepiane for all the contribution throughout

this work, if it were not for him, probably this dissertation would never have been

born. He was a real mentor during my time in Italy. I would also like to thank

Roberto Scopigno for the sincere welcome in their group.

All my professors here in LCG have been really supportive, and what I must say,

not the usual terror of graduate school advisors. I would like to thank prof. Antonio

Oliveira for his help in the design of the optimization algorithm and weekly discus-

sions about the greatest football team in the world, Vasco da Gama. I would also

want to thank prof. Claudio Esperança, who is one of the best teachers I ever had

the pleasure of knowing. Last, but not least, prof. Ricardo Marroquim has been

more than my advisor during these two years, he has been a real friend, giving a

lot of support in my academic and personal life. I owe him a lot and will be forever

grateful for this experience.

Finally, I want to thank my friends from LCG who have been following my progress

and actively participating in this work, whether with suggestions during the weekly

meetings or by having fun during the weekends. In order to prevent myself from not

citing anyone and causing any resentment, I just want to thank everybody equally.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

AQUISIÇÃO DE BRDF POR VÉRTICE

Daniel Pinto Coutinho

Fevereiro/2015

Orientador: Ricardo Guerra Marroquim

Programa: Engenharia de Sistemas e Computação

Esta dissertação apresenta um sistema de aquisição para aproximar um modelo

simples de BRDF por vértices de um objeto do mundo real. A partir de um mo-

delo digital obtido digitalizando o objeto f́ısico e fotos capturadas com diferentes

posições de luz, nosso sistema reproduz fielmente o comportamento dos materiais

que compõem o objeto. A principal vantagem do nosso trabalho é a capacidade de

gerar resultados online e fornecer feedback imediato para o usuário. Nós apresenta-

mos um sistema rápido e que não necessita de aparatos complexos ou um ambiente

de aquisição muito controlado.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

PER VERTEX BRDF ACQUISITION

Daniel Pinto Coutinho

February/2015

Advisor: Ricardo Guerra Marroquim

Department: Systems Engineering and Computer Science

This dissertation presents an acquisition system that approximates a simple

BRDF model per vertex of a real world object. Given a digital mesh from the

physical object and photos taken with different light positions, our system faith-

fully represents the material that composes the object. The main advantage of our

work is the ability to generate online results and provide immediate feedback to the

user. We present an efficient system that doesn’t require complex devices or an over

controlled acquisition environment.

vii

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Contribution . 2

1.3 Thesis Outline . 3

2 Background 4

2.1 Reflectance . 4

2.1.1 Radiometry . 4

2.1.2 BRDF . 5

2.1.3 BRDF Models . 6

2.1.3.1 Lambertian . 6

2.1.3.2 Phong . 7

2.1.3.3 Blinn-Phong . 7

2.1.3.4 Oren-Nayar . 8

2.1.3.5 Ward . 8

2.1.3.6 Lafortune . 9

2.2 Color Spaces . 9

2.2.1 RGB . 9

2.2.2 sRGB . 9

2.2.3 CIE XYZ . 10

2.2.4 CIELAB . 10

2.3 Camera models . 11

2.3.1 Projective camera . 12

2.3.2 OpenGL camera . 12

2.3.3 Conversion between different models 13

viii

3 Related Works 14

3.1 Color mapping . 14

3.2 Controlled Lighting . 15

3.3 General Lighting . 18

3.4 Devices . 20

3.5 Example-based . 21

3.6 Summary . 22

4 Algorithm 24

4.1 Sphere detection . 26

4.2 Color Chart detection . 28

4.3 Mesh-Photo Alignment . 29

4.4 Diffuse color . 30

4.4.1 Generating New Light Directions 32

4.5 Specular coefficient . 37

4.6 Optimization cycle . 39

4.6.1 Diffuse and Specular Coefficients 41

4.6.2 Shininess . 41

4.6.3 Color . 42

4.7 Changing Viewpoints . 43

4.7.1 Quality Metric . 43

5 Experimentation and analysis 45

5.1 Results . 45

5.1.1 Nana . 45

5.1.2 Buddha . 50

5.1.3 Gertrud . 51

5.1.4 Goats . 52

5.2 Discussions . 54

5.2.1 Local vs Global Optimization 56

5.2.2 SRGB vs RGB . 57

5.2.3 Parameters . 59

5.2.4 BRDF Model . 63

5.2.5 Size . 63

5.2.6 Number of photos . 64

5.2.7 Time and Feedback . 64

6 Conclusion 66

6.1 Future Works . 66

ix

Bibliography 68

x

List of Figures

2.1 Object rendered with different reflectance models 8

4.1 Mesh-Image alignment for Nana . 24

4.2 There are basically four steps in our system: calibration, basic dif-

fuse color estimation, specular coefficient estimation and optimization

cycle. 25

4.3 Our typical acquisition environment consisting of the target object,

a reflecting sphere to extract light direction, and a color chart for

calibration purposes. 26

4.4 Demonstration of a sphere used to capture the light direction 27

4.5 Calculating the light direction from the reflective sphere. 28

4.6 Mesh-Image alignment for the Palm tree model 30

4.7 Cyan represents an area where the vertices are in highlight, orange

delimits self-shadowing areas, and purple delimits the area of low

diffuse value. All other vertices are considered for this camera-light

pair. 32

4.8 We want to calculate a new light direction that generates a specular

value lower than Ts. The idea is to set the desired reflection vector
~R′ at a position in which (~R′ · ~E) = Ts. To find the position ~R′

we need to express the difference Ts − (~R′ · ~E) in terms of angular

distance. The angle a is cos−1(~R · ~E) and b is cos−1(Ts). We find

the difference between them and just rotate R (b − a) degrees with

respect to ~E× ~R. The best light is then just the reflection of ~R′ with

respect to the vertex’s normal. 33

4.9 Spatial Bins example . 35

4.10 The datasets used in our work, top row, left to right: Nana, Nana

Back. Bottom row, left to right: Buddha, Gertrud, Goats 36

xi

4.11 Hemisphere coverage during time. Note that after a few iterations,

the number of bins is greatly reduced. The Goats case is rather odd,

because although it seems a flat surface, it is composed of several

bumps whose normals point to directions that are complicated to be

captured by the current viewpoint. That it is way it never converges

and more viewpoints are needed to fully cover the vertices. 36

4.12 We want to calculate a new light direction that generates a specular

value greater than Ts. The idea is to set the desired reflection vector
~L′ at a position in which (~R′ · ~E) = Ts. To find the position ~L′ we

need to express the value of Ts in terms of angular distance. The

angle a is cos−1(Ts). Then, we just rotate L a degrees with respect

to ~L× ~N . We actually subtract a small amount from a, because the

new specular value should be higher than Ts so it can be considered

a specular light direction. 39

4.13 The result of the optimization process on the diffuse coefficient. . . . 41

4.14 Result of the specular coefficient’s optimization. We can observe how

it increases the brightness of the shiniest spots. 41

4.15 Result of the shininess’optimization. 42

5.1 A comparison between the final rendering in 5.1a and a photo with

corresponding light direction 5.1b. Our result faithfully captures the

object’s diffuse color and the highlight areas. 46

5.2 More results for Nana. Left column shows the rendering results and

the right column photos with associated light directions. Again, we

can notice a good diffuse color extraction and highlight shape repro-

duction. Our algorithm successfully approximates the highlight area,

but was not able to reproduce the same specular intensity, this is

more perceptible on the shoes. 46

5.3 Visualization of diffuse and specular coefficients. Observe the dark

dots present on Nana’s head in the diffuse coefficients photo and how

these match the white dots in the specular coefficients photo. The

error of specular photos are guiding the optimization process to set

the specular coefficient too high while setting the diffuse coefficient

too low. 47

5.4 Comparison for the Nana Back between the rendering, left, and the

photo, right. 47

xii

5.5 Results for Nana. Left column shows the rendering results and the

right column photos with associated light directions. Again the diffuse

color approximation results are of high quality as well as the highlight

shape. Unlike the first scenario where some highlight were not as

intense as in the photo, for the Nana Back in some cases the highlight

are even brighter than the photo, as the yellow base in Figure 5.5a. . 48

5.6 Nana rendered from a novel viewpoint. Black areas especially in the

neck or the hand are vertices that were not seen from the fixed view-

point, a different viewpoint is required to approximate their BRDFs. . 49

5.7 Nana Back rendered from a novel viewpoint. 49

5.8 A comparison between the final rendering in 5.8a and a photo with

corresponding light direction 5.8b. While we can adequately approx-

imate the robe’s BRDF, and the highlight shape to some extent,

the problem experienced with the diffuse holes prevents a better re-

flectance approximation. 50

5.9 Comparing the three images it is noticeable that the vertices with only

one specular photo are influencing heavily the optimization towards

the specular value. This actually seems odd, as one would expect that

having less specular photos would guide the optimization towards the

diffuse coefficients. However, the very shiny nature of the buddha

and the dark diffuse color presents a rather peculiar situation. Very

low diffuse values do not yield an error as large as the specular one

for the Buddha. We performed the same comparison with the Nana

and this behavior was not reproduced. 51

5.10 Results for the Gertrud dataset. We can see how the geometry of

its face is much more noisy than the actual statue, which harms the

performance of our algorithm. Although, it is still able to extract a

good diffuse color, specially of its robe. Since neither the underlying

object nor the painting is very specular, there are a few highlights

which are not too as bright as expected. 51

5.11 Results for Gertrud. Left column shows the rendering results and the

right column photos with associated light directions 52

5.12 Blending between Mesh and Image. Notice the misalignment. 53

5.13 A color mapping comparison. We compare the result of the Photo-

scan color mapping software with our basic diffuse color extraction.

Observing both results and the photos shown before, our results are

much more accurate. 53

5.14 Results for Goats. Left column shows the rendering results and the

right column photos with associated light directions 54

xiii

5.15 Difference between the photo and the rendering color. Left column

represents the difference P − C and right column C − P . We can

observe that more illuminated areas are brighter in the photo than

in our rendering results, whereas less illuminated areas are darker in

photos. 55

5.16 Comparison between local and global optimization. Local optimiza-

tions fail to capture all highlight areas and its corresponding intensity.

Notice how only some of the highlights present in the global optimiza-

tion result are present in 5.16a. 56

5.17 Models rendered from a novel viewpoint. The local optimization re-

sult seems like the object is made from only one type of material,

Nana’s body is as specular as its head, which is not the behavior seen

in the global optimization result nor in the photos shown earlier. . . . 56

5.18 Again we can notice that the specular behavior is not similar to the

actual model. Although there are no diffuse holes in the local opti-

mization result, the BRDF obtained also does not correspond to the

expected material. 57

5.19 Coefficients obtained during the local optimization in the top row.

Compare these with the global optimization results in the bottom

row. Local optimization coefficients are too high. 58

5.20 A comparison of the results obtained from the different color spaces.

It is clearly noticeable that results from the RGB space are generally

darker than the SRGB. This discrepancy increases as the diffuse value

decreases, notice how its neck progressively darkens. The highlights

are also not as bright as in the SRGB, the bright spot near the top

of the head looks more reddish than in the right. 58

5.21 The same divergences for the Nana can be seen in the Buddha. The

RGB color space produces a darker result, look at Buddha’s left arm

and the robe around its right knee. The highlights in SRGB are also

brighter, note its right arm. 59

5.22 Rendering of Gertrud with different values of α. Although subtle,

there’s a noticeable difference in the shapes and intensities of the

highlights in each. As expected with a increase of α, the highlights

tend to be localized. Observing the highlights in the red areas, we

can see that it progressively gets smaller. 60

5.23 Photograph of Gertrud. We can notice that the highlights are more

compatible with the results where α is small. 60

xiv

5.24 The different values of shininess in the Nana Back dataset produce

more varied results than Gertrud. When α is small, as in the top row,

the outcomes are moderately similar. In the case when α = 50, we

can notice more holes in Nana’s head than in the previous results and

some highlights, as in its body, can no longer be seen. Some major

changes can also be seen when α = 100, as some bright dots in its

head, and a few white areas near the top of Nana’s head, there is also

no more highlights in its body. 61

5.25 From left to right: n = [100, 1000]. We could not detect major differ-

ences in the results with the change of n. In fact, it may have never

even reach the maximum number of 1000, since it probably converges

before. 62

5.26 As expected, the results for the diffuse coefficient remains the same

with the change of the number of iterations. 62

5.27 Like the results for the diffuse coefficient, the specular coefficients

remain the same with the change in the number of iterations. 63

xv

List of Tables

4.1 We repeated the process 10 times for each dataset and took its av-

erage. Iterations are the number of lights, and consequently photos,

needed to cover all vertices. For the Goats, 38 is the size of the

complete dataset, since it never converged. 37

xvi

Chapter 1

Introduction

”Stay a while and listen.”

— ”Deckard Cain”

Photorealistic rendering has been a goal in Computer Graphics almost since its

beginning. A lot of focus has been placed on the development of global illumination

algorithms[1], which try to mimic the physical behavior of light and its interac-

tion with the environment. However, even the more advanced algorithms rely on

the description of the object’s material properties. Rendering a ceramic vase and a

bronze one should result in totally different results even if their geometry is identical,

but this is only possible if there is some model capable of mimicking the material

behavior. BRDFs are such models but for their parameters to be settled, some

measurement of the specific material in hands must be carried on.

Bidirectional Reflectance Distribution Function (BRDF) is a mathematical func-

tion that describes the reflectance behavior of an object. Given a light direction,

the BRDF returns the amount of light reflected towards a viewpoint. One can only

imagine the complexity of translating a real world object material in terms of an

analytical function. This has been a topic of research in the last decades and there

has been a myriad of works published with different approaches [2]. Some of the

techniques involve the usage of complex devices such as a gonioreflectometer or spe-

cial domes, while others rely only on information from photos and videos of the

object. Our work consists in approximating a simple BRDF model using photos

with an associated light direction.

Besides the desire of rendering photorealistic scenes, our work supplies the demand

for other areas of research that focus on digital techniques applied to Cultural Her-

itage.

1

1.1 Motivation

The Cultural Heritage field focus on preservation, restoration and dissemination of

historical artifacts. With the advancement of three-dimensional scanning and great

improvements of DSLR cameras, the digitization of such objects with a high degree

of quality has been possible. Although we can faithfully create a geometric copy of

real world objects and extract a great amount of information about its color, there’s

still room for improvements regarding the extraction of its reflectance properties.

Even though there are works that almost generally solve the BRDF acquisition prob-

lem, they usually have some limitations such as: object size, need to move the object,

special acquisition environments. Our work presents no restrictions about object’s

dimensions and its position. Furthermore, some acquisition environment conditions

are desirable, but not mandatory.

A common pipeline for digitizing a historical artifact is scanning its geometry and

then performing a series of photos acquisition. These tasks are usually done in situ,

for example, a museum or archaeological site. After the acquisition step, offline

calculations are performed for mesh refinement and/or color mapping of the photos

on the model. It is not uncommon during the offline step to notice that there is

not enough data to fully represent the object, usually a photo missing from a view-

point. In certain campaigns this may be a major problem, since another trip to the

site may not be viable. A conservative acquisition may be a less dramatic solution,

but it spends much more time and acquires more data than necessary, sometimes

redundant.

The core of our algorithm is performed using shaders which provides an enormous

gain in performance, since all calculations are done in parallel. The use of shaders

also allow us to treat self-shadowing with little cost, which could be a rather labo-

rious task otherwise.

1.2 Thesis Contribution

The main contribution of our work is a fast algorithm that can approximate a simple

BRDF model of a real world object. Our system is also able to provide the user

with feedback about all the information required to faithfully represent the object

and overall quality.

Along with our algorithm, we developed an acquisition system capable of providing

online feedback about the quality result of our model and information about missing

parts. Not only it provides this kind of detail, it can also suggest good light directions

in order to have a better result and use less data. This is an important contribution

of our work, since we are not aware of other tools used in the field that can provide

2

such online response.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2

In this chapter we discuss the basic concepts required for further understanding

our work, covering topics ranging from reflectance and radiometry to color

spaces and camera models.

• Chapter 3

We analyze the most relevant related works in acquiring BRDFs. We also

discuss some works that focus only on color mapping, since this is also an

inherent part of our algorithm.

• Chapter 4

In this chapter we detail how our algorithm works and each extraction part:

basic diffuse color, specular estimation and optimization procedure.

• Chapter 5

We present our main results and discussions in this chapter.

• Chapter 6

Conclusions and directions for future works are discussed here.

3

Chapter 2

Background

In this chapter we set some of the theoretical background required to understand our

work. Section 2.1 describes some definitions about radiometry, BRDF and illustrate

some models. Color spaces are discussed in Section 2.2. In the last Section 2.3

we talk about some different camera models used in this work and how to convert

between them.

2.1 Reflectance

We are concerned with the acquisition of an object’s BRDF, which represents its

reflectance, but what is really reflectance? Intuitively, we can describe it as the

behavior of a surface with respect to light reflection. This is essentially our task,

analyze how the object reflects light from a certain direction. A more formal defini-

tion is given by NICODEMUS et al. [3]: Reflectance is the fraction of incident light

flux that is reflected. In order to understand reflectance, it is necessary to lay out

the basic concepts of Radiometry.

2.1.1 Radiometry

Radiometry is the study of measurement of electromagnetic radiation. In this sec-

tion we explore the basic radiometric concepts in order to comprehend shading mod-

els. The electromagnetic radiation is composed of photons possessing an associated

wavelength. The wavelengths ranging from approximately 380 to 780 nanometers

compose the visible spectrum. This spectrum is visible light to our eyes and per-

ceived as colors.

The energy carried by photons is called radiant energy Q, which is measured in

joules (J). Radiant Energy is most commonly known as the energy of electromag-

netic waves, but since these are stream of photons, we can view radiant energy as

the energy carried by photons. It’s also worth noting that light and electromagnetic

4

waves are synonyms, therefore radiant energy can also be described as the energy

of the light. The number of joules emitted per second is called radiant flux Φ, mea-

sured in J/s or Watts(W). For example, a light of 60W emits 60 joules per second.

If we want to measure the amount of radiant flux that hits a surface we are measuring

the irradiance E:

E = dΦ
dA

Technically, irradiance is the amount of energy flowing into a surface and exitance,

or radiant exitance, is the energy flowing out of a surface. The term radiant flux

density can be used to refer to both. For directional light sources, where the light is

much farther than the objects in the scene, irradiance is approximately constant over

the scene. Light sources are assumed to be directional in our acquisition system.

Considering a unit radius sphere, a patch of the surface area is called solid angle,

measured in steradians(sr). The solid angle represents a set of angle directions in

3D that cover the patch area. If we consider our light source emitting energy over a

sphere, the flux of energy that will flow through a given solid angle ω, is the radiant

intensity(I):

I = dΦ
dω

If we want to measure the amount of radiant intensity that flows through a surface

area, we are talking about radiance(L). Radiance is the amount of radiant flux per

solid angle per surface area:

L = dΦ
dωdAcosθ

The purpose when evaluating a shading model is to compute the radiance along a

given ray.

2.1.2 BRDF

When dealing with photorealistic rendering of objects we need a way to quantify

reflectance. For this purpose we use a Bidirectional Reflectance Distribution Func-

tion (BRDF). A BRDF encapsulates how the object reflects light from all possible

incoming positions to every reflecting direction. Picking incident light direction ωi

and a reflecting direction ωo, the BRDF of a material for the incoming direction ωi

reflected towards ωo is:

f(ωi, ωo) = dL(ωo)
dE(ωi)

where

dE(ωi) = Li(ωi)cosθidωi

5

It is important to notice that a BRDF describes a general reflectance distribution

defined over the entire sphere of directions around the object. When evaluating it,

we are providing a current incoming light and a desirable exitant ray, and we are

generally asking: ”How much of this light is reflected towards that direction?”.

Though we have been saying that our goal is to acquire an object’s BRDF, there

is an important observation to make. A BRDF describes a material and not the

object per se. It means that a golden paint posses the same BRDF whether it is

on stone or glass, even though the reflected light will usually be influenced by the

paint’s BRDF as well as the underlying material. Acquiring the BRDF of an object

implicates in describing of which materials it is made.

There are some important properties of physically-based BRDFs:

Reciprocity The BRDF remains the same if the incident and exitance directions

are exchanged.

Energy of conservation This principle establishes that all exitance radiance is

less than or equal to the incident radiance.

Attributing a BRDF to an object implies that its object is composed of only one type

of material. Unfortunately, CH artifacts do not behave so nicely in the majority of

cases, especially if painted, when the reflectance of an object changes depending on

the surface point. In this case we will need a spatially-varying BRDF (SVBRDF).

Now, we are dealing with a six-dimensional parameter space:

f(x, ωi, ωo) = dL(x,ωo)
dE(x,ωi)

As can be expected, to capture a real world object’s BRDF is not an easy task.

We would have to sample light from all possible directions and respectively position

a camera in all possible reflecting positions, and measure for every surface point,

which is simply unfeasible. What we perform in our work is the acquisition of a

small to moderate number of samples and fitting of the data in an analytical BRDF

model. Some of these models will be explained next.

2.1.3 BRDF Models

Here we describe known BRDF models in the Computer Graphics community. The

models discussed are used in this dissertation and in many of the related works.

2.1.3.1 Lambertian

Simplest model of all, establishes that when light strikes a surface, it reflects uni-

formly in all directions. That way, from every possible viewpoint you look at a

6

lambertian surface, its perceived color is the same. However, this is only a theoreti-

cal model since real world objects do not exhibit purely lambertian behavior. Figure

2.1a shows an object with purely lambertian behavior, but only reflecting half of

the incident irradiance.

2.1.3.2 Phong

Considered a breakthrough during Computer Graphics’s early life, Phong model

[4] provides a way to calculate a surface’s reflectance considering three properties:

diffuse coefficient kd, specular coefficient ks and shininess α. The idea is that the

closer the surface’s normal is to ωi, the greater its radiance will be. Also, highlights

can be seen when the reflected light in closer to ωo. The resultant radiance of a

point x is:

f(x, ωi, ωo) = kd(~N · ~ωi)Crgb + ks(~R · ~ωo)αSrgb

Where, ~N is the surface’s normal at x, ~R is the reflection vector of −~ωi with respect

to ~N . The color of the material is Crgb and the light is Srgb. The vector ~R can be

easily calculated by:

R = ωi − 2(ωi · ~N)N

We show an example of an object rendered with the Phong’s model in Figure 2.1b.

Its parameters are: kd = 0.5, ks = 0.5 and α = 10.

2.1.3.3 Blinn-Phong

The Blinn model [5], often called Blinn-Phong, is a modification of the Phong model

by introducing the halfway vector H. In a perfect mirror, the normal of the surface

N would be pointed halfway between the incident light and the reflected ray. So,

let H be:

H = ~ωi+ ~ωo
‖ ~ωi+ ~ωo‖

Then, the radiance of a point x using the Blinn model is:

f(x, ωi, ωo) = kd(~N · ~ωi)Crgb + ks(~N · ~H)αSrgb

We show an example of an object rendered with the Blinn-Phong’s model in Figure

2.1c. Its parameters are the same as the Phong’s model.

While both models are very popular and historically important, e.g. the Blinn

model is the default implementation up to OpenGL 3, they are not physically plau-

sible and do not maintain the BRDF’s properties we established before. The next

models we analyze are more physically accurate, and by a certain degree, more

complex.

7

(a) A lambertian object re-
flecting half of irradiance.

(b) An object rendered
with the Phong’s model.

(c) An object rendered us-
ing the Blinn-Phong.

Figure 2.1: Object rendered with different reflectance models

2.1.3.4 Oren-Nayar

Oren and Nayar [6] observed that real world objects are not perfect lambertian

surfaces, but instead are composed of small planar facets, which are lambertian.

Oren-Nayar’s model belongs to a class called microfacet models. The simplified

resultant reflectance of a point is:

f(x, ωi, ωo) = ρ
π
Eocosθi(A+BMax[0, cos(φr − φi)]sinαtanβ)

Where (θi, φi) are the angles of incidence and the exitance angles are (θr, φr), ρ is

the surface’s albedo, and:

A = 1.0− 0.5 σ2

σ2+0.33

B = 0.45 σ2

σ2+0.09

α = max[ωi, ωo]

β = min[ωi, ωo]

Notice that for the case when A = 1 and B = 0 we return to the lambertian model,

so Oren-Nayar’s model can be viewed as its generalization.

2.1.3.5 Ward

Intended to develop a model that both fits measured data and is relatively simple

in order to maintain performance. Its full equation is able to generate anisotropic

models:

f(x, ωi, ωo) = ρd
π

+ ρs
1√

cos(ωi)cos(ωo)

exp(−tan2δ(cos
2φ

α2x
+ sin2φ

α2y
))

4παxαy

Where ρd and ρs are respectively the diffuse and reflectance coefficient, αx and αy

are the standard deviation of the surface slope in the ~x and ~y directions, δ is the

angle between the halfway vector and the surface’s normal, and φ is the azimuth

angle of the half vector projected onto the surface plane.

8

2.1.3.6 Lafortune

Observing the flaws in Phong’s model, such as its rapid decrease in reflectance

towards grazing angles and its inability to represent anisotropic surfaces, Lafortune

et. al developed a new generalized Phong model LAFORTUNE et al. [7]. As seen,

Phong employs the classic cosine lobe:

fs(x, ωi, ωo) = ks(~R · ~ωo)αSrgb

The parameters that define shape and size of the lobe are ks and α. Expanding the

above dot product and adding the parameter vector C = {Cx, Cy, Cz}, we have:

fs(x, ωi, ωo) = ks(CxRxωox + CyRyωoy + CzRzωoz)
αSrgb

Notice that C controls the lobe’s properties. To obtain an anisotropic reflection, we

need only that Cx 6= Cy, otherwise, we obtain an isotropic reflection.

Despite its limitations, we chose the Phong model due to its simplicity, specially

desirable during the optimization steps in our algorithm.

2.2 Color Spaces

Human eyes possess cones that are able to respond to light of different wavelengths,

that’s how we perceive color. Since we have three types of cones, only three variables

are necessary to represent all visible colors. Depending on how we define these

variables and what they represent, there is a large range of possible spaces to create.

In this section we study four of them which are used in our work.

2.2.1 RGB

One of the most common color spaces used, and default in OpenGL and GLSL

shading language, is the RGB color space. It is an additive system, where we can

obtain a color by simply adding two others. The resultant perceived color is a linear

combination of the basic colors: Red, Green, Blue.

Usually the system domain may vary depending on the application. It is common to

see photographs with integer values of pixel colors ranging in the interval [0, 255]. In

this case, the vector (0, 0, 0) represents the black color and white is (255, 255, 255).

In GLSL language and in our shading model, the values are in the interval [0, 1],

where black is represented the same way, but white is the vector (1, 1, 1).

2.2.2 sRGB

The RGB space is device dependent, which means that the same RGB value in a

monitor may not be the same perceived color from a different monitor. This happens

9

because monitors non-linearly convert voltage into light intensities NGUYEN [8].

The conversion is a gamma exponentiation, where gamma usually varies from 2.2 to

2.4. To prevent this effect we perform a gamma correction to our output color. Let

C be the resulting perceived color from the shading model above, we would actually

send to the monitor a gamma-corrected output L′:

L′ = L1/γ

In order to not have the burden to perform a color calibration regarding each device,

HP and Microsoft created a standard RGB space called sRGB.

It is also common that most photographs taken with digital cameras are represented

in sRGB, and therefore are in a non linear space. Additions in non linear spaces do

not behave as expected leading, which means that we should first bring them to a

linear space by exponentiating to a power of γ.

Fortunately, for both rendering color and reading photographs, OpenGL provides

convenient solutions with the support of sRGB textures and framebuffers. The use

of the sRGB color space greatly improved our results.

2.2.3 CIE XYZ

The RGB color space was created by a set of conducted experiments in which people

would match up a given color by adjusting the weights of the three basic colors. In

order for the results to match, some of the weights needed to be negative. The CIE

proposed then a set of three different lights sources that were not monochromatic

called X, Y and Z. They allowed for color-matching with only positive weights. The

conversion between the XYZ model and the RGB depends on the white reference

point used, we show the matrix of conversion below for the D65 reference white [9] R

G

B

 =

 3.240479 −1.537150 −0.498535

−0.969256 1.875992 0.041556

0.55648 −0.204043 1.057311


 X

Y

Z


And the inverse conversion: X

Y

Z

 =

0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227


 R

G

B


2.2.4 CIELAB

The CIELAB is a perceptually organized color space, which means that two colors

that are perceptually similar are close in distance, while in the CIE XYZ model this

would not necessarily happen. This color space is suitable when we want to perform

10

operations based on how similar two color are. In our work, we use this color system

when comparing a pixel from a photo and the rendered color.

The coordinates of the system are: L, which represents lightness, and a and b, which

are color dimensions. The conversion from the XYZ model is the following:

L = 116f(Y
Yw

)− 16

a = 500(f(X
Xw

)− f(Y
Yw

)

b = 200(f(Y
Yw

)− f(Z
Zw

))

where the color (Xw, Yw, Zw) is the reference white color:

f(x) =

{
x1/3 if x >

(
6
29

)3

1
3

(
29
6

)2
t+ 4

29
otherwise

The inverse conversion is:

Y = Ywf
−1
(

1
116

(L+ 116)
)

X = Xwf
−1
(

1
116

(L+ 116) + 1
500
a
)

Z = Zwf
−1
(

1
116

(L+ 116)− 1
200
b
)

where:

f−1(x) =

{
x3 if x > 6

29

3
(

6
29

) (
t− 4

29

)
otherwise

Since there is no direct conversion from RGB model to CIELAB, we first perform

a conversion to XYZ space and then from CIELAB, and similarly for the inverse.

2.3 Camera models

In our work we deal constantly with two different camera structures. One is the

physical camera of the photographs. This real world camera possess properties such

as lens aperture, focus and distortion. Besides these intrinsic characteristics, we are

also interested in external settings, such as its position and orientation with respect

to the object.

The other camera we deal with is the virtual camera in our rendering system. This

is an OpenGL camera model and its properties are usually: field of view, near and

far clipping planes. Our virtual camera is also affected by the view matrix, which

describes its position in world space when rendering the scene.

When dealing with such two distinct models, we need to consistently handle our

transition between both so we can assure the coherency and effectiveness of the

technique. The subsequent subsections will discuss each model.

11

2.3.1 Projective camera

The projective camera we study in this section is the finite projective camera that

maps points from the projective space P3 to P2. Points in P are represented using

homogeneous coordinates, i.e. if X ∈ P3, then X = (X, Y, Z,W)T . The projection

maps points in 3D space onto the called image plane. We say that the projection

transforms points X ∈ P3 to x ∈ P2:

x = PX

We consider the following operations in the camera coordinate system, which may

be aligned with the world coordinate system. Let the camera center C be the origin

of its system, and the image plane Z = f , where f is the camera’s focal lens.

The ray with origin at C that passes orthogonally through the image plane is the

principal axis. The point of interception is called principal point p. Considering

cameras with CCD sensors, it may occur that the pixels are not squared. In this

case we have scale factors mx and my, which represent the number of pixels per

unit distance in each direction. The coordinates of C are described as its distance

from the world system’s origin and we use a 3x3 rotation matrix to represent the

camera’s orientation. Finally, the last parameter we have to take into account is the

skew factor s, which is zero for most cameras. Let K be the following matrix:

K =

mxf s x0

myf y0

1


We call K the camera calibration matrix which contains the camera’s internal pa-

rameters. Camera’s external parameters are the rotation matrix R and its center C.

Often, we may prefer to not make its center explicit and use the called translation

vector t instead, where t = −RC. We can represent the camera projection matrix

as a product of its internal and external parameters:

P = K[R|t]

In our system, during the calibration set-up we calculate the camera’s internal and

external parameters. For more details about the projective camera and other camera

models, please refer to HARTLEY and ZISSERMAN [10].

2.3.2 OpenGL camera

Within OpenGL’s conceptual rendering model, there is a series of transformations

by which the scene goes through until its result is shown in an output device. We will

discuss three of these transformations in this section: Model, View and Projective.

12

Model transformation is the transformation which will be applied to our scene that

changes its location in relation to space, these consist of translations, rotations and

scaling. The view transformation positions our camera in the desired point to render

our scene, much like positioning a real world camera to take a photograph. Model

and View transformations are usually combined into a single one, called ModelView.

The view transformation is the same as the camera’s external parameters of the

general projective camera.

In OpenGL two types of camera are used: Orthographic and Perspective. For our

purposes, we will only talk about the latter. Defining a perspective camera in

OpenGL requires to set a viewing frustum defining the region in space which will be

rendered. We define this frustum by specifying a vertical field of view θ, an aspect

ratio α, and, for practical issues, a near(n) and a far(f) plane. OpenGL camera

will project points that are inside the viewing frustum and between the near and

far planes to a cube of size two and centered in the origin. Let c = cot(θ/2), the

projection matrix is the following:

P =


c/α 0 0 0

0 c 0 0

0 0 f+n
n−f

2fn
n−f

0 0 −1 0


It can be noted that the OpenGL camera model is also a projection camera, however

a little more restrict. In order to further understand the OpenGL camera model and

its transformations, please refer to SHREINER et al. [11].

2.3.3 Conversion between different models

From the general projective camera model to the OpenGL camera we use the con-

version used by LI [12]. Since their external orientation is the same, we only need

to convert the projective camera model to OpenGL’s perspective projection. This is

done by obtaining a field of view θ and aspect ratio α from the camera’s calibration

matrix. The aspect ratio can be simply obtained by the image’s size and its pixel

scale factors mx and my:

α = width
height

mx
my

The field of view requires to know the camera’s focal length, but can also be easily

calculated:

θ = 2atan(height
2

/ f
my

)

The inverse conversion isn’t performed in our system, so we leave it as a further

reading of the work by Li.

13

Chapter 3

Related Works

There are some approaches used in estimating BRDFs of real objects: controlled

lighting solutions which use various images with fixed viewpoint but varying light

directions are described in Section 3.2; techniques that try to perform the acquisition

in a general lighting environment are discussed in Section 3.3; and some of them

design specific devices for this task (Section 3.4). We start our literature review

discussing works performing Color Mapping, which can be considered a BRDF ap-

proximation for purely lambertian objects. Since our work by default also performs

color mapping, we will talk about some recent works of the area.

3.1 Color mapping

Considering the advances of modern 3D scanners and digital cameras, obtaining

mesh datasets consisting of millions of triangles and photo datasets easily surpass-

ing 50 millions pixels is not uncommon. Taking into account this technological

progress, the work from CALLIERI et al. [13] propose to perform an efficient color

mapping while coherently exploring this space of large data. The core of their ap-

plication is a weighting mask that attributes quality values to pixels based on a set

of criteria.

These criteria are encoded in the following masks: Angle, Depth and Border. The

first works similarly to the lambertian illumination, the closer the surface’s normal

is to the viewing direction, the higher is the pixel weight. The depth mask takes

into account the distance from the surface and the camera, the rationale behind is

to approximate the ratio pixel/surface. The last basic criterion measures how far

is a pixel from borders, whether they are image borders or discontinuities in the

depth map. Their system also allows for case specific masks, such as stencil or focus

masks.

After the masks are computed, applying them to the mesh is straightforward. Given

a point in the object’s surface, it is easy to know in which images this point is visi-

14

ble. The final color of the point will be a simple weighted average of the image pixel

multiplied by the masks for each image.

Using a handheld recorded video from a consumer depth camera ZHOU and KOLTUN [14]

present an optimization approach for mapping color images onto a mesh. Their pro-

posal is based on the current increased availability of consumer depth cameras in the

market. On one hand, non-professionals can now create highly accurate geometric

models, on the other, color images produced by RGB-D cameras produce optical

distortions not present in regular cameras.

In their optimization algorithm they are iteratively trying to optimize the color C(p)

of the point p and an extrinsic matrix Ti that maps all vertices pi for each image

Ii. Due to imprecise geometry, inaccuracy of camera localization and optical dis-

tortions, there is a non-rigid correction for each image represented as a deformation

function Fi. Their objective function is:

Ec(C, T, F) =
∑
i

∑
p∈Pi

(C(p)− Γi(Fi(u(g(p, Ti)))))
2

Where g is just the rigid transformation of the matrix Ti applied to p, u(gx, gy, gz, gw)

is the projection onto the image plane of Ii and Γi(ux, uy) is the color evaluation for

coordinates (ux, uy). Since their optimization is realized with greyscale images, the

value returned by Γi(ux, uy) is the bilinear interpolation of the greyscale intensity

of the pixel (x, y).

The total number of variables is considerably large: m+ 720n, with m equals to the

number of vertices and n is the number of frames, hence they employ an alternating

optimization scheme where sometimes C is optimized while keeping T and F fixed

and vice-versa. The optimization of C leads to a linear least-squares problem with

a closed form solution. And the optimization of T and F leads to solving n linear

systems with 720 variables each.

This work presents fine results, although some effects such as specular highlights

or moving shadows can affect the final result. However it does not solve the full

reflectance acquisition problem for non lambertian objects.

3.2 Controlled Lighting

LENSCH et al. [15] present a similar approach to our method, a fitting process us-

ing only a professional digital camera, a reflecting sphere and a dark room. Unlike

our approach where for each viewpoint we only take a set of photos with different

light directions, they perform the following acquisitions for every viewpoint: two

images to detect light source position, one image to register the 3D model with the

images and a high dynamic range image with varying exposure time. They use the

Lafortune BRDF model in their approach.

15

For their fitting process, a data structure called lumitexel (L) is created for every

visible surface point, and for each L there is a list of radiance values for each image

where it is visible. The lumitexels are created by projecting the model’s triangles

in each photo, picking the image where its projected area is the largest, called Ibest,

then for each pixel pi of Ibest the position ~xi of the model is calculated. After as-

sembling all lumitexels, a process called split-recluster-fit begins.

An initial cluster is created by selecting a given number of lumitexels and a singular

BRDF fit is made using a Levenberg-Marquadt optimization process. If the model is

composed of more than one type of material, as typically is the case, a single BRDF

model f won’t suffice. A split step divides f into f1 and f2 and the lumitexels

are reclassified accordingly. For both newly generated clusters, a fitting process is

repeated. This process repeats until a given number of materials are created. When

more than two clusters have been created by successive splits, all initial lumitexels

are distributed throughout the clusters.

As can be noted, different points in the model may belong to the same cluster and

possess the same BRDF fi, which does not recreate a true spatially varying BRDF.

Thus, for each cluster a set of basis BRDFs are created and every lumitexel in that

cluster stores weights for a linear combination of them. To calculate the set of basis

BRDFs, a principal function analysis is used.

Due to the clusterization it may happen that small areas may not be represented so

well since the number of lumitexels is so small compared to the cluster they belong,

causing a misrepresentation of the diffuse color. Usually some of the differences

in the results are spotted in highlights, they are not strong enough or not in the

correct shape. In our results since every vertex has its own BRDF components we

can approximate them independently and sample even small areas, and highlight

shapes are usually well represented.

LENSCH et al. [16] extended the previous work by changing the calibration of the

light source position and estimating normal maps in order to refine the mesh’s ge-

ometric details. They recalculate a better normal of a surface point by minimizing

the error of the pixel value and the rendered reflectance. Results have demonstrated

an average decrease of approximately 60% of the root mean squared error with the

use of normal maps. However, this introduces some artifacts on some parts of the

mesh, whether they are regions where not enough samples were acquired or regions

with high reflectance interreflections. Although this method produces better results,

it still maintains the same problems of the previous technique.

Polynomial Texture Maps (PTM) MALZBENDER et al. [17] are already a estab-

lished form of representing real world objects BRDFs. Unlike a traditional texture

mapping where a texel stores the color information, coefficients of a biquadratic

polynomial are also stored:

16

L(u, v; lu, lv) = a0(u, v)l2u + a1(u, v)l2v + a2(u, v)lulv + a3(u, v)lu + a4(u, v)lv + a5(u, v)

Where L is the resultant luminance at coordinates (u, v) and (lu, lv) are the projec-

tions of the light vector onto that coordinates. Given N images, they build a n× 6

linear system and solve for the variables ai using singular value decomposition. Their

main observation is that for different light positions, the pixel’s chromaticity remains

fairly constant while the luminance may largely vary. Defining the chromaticity of

the pixel as (Rn(u, v), Gn(u, v), Bn(u, v)), the final color of the pixel (u, v) is:

R(u, v) = L(u, v)Rn(u, v)

G(u, v) = L(u, v)Gn(u, v)

B(u, v) = L(u, v)Bn(u, v)

They also show that it is possible to apply filter behaviors on the PTM and some

lighting models such as anisotropic surfaces and fresnel effects can be modeled. Al-

though originally designed for texture mapping, there are also some 2D applications

for which they are suitable, for example contrast enhancement and depth of focus.

Their paper also presents the original approach to the technique called Reflectance

Transformation Imaging (RTI).

RTI is a computational photographic method to acquire a 2D image which encodes

3D reflectance information of real world objects. RTI images are a form of texture

mapping which allow the change of light direction in an interactive way. By cap-

turing a series of photos with controlled lighting conditions, it is possible to extract

the normal information of the surface. Besides from an interactive relighting, they

permit the enhancement of surface details through a series of filters, such as: diffuse

gain, specular enhancement, unsharp masking and multi-light detail enhancement.

This improvement of the surface details is of great interest during the study of

ancient writings and inscriptions. For this matter, RTI is extensively used in the

Cultural Heritage field.

The work of GOLDMAN et al. [18] tries to recover at the same time the shape and

the spatially-varying BRDFs of objects. Following the observation that many real

world objects can be decomposed into a small number of materials, their model is a

resultant composition of other smaller substances, and as an input, the number of

fundamental materials is provided by the user. The shading model is the isotropic

Ward. As a limitation, their work does not model effects such as cast shadows,

inter-reflections, transparency and translucency.

Their algorithm works in five steps. The first is calibrating the light intensity and

recovering its direction. In the second, they initialize the normal maps using a lam-

bertian photometric stereo, already giving an initial estimate of the diffuse albedo.

We perform similar initialization in our work. The next steps are the proper opti-

mization procedure that are repeated until convergence: Optimize BRDF parame-

17

ters while fixing the normals; computing surface normals and material weight maps;

and finally, reconstructing the 3D surface from the newly calculated normals.

Since both the shape extraction and material estimation are done alternatively dur-

ing the optimization procedure, their overall fidelity is lower than in works where

each task is done separately. Also the procedure is subject to overfitting, which

usually happens when in most of the images a given pixel is in highlight.

Following the same approach as above the work of ALLDRIN et al. [19] recovers

both shape and BRDF simultaneously, but instead of using a parametric reflectance

model, it uses a bi-variate approximation of measured isotropic BRDFs. It basically

does steps similar to the previous work, but since there is no parametric BRDF

model, they argue that their work can represent a broader number of materials.

However they do not deal with self-shadowing which limits their objects to convex

shapes.

3.3 General Lighting

In PALMA et al. [20] a statistical method for the estimation of Spatially Varying

BRDFs is provided. Unlike our method, their approach is based in video sequences

with fixed but general lighting conditions. Similarly to our work, the lighting model

used is Phong.

The initial step is to align the video frames to the mesh in order to have a set of color

samples projected by each frame, this step is done using PALMA et al. [21]. Then,

for each texel, their luminance values are separated according to a threshold, such

that specular ones are used to estimate environment map and diffuse samples are

used in the computation of the diffuse color. Using the object as a probe, without

the need of reflecting spheres, they can produce a probability map depicting the

light in the environment.

During the diffuse color estimation, the environment map is used to calculate the

probability sx,y that the sample in a given frame has a specular behavior. To esti-

mate the diffuse color, a threshold dx,y is calculated using the specular weight sx,y

and discarding all samples whose luminance value is higher than dx,y. The color is

simply a weighted average of the color samples.

The final step of the algorithm consists in estimating the specularity behavior of

the object. Firstly, it needs to estimate the position and shape of the environment

main light sources. Using a median cut algorithm proposed by DEBEVEC [22] it is

possible to approximate the environment map with a set of 4096 directional lights,

afterwards all clusters are created by generating connected components of the lights

in the map. From the clusters it is possible to extract its centroid and local distri-

bution. Then for each texel they detect a temporal luminance peak and extract two

18

samples cmin and cmax which correspond to the minimum and maximum differences

from the diffuse color respectively. In a general lighting environment, each lumi-

nance peak is affected by the many light sources, if more than one exists, however

there is a probable main light source that influences the most each peak. The main

source light ~l that should create each peak is calculated by selecting the light source

whose Mahalanobis distance to the reflected view direction ~rmax is the lowest. The

specular parameters ks and η are simply calculated by a resulting system of equa-

tions when computing the difference of cmax and cmin with the pixels luminance.

A user assisted clustering process is performed next, since in the video some object

areas may have not been appropriately specularly sampled. An initial automatic

step is performed by spreading seeds in areas where the diffuse color is more uni-

form and then applying a growing region for each seed. A new point is added to

the cluster if the euclidean distance of its color and the mean cluster color in the

CIELAB space is smaller than a threshold defined by the user. The average of the

specular parameters is calculated for each cluster.

Some limitations are presented in this work due to the input data and the Phong

model, for example, it presents trouble in recovering highlights, either not fully cap-

turing some highlight areas or resulting in a different appearance than the photos.

It may also present blur effects on small specularities. In addition, the clustering

step may sometimes require too much manual intervention.

The work presented by DONG et al. [23] also tackles the unknown lighting condi-

tions using a video, however instead of a general path as done by PALMA et al. [20],

the object is rotated around its axis. As BRDF model they chose the isotropic mi-

crofacet model ASHIKMIN et al. [24]. As an assumption of the object, they ignore

self-occlusions which limits their objects to convex shapes, whereas in our work self-

occlusion is dealt with.

They need to find for every surface point x diffuse kd(x) and specular albedos ks(x),

but instead of a specularity parameter, they estimate a Normal Distribution Func-

tion D(ωh;x). Their objective function minimizes the squared error of the obser-

vation in the video frame from the outgoing radiance of the surface point x for all

time steps t:

argminkd,ks,Dx
∑
t

∑
x

||I(ωo;x, t)− L(ωo;x, t)||2

In order to lower the computational cost of this minimization, they alternate between

estimating the normal distribution D(ωh;x), the diffuse and specular albedo, and

the incident lighting. For the lighting estimation they assume that natural incident

lighting is sparse in the gradient domain and use the temporal gradient of the trace,

which is the temporal variation in the appearance of a surface point. Since they

employ various non-linear steps during the estimations above, there is no guaranteed

19

convergence rate or global minimum.

3.4 Devices

HOLROYD et al. [25] designed a complex coaxial optical scanner capable of syn-

chronously acquiring shape and spatially varying reflectance. Their device consists

of a pair of assemblies each containing a coaxial camera and a light source. The re-

flectance information is acquired by the modularization of light by a high-frequency

sinusoid pattern. This sinusoidal illumination allows separating direct reflections

from subsurface scattering, diffuse interreflections and other indirect effects.

Their acquisition step consists of leaving one arm in a fixed position as the other

moves around the object. For each arm position, four stacks of images are taken,

each image consisting of M frames, tipically M = 10. Subsequently, there are a

number of steps to obtain the geometric model and the reflectance. First, the am-

plitude and phase maps of the sinusoidal illumination are calculated, the amplitude

map is proportional to the amount of light reflected from the surface. Next, pose

refinement and depth maps calculations occur. For the depth map calculation they

use different phase maps of each view and perform a triangulation to extract the

surface depth. The direct components of the sinusoidal illuminations seem suitable

to use as BRDF samples, but first a correction factor should be applied so they can

be used, this is the final step of their pipeline.

For the BRDF acquisition, they segment the mesh into clusters based on the diffuse

albedo using the k-means algorithm. Like the idea of LENSCH et al. [15], each

cluster has a set of basis BRDFs and each vertex of the cluster has weights to lin-

early combine them. The model used is Cook-Torrance. The results presented are

correct within 5.5% of the reference data, but it still poses some problems. The first

and most clear is the restriction on the object’s size and position, the device does

not allow for large objects. The second is the complexity of such device, it is not

suitable for practical acquisitions and requires a controlled environment. They also

have a limitation of acquiring a BRDF under a global scale that cannot be easily

solved without information of light power. We overcome this problem using a color

chart.

WILLEMS et al. [26] created a minidome with the goal of digitizing cuneiform

tablets. Their dome with a radius of 50cm consists of a single camera placed on top

and 256 white power LEDs positioned on the knots and edge centers. The entire

digitization process is programmable and fully automatic. The geometry reconstruc-

tion is perfomed using Photometric Stereo to recover the object’s normal map and

the depth map can be calculated by a normal map integration.

The initial purpose of the minidome was the digitization of historical artifacts and

20

subsequent texturing of the object’s color. However, it can be also used to perform

an RTI and extract the object’s reflectance information. Moreover, it can be used

to create a dataset for other BRDF algorithms, some of the datasets used in this

dissertation were captured in a minidome.

One special work with the usage of a dome is from SCHWARTZ et al. [27], currently

producing state-of-art results. Their dome consists of 151 DSLR cameras taking

HDR sequences with resolution of 12 Megapixels, one LED-Projector mounted on

a tripod placed at five to eight different positions, with a resolution of 840x480

and projecting 38 different patterns. Instead of calculating BRDF functions and

assigning them to clusters or model’s points, they create a Bidirectional Texture

Function(BTF) DANA et al. [28].

BTF is a six-dimensional texture image parameterized by illumination and viewing

angles, and the surface point. BTFs are similar to SVBRDFs, but are more suitable

to objects that have significant mesostructure. The BTF also capture effects as

self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding.

In their dome, not only they are able to extract the reflectance behavior of the ob-

ject, they also reconstruct the mesh in the same process. This is their first step in

their digitization pipeline, in which they perform a structured light approach for ge-

ometry acquisition using the projector described above. Next, they perform a mesh

parametrization and generation of a texture atlas. Since the photos taken are in the

global hemispheric camera setup Ωg and the texture works in a local hemisphere Ωl,

there is a need to resample the data. Finally the BTF dataset has to be compressed

to enable efficient storage and rendering.

The whole pipeline can be fully automatized and requires minimum user interven-

tion, although the authors don’t specify if the projector’s movement and positioning

is automatically done. With around 200.000 photos taken, the whole process takes

about 36 hours. Although, the initial size of the uncompressed datasets can be

around 500 GB, it can be reduced to approximately 1.5 GB. Overall, it is not a

computationally cheap system. One considerable limitation of this work is the size

and position of objects that can be used, since they need to be placed inside the

dome, whereas our approach has no limitation with regards to the object’s dimen-

sions. Furthermore, in our system a model with 1 million vertices only needs an

extra storage of 24 MB, which poses no problem to current graphics cards even in a

scene with multiple objects.

3.5 Example-based

The work of REN et al. [29] discusses how to acquire a SVBRDF using common and

inexpensive objects such as: a smartphone camera, a handheld linear light source

21

and a BRDF chart. This last item is similar to the color chart used by our system

but instead of colors, materials with known BRDFs are printed. With the purpose of

an easy and fast acquisition system, they show reasonable results with videos of only

thirty seconds. For the acquisition, they place the camera at an angle of roughly 40

degrees 50cm away from the material, the light is positioned one meter above the

surface and kept parallel to a flat surface. The light is translated horizontally in

only one axis direction.

Using the BRDF chart’s materials as representatives, the BRDF of a given point

is the sum of a normalized lambertian BRDF and a linear combination of specular

representatives. As a contribution, their algorithm can also select from a BRDF

database a basis of materials to compose the chart. An initial alignment is per-

formed so that the center of the frame sequence is the highlight peak of the material

reference. They then perform an optimization to minimize the error between the

pixel and rendered color. For cases of bumpy surfaces, an extra light pass is re-

quired, but with respect to the other axis direction. This allows for a recovery of

the surface’s normal variation.

The technique described presents convincing results within a small acquisition time.

However, it has severe limitations. It only recovers the reflectance of flat surfaces,

and even those with small height elevations can cause trouble. The instruments only

allow for small objects whose data acquisition needs to be done at a short distance.

Design and fabrication of a BRDF chart is a nice feature but impractical. If the

choice of representative materials is not good enough, the material’s reflectance will

not be appropriately captured, because only a BRDF that is a linear combination

of the chart’s BRDFs can be extracted.

3.6 Summary

We discusses several works that try to solve the problem of reflectance acquisition,

using a range of diverse approaches. Some capture photos with light in a more

controlled way, others attempt to acquire videos in a general lighting environment,

and there are those that create special devices only for this task. Although many

present convincing results, all of them still imposes some limitations. Either they

cannot appropriately capture highlight areas very well, create clusters of BRDFs

not capturing a true spatially-varying BRDF. Many that present excellent results

for high specular surfaces and even anisotropic objects can only capture flat or

convex shapes. There are even those that can faithfully capture an object’s BRDF

with no regards to its geometry, however, they limit the object’s size and position.

In conclusion, to the best of our knowledge, there is no current work that solves the

22

problem of acquiring the SVBRDF of a general object with no restrictions about its

size and position. More importantly, none of them are able to present immediate

feedback to the user about the acquisition quality. Therefore, we propose a system

that tries to fill this gap.

23

Chapter 4

Algorithm

The goal of our algorithm is to approximate the BRDF of an object given its mesh

and photos from a fixed viewpoint but with different light positions. In order for our

method to work we expect the mesh to be aligned with the real world object in the

photo (see Figure 4.1). We project the mesh’s vertices onto each image and read the

pixel color information. All calculations are done independently per vertex in the

fragment shader where we can determine the vertex’s screen position and retrieve

the corresponding photo’s pixel value. We use this knowledge to fit a Phong model

for every vertex:

f(L,E) = kd(~N · ~L)Crgb + ks(~R · ~E)αSrgb

Notice that we changed ωi and ωo from the BRDF equation to L and E respectively

to simplify the notation further on. The unknown parameters to be computed for

each vertex are: the diffuse coefficient kd, the specular coefficient ks, the shininess

α and the diffuse color Crgb. An overview of the whole pipeline is shown in figure 4.2.

(a) Mesh model of Nana (b) Nana’s photo (c) Resultant alignment

Figure 4.1: Mesh-Image alignment for Nana

Our input data is initially the model’s mesh and a set of photos with respective

light directions. We may acquire all the photos interactively in our acquisition pro-

cedure or work with a prepared set. The acquisition environment consists of: object

whose BRDF will be extracted, a reflecting sphere to acquire light direction and a

24

color chart so we can correct the color information in our photos. Figure 4.3 gives

a clear example of our acquisition environment.

Mesh Calibration

Sphere
Detection

Color Chart
Detection

Mesh-Image
Alignment

Diffuse Color

Extract Base
Diffuse Color

Generates
New Light
Direction

Specular Coefficient Optimize

Coefficients

Shininess

Diffuse
Color

Section 4.1

Section 4.2

Section 4.3

Section 4.4

Section 4.4.1

Section 4.5 Section 4.6

Figure 4.2: There are basically four steps in our system: calibration, basic diffuse
color estimation, specular coefficient estimation and optimization cycle.

If we acquire the photos interactively, we start our algorithm with the calibra-

tion procedure. This includes locating the sphere (Section 4.1), retrieving the color

chart’s values (Section 4.2), and computing the mesh-image alignment (Section 4.3).

We assume that for a given viewpoint only the light direction changes. When chang-

ing the camera’s position a recalibration is required. After the calibration, we start

the BRDF approximation per se. We compute an initial diffuse color for each vertex

(Section 4.4). Following, there’s the computation of an approximate specular coeffi-

cient (Section 4.5). Finally, we perform an optimization on the BRDF’s parameters

(Section 4.6).

25

Figure 4.3: Our typical acquisition environment consisting of the target object, a
reflecting sphere to extract light direction, and a color chart for calibration purposes.

4.1 Sphere detection

As an initial step we try to automatically detect the reflecting sphere, using the

Hough transform. However, we are prone to false positives and false negatives, de-

pending on the parameters of the algorithm. To provide some control, the user can

choose a given sphere among the detected ones or can manually position and adjust

the radius. Notice that we only detect the circle of the sphere’s projection, but it

is enough for our purposes. Figure 4.4 shows an example of a billiard ball used as a

reflecting sphere. Most shiny spheres are suitable to be used as reflecting spheres.

26

Figure 4.4: Demonstration of a sphere used to capture the light direction

The reflecting sphere is important to detect the light direction during the acqui-

sition procedure. We use the highlight projected in the sphere and the algorithm

by MUDGE et al. [30] to calculate the light direction. In order to simplify the so-

lution we assume that the distances between both camera and light are large with

respect to the object. We detect the highlight in the sphere, by simply picking the

brightest pixel, this may be adjusted in the future to better deal with cases where

the highlight becomes saturated, leading to many pixels having the highest possible

brightness. Given the sphere with center C and radius r, and the highlight pixel H

in screen coordinates we calculate the sphere’s normal at the highlight position:

Nx = Hx−Cx
r

Ny = Hy−Cy
r

Nz = 1−
√
S2
x + S2

y

Since we assume the camera is distant enough, we can approximate our view direc-

tion ~V as the z axis in the world space. To calculate the light direction ~L, we need

only to reflect the view vector with respect to the normal calculated above:

~L = ~V − 2(~V · ~N) ~N

Figure 4.5 illustrates the process described above.

27

highlight peak

Figure 4.5: Calculating the light direction from the reflective sphere.

4.2 Color Chart detection

The Color Checker is a chart consisting of color samples designed to obtain a mea-

sure of how your photos deviate from the true colors. These charts can be varied in

size and colors: some are grey-scale only or just a white reference color; there are

charts with 140 colors or smaller ones with 24. The model used in our system is the

one in the Figure 4.3 with 24 colors, they are displayed in a grid of 4 × 6 squares.

Along with the chart, a list of the colors values are provided. What our system does

is correct each photo so that the colors from the detected charts match the true

colors.

The color chart detection consists merely in detecting the squares with respective

colors in the image. We offer the option of automatic or manual detections. Auto-

matically, it chooses one color, by default orange, and tries to find the area in the

image that best matches pure orange. After that, it assumes all the squares are

roughly the same size and by the known location of the orange color in the chart,

finds the first square of the grid. Then, it is a simple matter of jumping to the

other squares. Manually, the user needs to click on the square of the first color, then

the algorithm expands an area that best matches the color brown of the chart and

repeats the steps of finding the other squares as the automatic version.

For each color square Cij, where the subscript ij indicates its position in the grid,

we extract its average color Cij. Then, we need to apply a transformation for every

color Cij so that it matches the true chart color C∗ij. This can be achieved with a

polynomial regression for each color channel.

28

4.3 Mesh-Photo Alignment

The effectiveness of our algorithm relies heavily on the alignment between the mesh

and the photo. A misalignment may cause vertices to be attributed a BRDF slightly

different, a totally wrong shading or even not be represented at all. Therefore, in

order to achieve optimal results we need the best alignment possible, which can be

considerate as a drawback of our algorithm in comparison to others. However, this

is a task extensively done by CH professionals, and is not usually seen as a problem.

We perform the Mutual Correspondences algorithm developed by SOTTILE et

al. [31]. The goal is to find the set of parameters C = (θ, φ, ψ, tx, ty, tz, f), where

(tx, ty, tz) represent the position of the camera, (θ, φ, ψ) its orientation and f its

focal length. The algorithm tries to optimize these variables by using two measures:

Mutual Information and Correspondence-based method.

Mutual Information is a measure of generic dependency between two random vari-

ables. The Mutual Information MI of images IA and IB can be calculated as:

MI(IA, IB) = −
∑
(a,b)

p(a, b)log p(a,b)
p(a)p(b)

Where p(a) is the probability that a pixel of IA gets value a, and p(b) similarly

for IB. p(a, b) is the joint probability of event (a, b). The joint distribution can

be estimated by evaluating the joint histogram of the two images and dividing

the number of occurrences by the number of pixels. They also use information of

normals, reflection and silhouette maps, and ambient occlusion. Then, the algorithm

tries to find camera parameters that maximize the Mutual Information between the

photo and the rendered mesh.

Image registration correspondence-based methods rely on manually or automatically

setting correspondences on both the image and the model. The goal is to find the

parameters that minimize the error between the projected 3D correspondences to

the 2D image ones.

E(Corr, C) =

∑
∀corri∈Corr

√
(xpi−xi)2+(ypi−yi)2

N

Where (xp, yp) is the projected 3D correspondence, (x, y) is the image 2D corre-

spondence, and N is the number of correspondences.

Statistic Image registration algorithms such as Mutual Information are precise and

fast, but generally depend on the initial solution and rely on an accurate geom-

etry for best results. Correspondence-based alignment algorithms are robust and

independent from the initial position, but are slow and may require many accurate

correspondences. In order to obtain an algorithm that is a robust, fast and invariant

to the initial position, the Mutual Correspondence algorithm performs a mix of the

two previous approaches.

29

In order to speed up the alignment process we can perform an initial arrangement

of the mesh alignment and set some manual correspondences, three is the minimum

amount, but four leads to more robust results. The algorithm then tries to maxi-

mize mutual info and minimize correspondence errors at the same time. Instead of

maximizing the mutual info, it actually minimizes its negative value, so it performs

only a minimization task. The balance between both goals is controlled by a weight

given by the user. We empirically chose the weight of 0.9 for mutual info and 0.1

for correspondence errors.

Figure 4.6 illustrates the behavior of the algorithm, 4.6a the setup before the algo-

rithm, where we roughly position the mesh at the photo’s position and manually

set pairs of correspondences on the image and the mesh. The circle dots are the

image correspondences and the upside down triangles are the mesh correspondences.

Notice in 4.6b how after the Mutual Correspondence algorithm the correspondences

are closer and how the object is overall more aligned to the image.

(a) We manually set the mesh to a close po-
sition and set some correspondences. The
green circle is the image correspondence, and
the upside-down triangle the mesh correspon-
dence.

(b) Resultant alignment of the Mutual Corre-
spondence algorithm, note the decreased dis-
tance between the correspondences and align-
ment of the palm leaves.

Figure 4.6: Mesh-Image alignment for the Palm tree model

4.4 Diffuse color

As a first approximation of the diffuse color we use the weighted average of the

pixel information. We assume our object is lambertian, but only reflects half of the

30

received radiance. We also experimented setting it to reflect full energy and later

recalculating this value, and the final results are the same. The advantage of setting

it only to half is that intermediary results look better while the coefficients are not

fully adjusted. It is worth mentioning that for each photo we render our mesh as

seen by the light so we can mark which vertices are illuminated. Consequently, self-

shadowing is not an issue at a small cost of only one extra render pass.

The color of a vertex v is the weighted average of all corresponding pixel colors Ci,

where the weights are simply the product ~N · ~Li, and ~Li is the light direction of

photo i :

Cv =

∑
i∈Udp

wiCi∑
i∈Udp

wi

However, the pixel color does not represent the true object’s reflectance value, it is

affected by the light interaction, thus, we need to take this factor in consideration.

Remembering Phong’s shading equation:

f(L,E) = kd(~N · ~L)Crgb

Crgb = f(L,E)

kd(~N ·~L)

In our case, the resulting f(L,E) is a pixel, for further simplification we will write it

as P . In order to avoid unnecessary divisions and precision errors, we can simplify

our equation as:

Cv =
∑

i∈Udv
wi

Pi
kdwi

Cv =
∑

i∈Udv

Pi
kd

The set Udv indicates the photos considered in our algorithm. These are photos

where the vertex v is seen by the camera and by the light, i.e. is not in self-shadow.

Highlights can induce a strong error in the basic color, therefore we do not take into

account values where (~R · ~E) is too high, empirically we found 0.9 to produce good

results, we define it as the specular threshold Ts. Also, when looking at grazing

angles the colors tend to become darker and also negatively influence our algorithm,

so we do not take into account pixels where the value of (~N · ~L) is too low, in our

tests 0.5 proved satisfactory, defined as the diffuse threshold Td. Photos that fit

these criteria compose the set Udv. Figure 4.7 shows the result for a given photo.

Notice that we highlighted areas that compose three of the cases above, obvi-

ously a vertex not seen by the camera can not be shown. Cyan areas contain vertices

which are in highlight, vertices which are in self-shadow are marked by the orange

area, and areas with low diffuse value are represented by purple. Note that these

criteria are not totally precise since vertices that could fall in some of the categories

31

Figure 4.7: Cyan represents an area where the vertices are in highlight, orange
delimits self-shadowing areas, and purple delimits the area of low diffuse value. All
other vertices are considered for this camera-light pair.

above are still considered, for example, the green pixels inside the purple area. This

may happen due to inaccurate geometry, however these minor errors are corrected

later during the optimization process.

4.4.1 Generating New Light Directions

An important considered aspect is to use as few data as possible. Thus, one im-

portant question is: How can we determine that the number of light directions is

enough to cover all vertices? The criteria above show us how to select the best

light source positions so we can cover as many points as possible. The algorithm to

determine the best light position for a given vertex is shown in Algorithm 1.

32

if (~N · ~L < Td) then

BestLight = Vertex’s normal;

end

if (~R · ~E > Ts) then

SpecularAngle = cos−1(~R · ~E);

SpecularThresholdAngle = cos−1(Ts);

DifferenceAngle = SpecularTresholdAngle - SpecularAngle;

RotationAxis = the axis of rotation between ~E and ~R;

/* This is the cross product if both vectors are orthogonal.

*/

NewReflection = Rotate(Light, DifferenceAngle, RotationAxis);

BestLight = Reflect(NewReflection, N);

end
Algorithm 1: Determining best light direction for a vertex

If a vertex has a low diffuse value, i.e. (~N · ~L) < Td, then the best light direction

is simply its normal direction. If a vertex is in highlight, we calculate the angle of

its specular value, i.e. cos−1(~R · ~E). The best light direction for the vertex will be

one where it is not in highlight, so we calculate the angle of the highlight threshold

Ts. If we rotate the current reflection vector E until its specular value is equal to

the threshold value, then we have a good light direction. To do this, we need to

find the rotation angle, this is the difference between the specular threshold angle

and the specular angle calculated above. The rotation axis is just ~E × ~R. The new

light is simply the reflection of ~R′ with respect to the vertex’s normal. Figure 4.8

illustrates this process.

Figure 4.8: We want to calculate a new light direction that generates a specular
value lower than Ts. The idea is to set the desired reflection vector ~R′ at a position
in which (~R′ · ~E) = Ts. To find the position ~R′ we need to express the difference

Ts − (~R′ · ~E) in terms of angular distance. The angle a is cos−1(~R · ~E) and b is
cos−1(Ts). We find the difference between them and just rotate R (b − a) degrees

with respect to ~E × ~R. The best light is then just the reflection of ~R′ with respect
to the vertex’s normal.

This algorithm creates a new light position for every vertex which has not yet been

covered by current light directions. As can be expected, for a large number of

33

uncovered vertices, especially during an early acquisition phase, we need to deal

with a large number of new light directions. To select the best among them, i.e. the

one which satisfies more uncovered vertices, we employ a greedy approach. However,

in order to avoid testing all light positions against all vertices, which would give θ(n2)

tests, we employ a clustering approach. We partition our space into bins, determined

by its longitude and latitude, by subdividing each axis in an equal number of parts, in

our tests we used 36 divisions. The algorithm to determine best light is as following:

for All new light directions do

Calculate latitude and longitude for current light;

CurrentIndex = latitude*parts + longitude;

Center a 3 x 3 grid around CurrentIndex;

Calculate angular difference of current light with the representative light

of each grid bin;

BestIndex = index of bin with smallest angular difference;

Assign new light to bins[BestIndex];

Average lights of the bin;

end
Algorithm 2: Determining best light direction for all vertices

For all the lights, the algorithm determines their latitude and longitude. This

gives us the index of its appropriate bin. However, it is possible that many lights

in a bin are concentrated in a localized area and not distributed around its center.

Therefore for each new light we calculate its bin’s representative light as the average

of all lights, which should give an iterative estimate of the bin’s distribution. Due to

this fact, it may happen that when a light is assigned to a bin, there is a neighboring

representative light that is closer than the current bin’s representative. Thus, for

every new light we check the neighbor bins’s representative and select the one to

which it is closer.

34

A

B

Figure 4.9: Spatial Bins example

Figure 4.9 demonstrates our algorithm and the sphere spatial division. The yel-

low circle is the current light being analyzed, green is the chosen representative light,

dark yellow are the already determined lights that resulted in the green circle, and

red circles are the grid bins farther than the chosen one. The case A in the figure

illustrates the scenario where the current bin’s representative is closer than all its

neighbors’ representative. On the other hand, case B shows the situation where the

light is closer to a neighbor’s central light than its current bin. In this case, it is

better to assign the new light to the other bin.

Now we test all the representative lights for every vertex and select the one with best

coverage. Instead of a quadratic algorithm, now we have O(parts ∗ n) complexity.

In our experiments, this was 1296n, which may be costly for a small n compared to

n2, but presents much better results for a large n. During the early phases of the

acquisition the number of vertices may be in the order of hundreds of thousands.

However, the upper bound of 1296n is reduced by half, since we only acquire lights

over a hemisphere, which gives us a 648n limit complexity. We analyzed the hemi-

sphere coverage for our test cases (Figure 4.11). Table 4.1 shows the time results

for the tests.

35

Figure 4.10: The datasets used in our work, top row, left to right: Nana, Nana
Back. Bottom row, left to right: Buddha, Gertrud, Goats

Figure 4.11: Hemisphere coverage during time. Note that after a few iterations, the
number of bins is greatly reduced. The Goats case is rather odd, because although
it seems a flat surface, it is composed of several bumps whose normals point to
directions that are complicated to be captured by the current viewpoint. That it is
way it never converges and more viewpoints are needed to fully cover the vertices.

36

Object Total time(s) Standard Deviation Iterations(s)

Nana 110.053 0.368 8

Nana Back 91.442 1.652 7

Buddha 1478.012 65.263 34.4

Gertrud 1037.9553 33.858 26.1

Goats 2696.563 29.972 38

Table 4.1: We repeated the process 10 times for each dataset and took its aver-
age. Iterations are the number of lights, and consequently photos, needed to cover
all vertices. For the Goats, 38 is the size of the complete dataset, since it never
converged.

We tested with the following datasets: Nana, Nana Back and Buddha each

having 115 photos, Gertrud has 37 and Goats 38 photos. The tests consisted in

manually choosing the first photo and then automatically calculating the best next

light direction and choosing from the dataset the photo with closest light direction

until all vertices were covered or there were no more adequate light position available.

In this case we would need a new camera position to cover all vertices. The iterations

column in Table 4.1 indicates how many lights were needed to achieve full coverage.

Notice how smaller is the actual hemisphere coverage from the limit of 648 directions.

It is worth noting that due to float-pointing inaccuracies, some variations may occur.

For comparison, after the first light the number of uncovered vertices are 114261 for

Nana, 108750 for Nana Back, 272121 for Buddha, 1335117 for Goats and 1874735

for Gertrud. The brute-force algorithm yields the same number of light directions

for each. Since it is unfeasible to measure time for a Θ(n2) with a n as large as

these, we did not perform the complete time test as above. Obviously, the first light

direction may influence these results, but we can simply claim that they were in

general conditions, i.e. none of them would result in a worst case scenario.

For these tests we have used a predefined set of photos, but the algorithm for deciding

the best light direction aligns with our goal of creating an interactive system, since

we can decide on site which photos should be taken next, and more importantly, if

there are any vertices that have not yet been covered. As explained in Section 1.1,

this may be an issue when digitizing Cultural Heritage objects.

4.5 Specular coefficient

After capturing all photos and calculating a basic diffuse color, we go through the

whole dataset estimating specular coefficients for all the vertices that have been

specularly covered. In other words, vertices that have a specular value higher than

the threshold Ts in at least one photo. For every photo we subtract the diffuse color

37

from the pixel and take out the specular value:

kis(~Ri · ~E)αSrgb = Pi − kd(~N · ~L)Crgb

The superscript i in kis means that this is the specular coefficient ks calculate from

the photo i. Let (~Ri · ~E)αSrgb be ~Si, according to Moore-Penrose MOORE, PEN-

ROSE [32, 33] its pseudoinverse is its conjugate transposed vector divided by its

squared norm:

S+ =

{
0T if S = 0
S∗

S·S otherwise

We can now calculate ks:

kis = (Pi − kd(~N · ~L)Crgb)S
+
i

The final ks is simply the average of all kis obtained from each photo:

ks = 1
|Usv |

∑
i∈Usv

kis

Where Usv is the set of photos where the vertex v has a high specular value.

As we described initially, this is done for all vertices specularly covered. Nevertheless,

this is trickier to acquire than the basic color. Let us assume a perfectly specular

surface. To be able to see the light reflected in the surface, it needs to be perfectly

positioned so that its reflection from the surface reaches the eye. For all other

eye positions, it will not perceive the light. To acquire highlights, there is a small

threshold in which the light and the eye must be aligned, for all other light directions

and eye positions, another color is seen. Therefore, it is harder to acquire a highlight

than the diffuse information.

Fortunately, we can use the same idea for acquiring the next best light direction used

for diffuse photos. In fact, we employ the same scheme, we need only to change the

algorithm for defining the best light position for a single vertex. Intuitively, we

would only need to reflect the eye position with respect to the normal giving us the

best specular light. However, we found out that this yields many light directions

behind the hemisphere, which can not be captured. So, we try to bring them to

the front of the hemisphere using the specular threshold. Algorithm 3 describes the

38

method illustrated in Figure 4.12.
if There is no photo where the vertex’s specular value is higher than threshold

then

IdealLight = reflect(− ~E, ~N);

ThresholdAngle = cos−1(Ts);

RotationAxis = axis(IdealLight, ~N);

NextLight = rotate(IdealLight, ThresholdAngle, RotationAxis);

end
Algorithm 3: Determining the best light direction for specular calculations

Figure 4.12: We want to calculate a new light direction that generates a specular
value greater than Ts. The idea is to set the desired reflection vector ~L′ at a position
in which (~R′ · ~E) = Ts. To find the position ~L′ we need to express the value of Ts
in terms of angular distance. The angle a is cos−1(Ts). Then, we just rotate L a

degrees with respect to ~L× ~N . We actually subtract a small amount from a, because
the new specular value should be higher than Ts so it can be considered a specular
light direction.

Using the same spatial bin division, we can efficiently estimate a new best light

direction for all vertices which need a good specular coverage.

4.6 Optimization cycle

Both previous steps are performed only once, mainly to obtain good initial estimates,

however they are usually not optimal parameters. The next phase of our system is

to optimize the parameters, but instead of improving all simultaneously, we perform

three optimization steps: first the diffuse and specular coefficients, followed by the

shininess parameter, and at last we enhance our base color approximation. As we

improve our color estimation, the other parameters need to be reestimated, hence we

begin a cycle repeating these three steps until convergence or a maximum number

of iterations is achieved.

Our optimization scheme seeks to reduce the error between the pixel and the result-

ing color of the vertices. We perform a global optimization using all photos of the

set Uv of the vertex v at once, where Uv is the complete set of photos where v is

not occluded nor in self-shadow. Note that the optimization is global only on a per

39

vertex basis, we do not take into account neighboring vertices. We use an iterative

estimation method where the function f to optimize is:

f = (Pi − Ci)2

Ci = kddiCrgb + kss
α
i Srgb

Where we write di = (~N · ~L) and si = (~R · ~E) to simplify our future notation. Let

us revisit the Gauss-Newton method. Consider we want to minimize the function

g(X), where X is the parameter vector. We assume that g(X) has a minimum value.

We may expand g(X) about X0 in a Taylor series to obtain:

g(X0 + ∆) = g + gX∆ + ∆TgXX∆/2 + ...

Where subscript X means differentiation. We wish to minimize this value with

respect to ∆, hence we differentiate it and set the derivative to zero, arriving at:

gXX∆ = −gX

Where gXX is the Hessian of g, i.e., its entries are ∂g/∂Xi∂Xj. Now consider our

least-squares minimization problem above, let us call e = (Pi −Ci) and represent f

as the function g described above, so we have:

g(X) = e(X)2

gX = 2eTXe, and

gXX = 2(eTXeX + eTXXe)

If we assume that function C is linear, the second term of gXX vanishes. Also notice

that eX is the Jacobian matrix J , so we can write gX = 2JT e and gXX = 2JTJ .

Using JTJ as the approximation of the Hessian gives us the result:

JTJ∆ = −JT e

Assuming that JTJ is invertible, ∆ can be easily calculated. Which means that by

approximating our solution with a calculated step of ∆, we can expect to minimize

our error. Nevertheless, it may happen that this algorithm converges to a local min-

imum or does not converge at all, it is strongly dependent on our initial solution.

The predominant cost of each iteration of the Gauss-Newton method is calculating

the Jacobian and the inverse of JTJ , which is a x×x matrix, where x is the number

of parameters of X. Since we divide our optimization in parts, we are bounded to

a maximum of 3 parameters at a time, generating a matrix that is easily invertible,

even in GLSL shaders. What remains is to calculate the Jacobian for every set of

parameters. We show how to calculate the derivative in each following subsection.

We divided the optimization in separate parts mainly because their relationships

were not linear. Doing this we can solve the coefficients and color optimizations

40

using a Non-linear Least-Squares approach. That way, there is more control over

the process, since optimizing everything the algorithm could take long to converge

or not converge at all.

4.6.1 Diffuse and Specular Coefficients

We need the derivatives ∂f
∂kd

and ∂f
∂ks

which are easily calculated:

∂f
∂kd

= −2(Pi − Ci)(diCrgb)
∂f
∂ks

= −2(Pi − Ci)(sαi Srgb)

(a) Diffuse coefficient before optimization (b) Diffuse coefficient after optimization

Figure 4.13: The result of the optimization process on the diffuse coefficient.

(a) Specular coefficient before optimization (b) Specular coefficient after optimization

Figure 4.14: Result of the specular coefficient’s optimization. We can observe how
it increases the brightness of the shiniest spots.

4.6.2 Shininess

Notice that this is the first adjustment we perform on the shininess variable. Up to

now we just used an initial empirical value of α = 10. Although not optimal, the

41

chosen value provided satisfactory results as a starting point. The minimum point

of f with respect to α is the critical point when df
dα

= 0. In order to show our final

result, we develop this derivative:
df
dα

= 2(Pi − kddiCrgb − kssαi Srgb)(−ksSrgbsαi ln(si))
df
dα

= 2(Pi − kddiCrgb)(−ksSrgbsαi ln(si))− 2(kss
α
i Srgb)(−ksSrgbsαi ln(si))

df
dα

= −2(Pi − kddiCrgb)(ksSrgbln(si)s
α
i) + 2((ksSrgb)

2(sαi)2ln(si)

Finding the root of this equation is not a simple task since we have an exponential

equation of α. To overcome this we use Newton’s method to find the zero of an

equation. We need the second derivative d2f
dα2 :

d2f
dα2 = −2(Pi − kddiCrgb)(ksSrgbln(si)(s

α
i ln(si))) + 2(ksSrgb)

22(sαi)(sαi ln(si))ln(si)
d2f
dα2 = −2(Pi − kddiCrgb)(ksSrgbsαi ln2(si)) + 2(ksSrgb)

22(sαi)2ln2(si)
d2f
dα2 = −2(Pi − kddiCrgb)(ksSrgbsαi ln2(si)) + 4(ksSrgbs

α
i ln(si))

2

This step consists, in finding α such that df
dα

= 0. Since we are only optimizing

one parameter this time, the classic Newton’s method is suitable. It involves in

iteratively finding the zero of a function g in small steps: x1 = x0 + ∆. We calculate

∆ as the following:

∆ = − g
g′

In our case case, g = df
dα

and g′ = d2f
dα2 . This is a global optimization, therefore our

optimization actually finds the root of the function g such that:

g =
∑
i∈Uv
−2(Pi − kddiCrgb)(ksSrgbln(si)s

α
i) + 2((ksSrgb)

2(sαi)2ln(si)

g′ =
∑
i∈Uv
−2(Pi − kddiCrgb)(ksSrgbsαi ln2(si)) + 4(ksSrgbs

α
i ln(si))

2

(a) Shininess before (b) Shininess after optimization

Figure 4.15: Result of the shininess’optimization.

4.6.3 Color

The final optimization step is to improve our basic diffuse color. For this matter,

we need the partial derivatives ∂f
∂r

, ∂f
∂g

and ∂f
∂b

.

42

∂f
∂r

= −2(Pri − Cri)(kddi)
∂f
∂g

= −2(Pgi − Cgi)(kddi)
∂f
∂b

= −2(Pbi − Cbi)(kddi)

4.7 Changing Viewpoints

Naturally when digitizing an object, more than one viewpoint will be necessary to

cover its entire surface. Unlike techniques as RTI and techniques we have seen in

Chapter 3, our work is naturally suitable for multiple viewpoints. In particular this

is true due to our vertex-based acquisition. If one vertex appears in photos from

different points of view, what matters is the local information of the pixel. The only

drawback in changing viewpoints is the required calibration process again.

When there is a change in viewpoint, a vertex may have already appeared before

and we need to analyze if its BRDF approximation is already good enough. If we

have already made a good estimate for it, there is no need for further calculations.

In order to do so, we analyze two quality metrics of every vertex.

4.7.1 Quality Metric

During the whole acquisition, some vertices may already have a good approxima-

tion, hence we do not need to further improve its BRDF. It is particularly useful to

speed up the procedure when changing camera positions. We employ two metrics to

determine a vertex quality: Diffuse Quality and Specular Quality. The first analyzes

its diffuse color analyzing only photos outside highlight areas whereas the latter ex-

amines a vertex behavior in photos with highlight-only areas. Both qualities are in

the range [0, 2], where 2 means a good quality.

The diffuse quality can be viewed as a measure of how we diffusely sampled a vertex

and how it approximates the given samples. In essence, we average its diffuse value

and its normalized diffuse error, this is the vertex error divided by the norm of the

white color, which represents the highest error possible. We calculate the diffuse

quality as:

DQ = 1
nd

∑
i∈Udv

~N · ~L+ (1− 1
nd

∑
i∈Udv

(~N ·~L)(Pi−Ci)2
||Pw||2)

Where, nd is |Udv| and Pw is the white color. Notice that we actually calculate

one minus the normalized error, so we are calculating how small the error is. The

greater the error, the smaller is the contribution. Similarly, the specular quality is

the average of how specularly sampled is the vertex and the normalized error of the

specular samples. It is calculated as:

43

SQ = 1
ns

∑
i∈Usv

~R · ~E + (1− 1
ns

∑
i∈Usv

(~R· ~E)(Pi−Ci)2
||Pw||2)

Where ns is |Usv| and we also perform the one minus the normalized error calcula-

tion here.

Given these two metrics we can analyze how well sampled a vertex really is, both

diffusely and specularly. This is an important metric we can also use when calcu-

lating a new light direction. If its diffuse color is not good enough we can ask for

a new good diffuse light direction and conversely for the specular behavior. Since

in our tests we did not perform a change of viewpoint, we did not specifically used

this metric, but it is implemented for future tests.

44

Chapter 5

Experimentation and analysis

In this chapter we perform a series of tests to analyze the results of our BRDF ap-

proximation algorithm. We test it with different materials and examine its behavior.

The datasets tested are the ones shown in Chapter 04, using only eight photos of

each, except for Goats, which used four photos. The experiments were run on a

computer with a i7-3770 CPU 3.40GHz x 8 and a GeForce GTX 660 GPU of 2GB

RAM.

Subsequently, we provide a detailed discussion about several key points of our al-

gorithm, these include its robustness with respect to a change of parameters, time

and size performances, and several different aspects that changed throughout the

development of this work. An important observation is that during the optimiza-

tion, we attributed weights to each error. They are multiplied by the corresponding

(~N · ~Li). We perform this to ensure that more important errors are more penal-

ized. For specular areas, we tried to alternate between the former and the following

weight (~Ri · ~E), but the results remain indifferent. We also experimented removing

the weights or attributing new ones, but the results remained similar.

5.1 Results

5.1.1 Nana

The first object analyzed is the Nana doll, composed of a very specular head and

a diffuse body. Besides, groups of similar colors, for example its green belly, tend

to present a high color variation, i.e., many close points present different green

tonalities, which calls for a good SVBRDF approximation.

The Nana doll is an interesting test subject because it is composed of two very

different types of materials and its diffuse color varies a lot on the surface. Results

show that our algorithm is able to faithfully capture highlight areas and perform

an efficient diffuse color extraction (Figures 5.1 and 5.2). However, there are some

45

drawbacks mainly regarding the diffuse and specular coefficients (Figure 5.3).

(a) Nana renderization (b) Photograph of Nana

Figure 5.1: A comparison between the final rendering in 5.1a and a photo with
corresponding light direction 5.1b. Our result faithfully captures the object’s diffuse
color and the highlight areas.

Figure 5.2: More results for Nana. Left column shows the rendering results and the
right column photos with associated light directions. Again, we can notice a good
diffuse color extraction and highlight shape reproduction. Our algorithm successfully
approximates the highlight area, but was not able to reproduce the same specular
intensity, this is more perceptible on the shoes.

A recurrent problem in our results is the huge weight that specular photos have

46

in the optimization, guiding the specular coefficient to become very high and the

diffuse coefficient very low. This is visible as the black holes in the Figure 5.19c

and the bright spots in 5.19d. Visually perceptible, but not so predominant in the

Nana datasets. However, as will be seen, this becomes a major issue for the Buddha

dataset.

(a) Diffuse coefficient (b) Specular coefficient

Figure 5.3: Visualization of diffuse and specular coefficients. Observe the dark
dots present on Nana’s head in the diffuse coefficients photo and how these match
the white dots in the specular coefficients photo. The error of specular photos are
guiding the optimization process to set the specular coefficient too high while setting
the diffuse coefficient too low.

Our second dataset is still the Nana but from a different viewpoint. As expected

from the results for the first dataset, we successfully approximated its BRDF. It is

important to observe how the diffuse color matches the photo and how the highlight

areas are appropriately captured.

(a) Nana Back renderization (b) Photograph of Nana Back

Figure 5.4: Comparison for the Nana Back between the rendering, left, and the
photo, right.

47

(a) Rendering (b) Photo

(c) Rendering (d) Photo

Figure 5.5: Results for Nana. Left column shows the rendering results and the right
column photos with associated light directions. Again the diffuse color approxi-
mation results are of high quality as well as the highlight shape. Unlike the first
scenario where some highlight were not as intense as in the photo, for the Nana Back
in some cases the highlight are even brighter than the photo, as the yellow base in
Figure 5.5a.

48

Figure 5.6: Nana rendered from a novel viewpoint. Black areas especially in the
neck or the hand are vertices that were not seen from the fixed viewpoint, a different
viewpoint is required to approximate their BRDFs.

Figure 5.7: Nana Back rendered from a novel viewpoint.

49

5.1.2 Buddha

The Buddha is a small statue composed of a highly specular golden part representing

the Buddha’s body and a less shiny, but still moderately specular surface composing

its robe. The robe is painted in a dark red color. There is also the Budda’s hair com-

posed of a mostly dark diffuse surface with some golden spots in the middle. Due to

the golden material, we already expected to face some problems with the Buddha.

We show results in Figure 5.8. Performing some tests, we could conclude that the

(a) Rendering of Buddha, the diffuse holes
are much more visible here.

(b) Photograph of Buddha. Notice how shiny
its surface is.

Figure 5.8: A comparison between the final rendering in 5.8a and a photo with
corresponding light direction 5.8b. While we can adequately approximate the robe’s
BRDF, and the highlight shape to some extent, the problem experienced with the
diffuse holes prevents a better reflectance approximation.

aforementioned issue is caused by the same factor, the specular photos guiding the

optimization process. We show Buddha’s diffuse and specular coefficients in Figure

5.9 alongside a result showing how many vertices have exactly one specular photo.

The fact that there is only one specular photo for these vertices would make us

assume that the specular behavior of these vertices could not be adequately repre-

sented. However, what happened was that these sole specular photo could carry so

much weight during the optimization that the diffuse component became misrepre-

sented. As unusual as it seems, it is due to the fact that the diffuse areas in the

Buddha photo, review Figure 5.8b, are very dark, yielding a smaller error during

the optimization as opposed to the shiny areas.

Nevertheless, we are successful in capturing the diffuse color of the less specular

part of the Buddha. Note its dark red robe in Figure 5.8. Even the specular behav-

ior of the area is nicely captured.

50

(a) Diffuse coefficient (b) Specular coefficient (c) Vertices in white are
those with only one spec-
ular photo

Figure 5.9: Comparing the three images it is noticeable that the vertices with only
one specular photo are influencing heavily the optimization towards the specular
value. This actually seems odd, as one would expect that having less specular
photos would guide the optimization towards the diffuse coefficients. However, the
very shiny nature of the buddha and the dark diffuse color presents a rather peculiar
situation. Very low diffuse values do not yield an error as large as the specular one for
the Buddha. We performed the same comparison with the Nana and this behavior
was not reproduced.

5.1.3 Gertrud

Next, we analyze the case of the Gertrud dataset, a wooden statue with a close up

of its face. The statue is painted with very different colors, but the object remains

predominantly diffuse. There is only one piece of its nose where we can see the

wood. See Figure 5.10 for results.

The main drawback in this dataset is the low quality geometry, causing a mesh-

image misalignment and affecting the overall BRDF acquisition. This effect can be

seen in the extended shadows in Figure 5.11c in comparison with the actual shadows

of Figure 5.11b.

(a) Rendering of Gertrud. (b) Photograph of Gertrud.

Figure 5.10: Results for the Gertrud dataset. We can see how the geometry of its
face is much more noisy than the actual statue, which harms the performance of our
algorithm. Although, it is still able to extract a good diffuse color, specially of its
robe. Since neither the underlying object nor the painting is very specular, there
are a few highlights which are not too as bright as expected.

51

(a) Rendering (b) Photo

(c) Rendering (d) Photo

Figure 5.11: Results for Gertrud. Left column shows the rendering results and the
right column photos with associated light directions

Notice in the Figure 5.12 that the mesh roughly matches the image which, un-

fortunately, is a sensible point in our technique. In order to faithfully represent the

BRDF of each vertex, an accurate geometry is required.

As initially stated, the Gertrud statue is composed of wood, a complicated ma-

terial to represent with an analytical BRDF. We were able to approximate some

of its highlight areas, but not with the same intensity. Also, due to its complex

geometry a higher number of photos would be required to appropriately acquire its

reflectance properties. However, we compare our results with a color mapping gen-

erated by the Photoscan1 software (Figure 5.13). Comparing our results with the

photos shown earlier, we believe our diffuse color extraction surpasses basic color

mapping algorithms.

5.1.4 Goats

Goats is a case that looks simple, but has some intrinsic subtleties. Its geometry,

although mainly flat, possess a lot of bumps. Its BRDF is predominantly diffuse, but

the diffuse color can become a lot darker depending on the light direction. Results

1http://www.agisoft.com/

52

Figure 5.12: Blending between Mesh and Image. Notice the misalignment.

(a) The diffuse color generated by the Pho-
toscan software

(b) Our result with only the diffuse color
shown

Figure 5.13: A color mapping comparison. We compare the result of the Photoscan
color mapping software with our basic diffuse color extraction. Observing both
results and the photos shown before, our results are much more accurate.

53

are shown in Figure 5.14.

Figure 5.14: Results for Goats. Left column shows the rendering results and the
right column photos with associated light directions

It seems that the basic diffuse color is faithfully extracted, but the diffuse behav-

ior with the light in an oblique angle is not appropriately captured. This may be

due to the fact that the Phong model behaves poorly when lights are in a grazing

angle, specially for flat surfaces [34].

In the next figures we show the difference between the photos and renderings. We

perform a subtraction between P − C in Figures 5.15a and 5.15c, where P is the

photo and C is the rendering color. Figures 5.15b and 5.15d show the result of C−P .

5.2 Discussions

In this section, we make some discussions about decisions made during the develop-

ment of this work such as: switching from a local optimization to global optimization

(Section 5.2.1), and changing from the RGB color space to the SRGB model (Sec-

tion 5.2.2). We also discuss some main characteristics of the BRDF approximation

algorithm, for example, its robustness against its parameters (Section 5.2.3), the

choice of the BRDF model (Section 5.2.4), its behavior with respect to size (Section

54

(a) First photo minus the rendering color (b) First rendering color minus the photo

(c) Second photo minus the rendering color (d) Second rendering color minus the photo

Figure 5.15: Difference between the photo and the rendering color. Left column
represents the difference P −C and right column C −P . We can observe that more
illuminated areas are brighter in the photo than in our rendering results, whereas
less illuminated areas are darker in photos.

55

5.2.5), number of photos (Section 5.2.6) and time (Section 5.2.7).

5.2.1 Local vs Global Optimization

Before we employed the global optimization approach described in Section 4.6, we

used to perform a local optimization to improve the BRDF’s parameters. Instead

of trying to minimize the error of all photos at once, we were constantly minimizing

the error with only one photo at a time using the Gradient Descent method. The

gradient of our error function consisted in calculating the same current derivatives.

We compare the results of the different approaches next.

(a) Result using local optimization (b) Result of the global optimization

Figure 5.16: Comparison between local and global optimization. Local optimizations
fail to capture all highlight areas and its corresponding intensity. Notice how only
some of the highlights present in the global optimization result are present in 5.16a.

(a) Result using local optimization in a novel
position

(b) Global optimization result in a novel po-
sition

Figure 5.17: Models rendered from a novel viewpoint. The local optimization result
seems like the object is made from only one type of material, Nana’s body is as
specular as its head, which is not the behavior seen in the global optimization result
nor in the photos shown earlier.

This is an interesting result because it shows two different weaknesses of the local

56

optimization approach. In Figure 5.16 we can see that the local approach simply

can not capture the highlight areas as accurate as the global optimization. Mainly

because the results of the optimization are independent, so after optimizing the

coefficients for one photo, it tries to optimize for another where there may be no

more highlights in the same places. Areas that may be optimal for one photo may

be completely altered when optimizing for another, yielding inaccurate results.

While sometimes failing to capture highlights, the local approach also typically gives

a more specular behavior to non specular areas. This effect can be noted in Nana’s

body (Figure 5.17). Locally optimizing the coefficients seems to assign higher values

to them, see Figure 5.3 and compare with the coefficients displayed in Figure 5.19.

Nana looks like entirely made of one material, which is not the case.

(a) Result using local optimization in a novel
position

(b) Global optimization result in a novel po-
sition

Figure 5.18: Again we can notice that the specular behavior is not similar to the
actual model. Although there are no diffuse holes in the local optimization result,
the BRDF obtained also does not correspond to the expected material.

5.2.2 SRGB vs RGB

As discussed in Section 2.2, we should always perform operations in a linear space,

which is not the case when we are working with the RGB color space. Therefore,

the change to the SRGB space. We compare results obtained when using each color

model and show why the SRGB is preferable.

Notice how much darker is the RGB result in Figure 5.20. This becomes more

evident when the diffuse value decreases. Suppose a lambertian surface, the color is

(~N · ~L)C. If the dot product is equal to one, then it is the same color, but in a non

linear space, the smaller is the dot product, the greater will be the difference.

57

(a) Diffuse coefficients after the local opti-
mization.

(b) Result of the local optimization on the
specular coefficients.

(c) Diffuse coefficient (d) Specular coefficient

Figure 5.19: Coefficients obtained during the local optimization in the top row.
Compare these with the global optimization results in the bottom row. Local opti-
mization coefficients are too high.

(a) Using the RGB space (b) Results with the SRGB

Figure 5.20: A comparison of the results obtained from the different color spaces.
It is clearly noticeable that results from the RGB space are generally darker than
the SRGB. This discrepancy increases as the diffuse value decreases, notice how its
neck progressively darkens. The highlights are also not as bright as in the SRGB,
the bright spot near the top of the head looks more reddish than in the right.

58

(a) Using the RGB space (b) Results with the SRGB

Figure 5.21: The same divergences for the Nana can be seen in the Buddha. The
RGB color space produces a darker result, look at Buddha’s left arm and the robe
around its right knee. The highlights in SRGB are also brighter, note its right arm.

5.2.3 Parameters

A problem encountered with the local optimization approach was the dependence

of parameters, the variable steps for the Gradient Descent needed to be determined

empirically, which required laborious hours of testing and variable tweaking. With

our current workflow we would like to test its parameters dependence, which are

basically tests against the initial α value and maximum number of iterations n in

the optimization. Our parameters up to now were: α = 10 and n = 400. For the

following analysis we performed tests with α = [20, 50, 100] and n = [100, 1000].

We compare the highlight differences between the results when varying α, but what

is more similar to the ground truth? We show a photo of the Gertrud statue in

Figure 5.23 for comparison. It is clear that the results with smaller shininess values

are more plausible.

Nevertheless, with the Gertrud dataset we did not encounter major differences when

varying the initial α. This may be due to the fact that the surface is not too shiny,

hence, it did not affect the coefficients computation too much.

In the Nana Back there are some noticeable changes when increasing the initial

shininess, notice that when α = 20, the results are fairly similar to the original

α = 10. When α = 50 we can already notice more holes in its head than in

the original results, again this happens because the optimization sets the diffuse

coefficient to a low value. However, its overall behavior is similar to smaller values

of α. Some major changes can be seen when α = 100, there are even more holes in

the model, some shiny artifacts throughout the head and even a major white stripe

in its top.

We conclude that there is some influence of the α parameter, however we believe

this happens only in extreme cases, since for the majority of objects there would be

59

(a) Rendering of Gertrud with α = 10 (b) Rendering of Gertrud with α = 20

(c) Rendering of Gertrud with α = 50 (d) Rendering of Gertrud with α = 100

Figure 5.22: Rendering of Gertrud with different values of α. Although subtle,
there’s a noticeable difference in the shapes and intensities of the highlights in each.
As expected with a increase of α, the highlights tend to be localized. Observing the
highlights in the red areas, we can see that it progressively gets smaller.

Figure 5.23: Photograph of Gertrud. We can notice that the highlights are more
compatible with the results where α is small.

60

(a) Rendering of Nana Back with α = 10 (b) Rendering of Nana Back with α = 20

(c) Rendering of Nana Back with α = 50 (d) Rendering of Nana Back with α = 100

Figure 5.24: The different values of shininess in the Nana Back dataset produce
more varied results than Gertrud. When α is small, as in the top row, the outcomes
are moderately similar. In the case when α = 50, we can notice more holes in Nana’s
head than in the previous results and some highlights, as in its body, can no longer
be seen. Some major changes can also be seen when α = 100, as some bright dots
in its head, and a few white areas near the top of Nana’s head, there is also no more
highlights in its body.

61

no need to set a value of α as high as 100. We may expect the algorithm to behave

robustly with normal changes of shininess.

We also tested the different values for the maximum number of iterations in the

optimization process. We conclude that our algorithm behaves very robustly against

varying values of this parameters. Changes are slight, if ever existent. See Figure

5.25 for results. We show the result of the coefficients in Figures 5.26 and 5.27.

Figure 5.25: From left to right: n = [100, 1000]. We could not detect major differ-
ences in the results with the change of n. In fact, it may have never even reach the
maximum number of 1000, since it probably converges before.

As stated, the results are considerably similar. Therefore, the maximum number of

iterations does not seem to pose a restriction on our algorithm at all.

(a) Nana’s diffuse coefficient after a maxi-
mum of 100 iterations for each optimization
process.

(b) Nana’s diffuse coefficient after a maxi-
mum of 1000 iterations for each optimization
process.

Figure 5.26: As expected, the results for the diffuse coefficient remains the same
with the change of the number of iterations.

Our BRDF approximation algorithm needs only two initial parameter: shininess

and maximum number of iterations in the optimization. We verified its behavior

against these two variables. The latter shows that our algorithm probably converges

62

(a) Nana’s specular coefficient after a maxi-
mum of 1000 iterations for each optimization
process.

(b) Nana’s specular coefficient after a maxi-
mum of 1000 iterations for each optimization
process.

Figure 5.27: Like the results for the diffuse coefficient, the specular coefficients
remain the same with the change in the number of iterations.

fast and does not pose an issue. A great change in the shininess can affect the result,

but we believe these are only present in drastic changes.

5.2.4 BRDF Model

The results obtained with Phong’s model are desirably accurate and suitable for

a fast BRDF acquisition system. The choice for the Phong model resided in its

simplicity and consequent easiness to use in an iterative method during the opti-

mization. However it is still a naturally limited model and we believe a further

discussion is necessary. For example, a common argument towards BRDF models

that use a half-vector lobe instead of the cosine lobe are that the latter presents in-

consistent results with grazing angles. We assume this happens in the Goats tests,

Phong’s model can not appropriately represent it.

One idea for future work and to improve results is to capture all data and have a

good approximation of the BRDF in situ, and later perform a thorough BRDF fit-

ting with possibly a different reflectance model. Nevertheless, Phong’s model allows

us to perform a fast and faithful representation.

5.2.5 Size

There are two considerations about size to make: the algorithm and the results stor-

age. During the whole approximation, our algorithm can be very data consuming.

In terms of CPU and RAM memory, it is relatively cheap, it is almost mandatory

nowadays to have a computer with at least 4GB of RAM, so it hardly imposes a

limitation to our system. However, even advanced GPUs hardly surpass 2GB, as the

one used in our tests. This limit combined with a naive implementation of texture

63

arrays in OpenGL posed a restriction of how much data we could fit inside the GPU.

This is why we could not perform tests with more than 10 photos at once, since the

global optimization needs to access all the photos at the same time. Nevertheless,

we believe a more careful implementation can solve this problem.

On the other hand, since our data consists of only 6 floating-point numbers for each

vertex of the mesh, and considering the IEEE-754 standard for single precision num-

bers, a model with 1 million vertices only needs an extra storage of 24 MB. Which

means storing the results obtained by our system is a direct and rather cheap stor-

age. Many PLY objects already store color information in its encoding, to store the

other three coefficients of the Phong model would be a simple task. Unlike the BTF

from [27] which even compressed occupies 1.5GB, our results are provided at a small

cost.

5.2.6 Number of photos

Due to limitations discussed in Section 5.2.5, we could not increase the number of

photos too much. The default value for all the datasets was eight photos, but for the

Goats where we used four. The Goats’s model is the largest mesh, which already

occupies a significant amount on the memory. Because of memory restrictions we

could only test with up to 10 photos which did not yield the result variety we wanted.

5.2.7 Time and Feedback

Time was barely discussed in our results but it is worth mentioning since in the

beginning we proposed an efficient acquisition system. For our datasets, the to-

tal time was: Nana 42.7443s, Nana Back 40.2035s, Buddha 44.9737s and Gertrud

19.1031s. The Goats dataset was processed in a different computer and the results

are not compatible. These results include all the steps of the BRDF approximation

described in Chapter 4 without the calibration procedure. First, we did not find

any work in the literature that could provide results in less than a minute, most

performed over hours of processing, the exception being the work of REN et al. [29]

that takes about 20 minutes. Nevertheless, for an online capture, a waiting time of

20 minutes is a considerable holdback. Second, these are tests performed with an

already acquired data. The time of the calibration procedure is rather small, sphere

and chart detection are nearly instantaneous and the Mutual Correspondence algo-

rithm for the mesh-image alignment takes no more than ten seconds.

The important contribution of our algorithm is that it allows the creation of the

interactive acquisition system. For each new photo taken, our algorithm instantly

processes it and generates a new result. This is done only for the initial basic color,

for the resulting BRDF there would be the need to wait around 45s according to

64

the results above. However, this initial feedback allows the user to know if all the

vertices were covered, and if not, to take another photo from another viewpoint or

ask for a new light direction. Our system also provides the visualization of which

vertices have a specular photo allowing for an immediate decision. From the tests

desribed in Section 4.4, initial results of calculating a new light direction can take

at least 30s with our current approach. We can make it almost instantaneously if

we do not test all the lights in the hemisphere to check for the best one, but just

selecting the bin with the highest number of lights. From experiments we realized

that this is often not the chosen light, but it is always near the most efficient ones,

so it could a worthwhile trade-off.

65

Chapter 6

Conclusion

”End? No, the journey doesn’t end here.”

— ”Gandalf - The Lord of the Rings: The

Return of the King”

In this work we have presented a system for simple BRDF approximation using

photos with light directions in a fixed viewpoint. We presented a fast algorithm

that can faithfully extract the basic color of the materials and is also precise at

reproducing highlights. There are some drawbacks regarding shiny objects, but we

believe minor corrections in our optimization algorithm could solve the problem

This system was designed having in mind CH professionals who need to perform

digitization of historical artifacts, and many times need to travel to a certain location

for this task. To the best of our knowledge, there is no tool in the research community

that can provide the same immediate feedback, allowing the user to make decisions

during the acquisition. Aligned with results computed in less than a minute we

provide an efficient BRDF acquisition system.

Nevertheless, there is always room for improvement and experimentation. Here we

summarize some avenues of future research which have come up during the work on

this dissertation

6.1 Future Works

Our experiments show convincing and appealing, but yet imperfect results. For

some datasets the BRDF approximation is really faithful, while for others there

were some drawbacks. Nonetheless, we believe some minor changes could already

fix some small problems we experienced during the tests.

Solve the GPU limitation issue There is a need to overcome the maximum

number of photos used in our GPU. This could probably be achieved with better

66

data structures or by subdividing the problem.

Solve the coefficients problem A recurrent artifact in our results was some

very low diffuse coefficients. In some datasets, they were not a big issue, but in the

case of the Buddha, for example, it greatly hindered the final solution. There is a

need to analyze how to weight each photo to guarantee that the optimization is not

biased.

Field tests Up to now we have only used pre-acquired datasets. Our next step is

to perform field tests with our system in order to evaluate its performance during

an online acquisition. Besides, in none of the tests we used the color checker, we

pretend to use it during the next tests.

Use neighbor’s information during optimization As can be noted specially

in the images of the coefficients such as Figure 5.3, there are many sparse areas

that do not seem covered in the optimization approach, for example, the specular

coefficients of Nana’s head. To fully acquire all the surface’s points requires too

many photos, which compels us to create a smarter approach. One idea is to use

the neighbor’s information if they already have a high quality BRDF approximation,

we may compute this with the quality metric discussed in 4.7.1.

Post computation after acquisition Although Phong’s model provides con-

vincing results, there may be a need to use another reflectance model for objects

with complicated materials. One idea would be to make sure in situ we capture all

the relevant data for a good BRDF approximation, our algorithm can provide that

assurance, and perform a more time-consuming optimization approach offline.

67

Bibliography

[1] RITSCHEL, T., DACHSBACHER, C., GROSCH, T., et al. “The State

of the Art in Interactive Global Illumination”, Comput. Graph. Fo-

rum, v. 31, n. 1, pp. 160–188, fev. 2012. ISSN: 0167-7055. doi: 10.

1111/j.1467-8659.2012.02093.x. URL: <http://dx.doi.org/10.1111/

j.1467-8659.2012.02093.x>.

[2] WEYRICH, T., LAWRENCE, J., LENSCH, H. P., et al. “Principles of Ap-

pearance Acquisition and Representation”, Foundations and Trends in

Computer Graphics and Vision, v. 4, n. 2, pp. 75–191, out. 2009.

[3] NICODEMUS, F., RICHMOND, J., HSIA, J., et al. “Geometrical considerations

and nomenclature for reflectance”, Applied Optics, v. 9, pp. 1474–1475,

1977.

[4] PHONG, B. T. “Illumination for Computer Generated Pictures”, Commun.

ACM, v. 18, n. 6, pp. 311–317, jun. 1975. ISSN: 0001-0782. doi:

10.1145/360825.360839. URL:<http://doi.acm.org/10.1145/360825.

360839>.

[5] BLINN, J. F. “Models of Light Reflection for Computer Synthesized Pictures”.

In: Proceedings of the 4th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’77, pp. 192–198, New York, NY,

USA, 1977. ACM. doi: 10.1145/563858.563893. URL: <http://doi.

acm.org/10.1145/563858.563893>.

[6] OREN, M., NAYAR, S. K. “Generalization of Lambert’s Reflectance Model”.

In: Proceedings of the 21st Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’94, pp. 239–246, New York, NY,

USA, 1994. ACM. ISBN: 0-89791-667-0. doi: 10.1145/192161.192213.

URL: <http://doi.acm.org/10.1145/192161.192213>.

[7] LAFORTUNE, E. P. F., FOO, S.-C., TORRANCE, K. E., et al. “Non-

linear Approximation of Reflectance Functions”. In: Proceedings of the

68

http://dx.doi.org/10.1111/j.1467-8659.2012.02093.x
http://dx.doi.org/10.1111/j.1467-8659.2012.02093.x
http://doi.acm.org/10.1145/360825.360839
http://doi.acm.org/10.1145/360825.360839
http://doi.acm.org/10.1145/563858.563893
http://doi.acm.org/10.1145/563858.563893
http://doi.acm.org/10.1145/192161.192213

24th Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’97, pp. 117–126, New York, NY, USA, 1997. ACM

Press/Addison-Wesley Publishing Co. ISBN: 0-89791-896-7. doi: 10.1145/

258734.258801. URL: <http://dx.doi.org/10.1145/258734.258801>.

[8] NGUYEN, H. Gpu Gems 3. First ed. Natick, MA, Addison-Wesley Professional,

2007. ISBN: 9780321545428.

[9] JUDD, D. B., MACADAM, D. L., WYSZECKI, G., et al. “Spectral Distribution

of Typical Daylight as a Function of Correlated Color Temperature”, J.

Opt. Soc. Am., v. 54, n. 8, pp. 1031–1040, Aug 1964. doi: 10.1364/

JOSA.54.001031. URL: <http://www.opticsinfobase.org/abstract.

cfm?URI=josa-54-8-1031>.

[10] HARTLEY, R. I., ZISSERMAN, A. Multiple View Geometry in Computer

Vision. Second ed. Oxford, UK, Cambridge University Press, ISBN:

0521540518, 2004.

[11] SHREINER, D., SELLERS, G., KESSENICH, J. M., et al. OpenGL Pro-

gramming Guide: The Official Guide to Learning OpenGL, Version 4.3.

8th ed. Boston, Addison-Wesley Professional, 2013. ISBN: 0321773039,

9780321773036.

[12] LI, M. “Correspondence Analysis Between The Image Formation Pipelines of

Graphics and Vision”. In: Proceedings of the IX Spanish Symposium on

Pattern Recognition and Image Analysis, pp. 187–192. Publications de la

Universitat Jaume I., 2001.

[13] CALLIERI, M., CIGNONI, P., CORSINI, M., et al. “Technical Section:

Masked Photo Blending: Mapping Dense Photographic Data Set on High-

resolution Sampled 3D Models”, Comput. Graph., v. 32, n. 4, pp. 464–

473, ago. 2008. ISSN: 0097-8493. doi: 10.1016/j.cag.2008.05.004. URL:

<http://dx.doi.org/10.1016/j.cag.2008.05.004>.

[14] ZHOU, Q.-Y., KOLTUN, V. “Color Map Optimization for 3D Reconstruc-

tion with Consumer Depth Cameras”, ACM Trans. Graph., v. 33, n. 4,

pp. 155:1–155:10, jul. 2014. ISSN: 0730-0301. doi: 10.1145/2601097.

2601134. URL: <http://doi.acm.org/10.1145/2601097.2601134>.

[15] LENSCH, H., KAUTZ, J., GOESELE, M., et al. “Image-Based Reconstruction

of Spatially Varying Materials”. In: Gortler, S., Myszkowski, K. (Eds.),

Rendering Techniques 2001, Eurographics, Springer Vienna, pp. 103–114,

69

http://dx.doi.org/10.1145/258734.258801
http://www.opticsinfobase.org/abstract.cfm?URI=josa-54-8-1031
http://www.opticsinfobase.org/abstract.cfm?URI=josa-54-8-1031
http://dx.doi.org/10.1016/j.cag.2008.05.004
http://doi.acm.org/10.1145/2601097.2601134

2001. ISBN: 978-3-211-83709-2. doi: 10.1007/978-3-7091-6242-2 10. URL:

<http://dx.doi.org/10.1007/978-3-7091-6242-2_10>.

[16] LENSCH, H. P. A., KAUTZ, J., GOESELE, M., et al. “Image-based Re-

construction of Spatial Appearance and Geometric Detail”, ACM Trans.

Graph., v. 22, n. 2, pp. 234–257, abr. 2003. ISSN: 0730-0301. doi:

10.1145/636886.636891. URL:<http://doi.acm.org/10.1145/636886.

636891>.

[17] MALZBENDER, T., GELB, D., WOLTERS, H. “Polynomial Texture Maps”.

In: Proceedings of the 28th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’01, pp. 519–528, New York, NY,

USA, 2001. ACM. ISBN: 1-58113-374-X. doi: 10.1145/383259.383320.

URL: <http://doi.acm.org/10.1145/383259.383320>.

[18] GOLDMAN, D., CURLESS, B., HERTZMANN, A., et al. “Shape and

spatially-varying BRDFs from photometric stereo”. In: Computer Vision,

2005. ICCV 2005. Tenth IEEE International Conference on, v. 1, pp. 341–

348 Vol. 1, Oct 2005. doi: 10.1109/ICCV.2005.219.

[19] ALLDRIN, N. G., ZICKLER, T., KRIEGMAN, D. J. “Photometric stereo

with non-parametric and spatially-varying reflectance.” In: CVPR. IEEE

Computer Society, 2008. URL: <http://dblp.uni-trier.de/db/conf/

cvpr/cvpr2008.html#AlldrinZK08>.

[20] PALMA, G., CALLIERI, M., DELLEPIANE, M., et al. “A Statistical Method

for SVBRDF Approximation from Video Sequences in General Lighting

Conditions”, Comp. Graph. Forum, v. 31, n. 4, pp. 1491–1500, jun. 2012.

ISSN: 0167-7055. doi: 10.1111/j.1467-8659.2012.03145.x. URL: <http:

//dx.doi.org/10.1111/j.1467-8659.2012.03145.x>.

[21] PALMA, G., CALLIERI, M., DELLEPIANE, M., et al. “Geometry-

aware Video Registration.” In: Koch, R., Kolb, A., Rezk-Salama, C.

(Eds.), VMV, pp. 107–114. Eurographics Association, 2010. ISBN:

978-3-905673-79-1. URL: <http://dblp.uni-trier.de/db/conf/vmv/

vmv2010.html#PalmaCDCS10>.

[22] DEBEVEC, P. “A Median Cut Algorithm for Light Probe Sampling”. In: ACM

SIGGRAPH 2008 Classes, SIGGRAPH ’08, pp. 33:1–33:3, New York,

NY, USA, 2008. ACM. doi: 10.1145/1401132.1401176. URL: <http:

//doi.acm.org/10.1145/1401132.1401176>.

70

http://dx.doi.org/10.1007/978-3-7091-6242-2_10
http://doi.acm.org/10.1145/636886.636891
http://doi.acm.org/10.1145/636886.636891
http://doi.acm.org/10.1145/383259.383320
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#AlldrinZK08
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#AlldrinZK08
http://dx.doi.org/10.1111/j.1467-8659.2012.03145.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03145.x
http://dblp.uni-trier.de/db/conf/vmv/vmv2010.html#PalmaCDCS10
http://dblp.uni-trier.de/db/conf/vmv/vmv2010.html#PalmaCDCS10
http://doi.acm.org/10.1145/1401132.1401176
http://doi.acm.org/10.1145/1401132.1401176

[23] DONG, Y., CHEN, G., PEERS, P., et al. “Appearance-from-motion: Recov-

ering Spatially Varying Surface Reflectance Under Unknown Lighting”,

ACM Trans. Graph., v. 33, n. 6, pp. 193:1–193:12, nov. 2014. ISSN: 0730-

0301. doi: 10.1145/2661229.2661283. URL: <http://doi.acm.org/10.

1145/2661229.2661283>.

[24] ASHIKMIN, M., PREMOŽE, S., SHIRLEY, P. “A Microfacet-based BRDF

Generator”. In: Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 65–74, New

York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. ISBN:

1-58113-208-5. doi: 10.1145/344779.344814. URL: <http://dx.doi.

org/10.1145/344779.344814>.

[25] HOLROYD, M., LAWRENCE, J., ZICKLER, T. “A Coaxial Optical Scan-

ner for Synchronous Acquisition of 3D Geometry and Surface Re-

flectance”. In: ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10, pp.

99:1–99:12, New York, NY, USA, 2010. ACM. ISBN: 978-1-4503-0210-4.

doi: 10.1145/1833349.1778836. URL: <http://doi.acm.org/10.1145/

1833349.1778836>.

[26] WILLEMS, G., VERBIEST, F., MOREAU, W., et al. “Easy and cost-effective

cuneiform digitizing”. In: The 6th International Symposium on Virtual

Reality, Archaeology and Cultural Heritage (VAST 2005), pp. 73–80, 2005.

[27] SCHWARTZ, C., WEINMANN, M., RUITERS, R., et al. “Integrated High-

Quality Acquisition of Geometry and Appearance for Cultural Heritage”.

In: The 12th International Symposium on Virtual Reality, Archeology

and Cultural Heritage VAST 2011, pp. 25–32. Eurographics Association,

Eurographics Association, out. 2011. ISBN: 978-3-905674-34-7. doi:

10.2312/VAST/VAST11/025-032. URL: <http://diglib.eg.org/EG/

DL/WS/VAST/VAST11/025-032.pdf>.

[28] DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., et al. “Reflectance and

Texture of Real-world Surfaces”, ACM Trans. Graph., v. 18, n. 1, pp. 1–34,

jan. 1999. ISSN: 0730-0301. doi: 10.1145/300776.300778. URL: <http:

//doi.acm.org/10.1145/300776.300778>.

[29] REN, P., WANG, J., SNYDER, J., et al. “Pocket Reflectometry”. In: ACM

SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 45:1–45:10, New York,

NY, USA, 2011. ACM. ISBN: 978-1-4503-0943-1. doi: 10.1145/1964921.

1964940. URL: <http://doi.acm.org/10.1145/1964921.1964940>.

71

http://doi.acm.org/10.1145/2661229.2661283
http://doi.acm.org/10.1145/2661229.2661283
http://dx.doi.org/10.1145/344779.344814
http://dx.doi.org/10.1145/344779.344814
http://doi.acm.org/10.1145/1833349.1778836
http://doi.acm.org/10.1145/1833349.1778836
http://diglib.eg.org/EG/DL/WS/VAST/VAST11/025-032.pdf
http://diglib.eg.org/EG/DL/WS/VAST/VAST11/025-032.pdf
http://doi.acm.org/10.1145/300776.300778
http://doi.acm.org/10.1145/300776.300778
http://doi.acm.org/10.1145/1964921.1964940

[30] MUDGE, M., MALZBENDER, T., SCHROER, C., et al. “New Reflection

Transformation Imaging Methods for Rock Art and Multiple-viewpoint

Display”. In: Proceedings of the 7th International Conference on Vir-

tual Reality, Archaeology and Intelligent Cultural Heritage, VAST’06, pp.

195–202, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics As-

sociation. ISBN: 3-905673-42-8. doi: 10.2312/VAST/VAST06/195-202.

URL: <http://dx.doi.org/10.2312/VAST/VAST06/195-202>.

[31] SOTTILE, M., DELLEPIANE, M., CIGNONI, P., et al. “Mutual Corre-

spondences: An Hybrid Method for Image-to-geometry Registration.”

In: Puppo, E., Brogni, A., Floriani, L. D. (Eds.), Eurographics Ital-

ian Chapter Conference, pp. 81–88. Eurographics, 2010. ISBN: 978-

3-905673-80-7. URL: <http://dblp.uni-trier.de/db/conf/egItaly/

egItaly2010.html#SottileDCS10>.

[32] MOORE, R. “On the Reciprocal of the General Algebraic Matrix”, Bulletin

of the American Mathematical Society, v. 26, n. 9, pp. 394–396, 06 1920.

URL: <http://projecteuclid.org/euclid.bams/1183425340>.

[33] PENROSE, R. “A generalized inverse for matrices”, Mathematical Proceedings

of the Cambridge Philosophical Society, v. 51, pp. 406–413, 7 1955. ISSN:

1469-8064. doi: 10.1017/S0305004100030401. URL: <http://journals.

cambridge.org/article_S0305004100030401>.

[34] AKENINE-MÖLLER, T., HAINES, E., HOFFMAN, N. Real-Time Rendering

3rd Edition. Natick, MA, USA, A. K. Peters, Ltd., 2008. ISBN: 987-1-

56881-424-7.

72

http://dx.doi.org/10.2312/VAST/VAST06/195-202
http://dblp.uni-trier.de/db/conf/egItaly/egItaly2010.html#SottileDCS10
http://dblp.uni-trier.de/db/conf/egItaly/egItaly2010.html#SottileDCS10
http://projecteuclid.org/euclid.bams/1183425340
http://journals.cambridge.org/article_S0305004100030401
http://journals.cambridge.org/article_S0305004100030401

	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contribution
	Thesis Outline

	Background
	Reflectance
	Radiometry
	BRDF
	BRDF Models
	Lambertian
	Phong
	Blinn-Phong
	Oren-Nayar
	Ward
	Lafortune

	Color Spaces
	RGB
	sRGB
	CIE XYZ
	CIELAB

	Camera models
	Projective camera
	OpenGL camera
	Conversion between different models

	Related Works
	Color mapping
	Controlled Lighting
	General Lighting
	Devices
	Example-based
	Summary

	Algorithm
	Sphere detection
	Color Chart detection
	Mesh-Photo Alignment
	Diffuse color
	Generating New Light Directions

	Specular coefficient
	Optimization cycle
	Diffuse and Specular Coefficients
	Shininess
	Color

	Changing Viewpoints
	Quality Metric

	Experimentation and analysis
	Results
	Nana
	Buddha
	Gertrud
	Goats

	Discussions
	Local vs Global Optimization
	SRGB vs RGB
	Parameters
	BRDF Model
	Size
	Number of photos
	Time and Feedback

	Conclusion
	Future Works

	Bibliography

