Extended Skew Partition Problem*

Simone Dantas ${ }^{\dagger} \quad$ Celina M. H. de Figueiredo ${ }^{\ddagger}$
Sylvain Gravier ${ }^{\S} \quad$ Sulamita Klein ${ }^{\ddagger}$

Abstract

A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts $A_{1}, A_{2}, B_{1}, B_{2}$ such that there are all possible edges between A_{1} and A_{2}, and no edges between B_{1} and B_{2}. We introduce the concept of $\left(n_{1}, n_{2}\right)$-extended skew partition which includes all partitioning problems into $n_{1}+n_{2}$ nonempty parts $A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots, B_{n_{2}}$ such that there are all possible edges between the A_{i} parts, no edges between the B_{j} parts, $i \in\left\{1, \ldots, n_{1}\right\}, j \in\left\{1, \ldots, n_{2}\right\}$, which generalizes the skew partition. We present a polynomial-time algorithm for testing whether a graph admits an $\left(n_{1}, n_{2}\right)$-extended skew partition. As a tool to complete this task we also develop a generalized 2-SAT algorithm, which by itself may have application to other partition problems.

Keywords : Algorithms and data structures, Computational and structural complexity, Skew partition, 2-SAT

1 Introduction

A skew partition is a partition of the vertex set of a graph into four nonempty parts $A_{1}, A_{2}, B_{1}, B_{2}$ such that there are all possible edges between A_{1} and A_{2}, and no edges between B_{1} and B_{2}. A skew partition was defined by

[^0]Chvátal [3] in the context of perfect graphs and it has a key role in the recent celebrated proof of the Strong Perfect Graph Conjecture by Seymour et al. [13]. De Figueiredo et al. [5] presented a polynomial-time algorithm for testing whether a graph admits a skew partition. In this paper we introduce the concept of extended skew partition, which generalizes the skew partition.

An $\left(n_{1}, n_{2}\right)$-extended skew partition is a partition of the vertex set of a graph into $n_{1}+n_{2}$ nonempty parts $A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots, B_{n_{2}}$ such that there are all possible edges between the A_{i} parts, no edges between the B_{j} parts, $i \in\left\{1, \ldots, n_{1}\right\}, j \in\left\{1, \ldots, n_{2}\right\}$.

An extended skew partition can be viewed also as a special M-partition problem. The M-partition problem was defined by Feder et al. [8] as a partition of the vertex set of a graph into k parts $X_{1}, X_{2}, \ldots, X_{k}$ with a fixed "pattern" of requirements as to which X_{i} are independent or complete and which pairs X_{i}, X_{j} are completely nonadjacent or completely adjacent. These requirements may be conveniently encoded by a symmetric $k \times k$ matrix M in which the diagonal entry $M_{i, i}$ is 0 if X_{i} is required to be independent, 2 if X_{i} is required to be a clique, and 1 otherwise (no restriction). Similarly, the off-diagonal entry $M_{i, j}$ is 0,1 , or 2 , if X_{i} and X_{j} are required to be completely nonadjacent, have arbitrary connections, or are required to be completely adjacent, respectively.

In our case, an $\left(n_{1}, n_{2}\right)$-extended skew partition is an M-partition with the additional constraint that all parts must be nonempty, and M is the following $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ matrix: $M_{i, j}=2$, if $1 \leq i \neq j \leq n_{1} ; M_{i, j}=0$, if $i \neq j>n_{1}$; and $M_{i, j}=1$ otherwise.

The most convenient way to express these additional constraints is to allow specifying (as part of the input) for each vertex a "list" of parts in which the vertex is allowed to be. Specifically, the list-M-partition problem asks for an M-partition of the input graph in which each vertex is placed in a part which is in its list. Both the basic M-partition problem ("Does the input graph admit an M-partition?") and the problem of existence of an M-partition with all parts nonempty admit polynomial-time reductions to the list- M-partition problem, as do all of the above problems with the "additional" constraints. List partitions generalize list-colorings, which have proved very fruitful in the study of graph colorings $[1,9]$. They also generalize list-homomorphisms, which were studied earlier [6, 7]. Feder et al. [8] were the first to introduce and investigate the list version of these problems. List partition problems have attracted much attention lately $[8,10,11,12,13]$.

Our algorithm follows closely the algorithm for finding skew partition given in [5]. In order to describe a more general algorithm for finding an
extended skew partition we generalize the procedures described in [5]. A key element of our algorithm is a simple but non obvious way of developping of what we call generalized 2-SAT procedure. We believe that this procedure may be of broader use to other partition problems.

2 Overview

The goal of this paper is to present a polynomial-time algorithm for the following decision problem:
(n_{1}, n_{2})-Extended Skew Partition Problem
Input: a graph $G=(V, E)$.
Question: Does G admit as extended skew partition $A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots$, $B_{n_{2}}$?

For each vertex v, we associate a subset L_{v} of $\left\{A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots\right.$, $\left.B_{n_{2}}\right\}$ which we call list. We actually consider extended list skew partition (ELSP) problems, stated as decision problems as follows:
$\left(n_{1}, n_{2}\right)$-Extended List Skew Partition Problem
Input: a graph $G=(V, E)$ and, for each vertex $v \in V$, a list $L_{v} \subseteq\left\{A_{1}, \ldots\right.$, $\left.A_{n_{1}}, B_{1}, \ldots, B_{n_{2}}\right\}$.
Question: Is there an extended skew partition $A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots, B_{n_{2}}$ of G such that each v is contained in some element of the corresponding L_{v} ?

Throughout the algorithm, we have a partition of V into at most $2^{n_{1}+n_{2}}-1$ sets S_{L}, indexed by the nonempty subsets L of $\left\{A_{1}, \ldots, A_{n_{1}}\right.$, $\left.B_{1}, \ldots, B_{n_{2}}\right\}$, such that Property 1 below is always satisfied.

Property 1 If the algorithm returns an extended skew partition, then if v is in S_{L}, then the returned extended skew partition set containing v is in L.

The relevant inputs for ELSP have $S_{A_{i}}$ and $S_{B_{j}}$ nonempty, $i \in\left\{1, \ldots, n_{1}\right\}$, $j \in\left\{1, \ldots, n_{2}\right\}$. We refer to the unitary lists as trivial lists. Initially, we set $S_{L}=\left\{v: L_{v}=L\right\}$, for each $L \subseteq\left\{A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots, B_{n_{2}}\right\}$. We denote the list $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n_{1}}\right\}$, the list $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{n_{2}}\right\}$, and the list $\mathcal{A B}=\left\{A_{1}, A_{2}, \ldots, A_{n_{1}}, B_{1}, B_{2}, \ldots, B_{n_{2}}\right\}$. Thus initially the vertex set is partitioned into $n_{1}+n_{2}$ sets corresponding to the trivial lists, plus a set corresponding to list $\mathcal{A B}$.

We also restrict our attention to ELSP instances that satisfy the following property:

Property 2 If $v \in S_{L}$, for some L with $A_{i} \in L$, then v is adjacent to every vertex of $S_{A_{k}}$, for all $A_{k} \in \mathcal{A} \backslash A_{i}$. If $v \in S_{L}$, for some L with $B_{j} \in L$, then v is nonadjacent to every vertex of $S_{B_{l}}$, for all $B_{l} \in \mathcal{B} \backslash B_{j}$.

Both Properties 1 and 2 hold throughout the algorithm. The algorithm proceeds by reducing the size of nontrivial lists. An extended skew partition returned by the algorithm is a set of n trivial lists. The following remark characterizes the set of possible lists throughout the algorithm.

Remark 1 By Property 1, every list L_{v} satisfies

- If $L_{v} \cap \mathcal{A} \neq \emptyset$, then $L_{v} \cap \mathcal{A}=\left\{A_{k}\right\}$ or $L_{v} \cap \mathcal{A}=\mathcal{A}$, and
- If $L_{v} \cap \mathcal{B} \neq \emptyset$, then $L_{v} \cap \mathcal{B}=\left\{B_{k}\right\}$ or $L_{v} \cap \mathcal{B}=\mathcal{B}$.

For, if $A_{i} \notin L_{v}$, then there exists $A_{k} \in \mathcal{A} \backslash A_{i}$ such that v is non-adjacent to $w \in A_{k}$, which implies that $A_{j} \notin L_{v}$, for all $j \neq k$, i.e., if $L_{v} \cap \mathcal{A} \neq \emptyset$, then $L_{v} \cap \mathcal{A}=\left\{A_{k}\right\}$.

So, the set of possible lists is the following: $n_{1}+n_{2}$ trivial lists A_{1}, A_{2}, $\ldots, A_{n_{1}}, B_{1}, B_{2}, \ldots, B_{n_{2}} ; n_{1} n_{2}$ lists of type $A_{i} B_{j}$; the list \mathcal{A}; the list $\mathcal{B} ; n_{1}$ lists of type $A_{i} \mathcal{B} ; n_{2}$ lists of type $B_{j} \mathcal{A}$; the list $\mathcal{A B}$.

Remark 2 Since $S_{A_{l}}$ must be contained in A_{l}, we know that if v is to be in A_{j} for some solution to the problem, then v must be adjacent to all vertices of $S_{A_{l}}$. Thus if some $v \in S_{A_{j}}$ is not adjacent to a vertex of $S_{A_{l}}$, then there is no solution to the problem and we need not continue. If there is some L with A_{j} properly contained in L and a vertex v in S_{L} which is not adjacent to a vertex of $S_{A_{l}}$, then we know that in any solution to the problem v must be contained in some element of $L \backslash A_{j}$. So we can reduce to a new problem where we replace S_{L} by $S_{L} \backslash v$, we replace $S_{L \backslash A_{j}}$ by $S_{L \backslash A_{j}}+v$ and all other S_{L} are as before. Such a reduction reduces $\sum_{L}\left|S_{L}\right||L|$ by 1 . Since this sum is at most $\left(n_{1}+n_{2}\right) n$, where n denotes the number of vertices in the input graph G, after $O(n)$ similar reductions we must obtain an ELSP problem satisfying Property 2 (or halt because the original problem has no solution).

Along the algorithm, we often create new ELSP instances and whenever we do so, we always perform the procedure described in Remark 2 to reduce to an ELSP problem satisfying Property 2. For an instance I of ELSP we have $\left\{S_{L}(I): L \subseteq\left\{A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots, B_{n_{2}}\right\}\right.$, but we drop the (I) when it is not needed for clarity.

We consider a number of restricted versions of the ELSP problems:

- $\mathcal{A B}$-TRIV-ELSP: an ELSP problem satisfying Property 2 such that $S_{\mathcal{A B}}=\emptyset ;$
- GEN-MAX-2-ELSP: an ELSP problem satisfying Property 2 such that if $|L|>2$ and $L \neq \mathcal{A}$ and $L \neq \mathcal{B}$, then $S_{L}=\emptyset$;
- $A_{q} B_{p}$-TRSV-ELSP: an ELSP problem satisfying Property 2 such that $A_{q} B_{p}$ is a list transversal for indices $q \in\left\{1, \ldots, n_{1}\right\}, p \in\left\{1, \ldots, n_{2}\right\}$, i.e., a list L_{T} that intersects all lists of size at least 2 , and such that L_{T} is trivial or nontrivial having no restrictions between the parts contained in L_{T}.

Remark 3 Recall that the relevant inputs for $E L S P$ have $S_{A_{1}}, \ldots, S_{A_{n_{1}}}$, $S_{B_{1}}, \ldots, S_{B_{n_{2}}}$ nonempty. It is easy to obtain a solution to an instance of $A_{q} B_{p}-T R S V-E L S P$ as follows:

$$
A_{i}=S_{A_{i}}, i \neq q ; A_{q}=\bigcup_{A_{q} \in L, B_{p} \notin L} S_{L} ; B_{p}=\bigcup_{B_{p} \in L} S_{L} ; B_{j}=S_{B_{j}}, j \neq p .
$$

By Property 2 this is indeed an extended skew partition.
Our algorithm for solving ELSP requires four subalgorithms which replace an instance of ELSP by a polynomial number of instances of more restricted versions of ELSP. Algorithms 1, 2, 3 and 4 replace an instance of ELSP by a polynomial number of instances of GEN-MAX-2-ELSP or $A_{q} B_{q}-T R S V-E L S P$ which are solved by Algorithm 5 and 6 , respectively.

Algorithm 1 Takes an instance of ELSP and returns in polynomial time a list \mathcal{L} of a polynomial number of instances of $\mathcal{A B}$-TRIV-ELSP such that
(i) a solution to any problem in \mathcal{L} is a solution of the original problem, and
(ii) if none of the problems in \mathcal{L} have a solution, then the original problem has no solution.

Algorithm 2 Takes an instance of $\mathcal{A B}$-TRIV-ELSP and returns in polynomial time a list \mathcal{L} of a polynomial number of instances of $\mathcal{A B}$-TRIV-ELSP such that
(i) and (ii) of Algorithm 1 hold, and
(iii) for each problem in \mathcal{L}, there exists $p \in\left\{1, \ldots, n_{2}\right\}$, such that $S_{B_{j} \mathcal{A}}=$ \emptyset, for all $j \neq p$.

Algorithm 3 Takes an instance of $\mathcal{A B}$-TRIV-ELSP and returns in polynomial time a list \mathcal{L} of a polynomial number of instances of $\mathcal{A B}$-TRIV-ELSP such that
(i) and (ii) of Algorithm 1 hold, and
(iii) for each problem in \mathcal{L}, there exists $q \in\left\{1, \ldots, n_{1}\right\}$, such that $S_{A_{i} \mathcal{B}}=\emptyset$, for all $i \neq q$.

Algorithm 4 Takes an instance of $\mathcal{A B}$-TRIV-ELSP such that
(a) there exists $p \in\left\{1, \ldots, n_{2}\right\}$, such that $S_{B_{j} \mathcal{A}}=\emptyset$, for all $j \neq p$, and
(b) there exists $q \in\left\{1, \ldots, n_{1}\right\}$, such that $S_{A_{i} \mathcal{B}}=\emptyset$, for all $i \neq q$.
and returns in polynomial time a list \mathcal{L} of a polynomial number of problems each of which is an instance of one of GEN-MAX-2-ELSP or $A_{q} B_{p}-T R S V-$ ELSP such that (i) and (ii) of Algorithm 1 hold.

Algorithm 5 (generalized 2-SAT) Takes an instance of GEN-MAX-2ELSP and returns either
(i) a solution to this instance of GEN-MAX-2-ELSP, or
(ii) the information that this problem instance has no solution.

Algorithm 6 Takes an instance of $A_{q} B_{p}-T R S V-E L S P$ returns a solution using the partition discussed in Remark 3.

To solve an instance of ELSP, we first apply Algorithm 1 to obtain a list \mathcal{L}_{1} of instances of $\mathcal{A B}$-TRIV-ELSP. For each problem instance I on \mathcal{L}_{1}, we apply Algorithm 2 and let \mathcal{L}_{I} be the output list of problem I. We let \mathcal{L}_{2} be the concatenation of the lists $\left\{\mathcal{L}_{I}: I \in \mathcal{L}_{1}\right\}$. For each I in \mathcal{L}_{2}, we apply Algorithm 3. Let \mathcal{L}_{3} be the concatenation of the lists $\left\{\mathcal{L}_{I}: I \in \mathcal{L}_{2}\right\}$. For each problem instance I on \mathcal{L}_{3}, we apply Algorithm 4. Let \mathcal{L}_{4} be the concatenation of the lists $\left\{\mathcal{L}_{I}: I \in \mathcal{L}_{3}\right\}$. Each element of \mathcal{L}_{4} can be solved in polynomial time using either Algorithm 5 or Algorithm 6. If any of these problems has a solution S, then by the specifications of the algorithms, S is a solution to the original problem. Otherwise, by the specifications of the algorithms, there is no solution to the original problem. Clearly, the whole algorithm runs in polynomial time.

3 Some Recursive Procedures

Algorithm 1 recursively applies Procedure 1, which runs in polynomial time.
Procedure 1 Input: An instance I of $E L S P$.
Output: $n_{1}+n_{2}$ instances $I_{1}, \ldots, I_{n_{1}+n_{2}}$ of $E L S P$ such that, for $1 \leq t \leq$ $n_{1}+n_{2}$, we have $\left|S_{\mathcal{A B}}\left(I_{t}\right)\right| \leq \frac{9}{10}\left|S_{\mathcal{A B}}(I)\right|$.

It is easy to prove inductively that applying Procedure 1 recursively yields a polynomial-time implementation of Algorithm 1 which when applied to an input graph with n vertices creates as output a list \mathcal{L} of instances of ELSP such that $|\mathcal{L}| \leq\left(n_{1}+n_{2}\right)^{\log _{\frac{10}{9}} n}=n^{\log _{\frac{10}{9}}\left(n_{1}+n_{2}\right)}$.

Algorithm 2 recursively applies Procedure 2, which runs in polynomial time.

Procedure 2 Input: An instance I of $\mathcal{A B}-T R I V-E L S P$.
Output: $n_{1}+n_{2}$ instances $I_{1}, \ldots, I_{n_{1}+n_{2}}$ of $\mathcal{A B}-T R I V-E L S P$ such that, for all $1 \leq t \leq n_{1}+n_{2}$, we have $\left|S_{B_{1} \mathcal{A}}\left(I_{t}\right)\right|\left|S_{B_{2} \mathcal{A}}\left(I_{t}\right)\right| \leq \frac{9}{10}\left|S_{B_{1} \mathcal{A}}(I)\right|\left|S_{B_{2} \mathcal{A}}(I)\right|$.

Algorithm 2 recursively applies $O\left(n_{2}^{2}\right)$ procedures whose definitions are similar to Procedure 2 and consider all possible values of pairs $B_{j} \mathcal{A}, B_{l} \mathcal{A}$, with $j \neq l, j, l \in\left\{1, \ldots, n_{2}\right\}$. It is easy to see that recursively applying Procedure 2 or one of its variants, as appropriate, yields a polynomial- time implementation of Algorithm 2 which when applied to an input graph with n vertices creates an output list \mathcal{L} with $O\left(n^{2 \log _{\frac{10}{9}}\left(n_{1}+n_{2}\right)}\right)$.

Algorithm 3 recursively applies Procedure 3, which runs in polynomial time.

Procedure 3 Input: An instance I of $\mathcal{A B}-T R I V-E L S P$.
Output: $n_{1}+n_{2}$ instances $I_{1}, \ldots, I_{n_{1}+n_{2}}$ of $\mathcal{A B}-T R I V-E L S P$ such that, for all $1 \leq t \leq n_{1}+n_{2}$, we have $\left|S_{A_{1} \mathcal{B}}\left(I_{t}\right)\right|\left|S_{A_{2} \mathcal{B}}\left(I_{t}\right)\right| \leq \frac{9}{10}\left|S_{A_{1} \mathcal{B}}(I)\right|\left|S_{A_{2} \mathcal{B}}(I)\right|$.

Algorithm 3 recursively applies $O\left(n_{2}^{2}\right)$ procedures whose definitions are similar to Procedure 3 and consider all possible values of pairs $A_{j} \mathcal{B}, A_{l} \mathcal{B}$, with $j \neq l, j, l \in\left\{1, \ldots, n_{1}\right\}$. It is easy to see that recursively applying Procedure 3 or one of its variants, as appropriate, yields a polynomial- time implementation of Algorithm 3 which when applied to an input graph with n vertices creates an output list \mathcal{L} with $O\left(n^{2 \log _{\frac{10}{9}}\left(n_{1}+n_{2}\right)}\right)$.

Algorithm 4 recursively applies Procedure 4 , which runs in polynomial time.

Procedure 4 Input: An instance I of $\mathcal{A B}$-TRIV-ELSP such that

- there exists $p \in\left\{1, \ldots, n_{2}\right\}$, such that $S_{B_{j} \mathcal{A}}=\emptyset$, for all $j \neq p$, and
- there exists $q \in\left\{1, \ldots, n_{1}\right\}$, such that $S_{A_{i} \mathcal{B}}=\emptyset$, for all $i \neq q$.

Output: $n_{1}+n_{2}$ instances $I_{1}, \ldots, I_{n_{1}+n_{2}}$ of $\mathcal{A B}-T R I V-E L S P$ such that, there exists $j^{\prime} \neq p$, for all $1 \leq t \leq n_{1}+n_{2}$, satisfying $\left|S_{B_{p} \mathcal{A}}\left(I_{t}\right)\right|\left|S_{A_{i} B_{j^{\prime}}}\left(I_{t}\right)\right| \leq$ $\frac{9}{10}\left|S_{B_{p} \mathcal{A}}(I)\right|\left|S_{A_{i} B_{j^{\prime}}}(I)\right|$.

Procedure 4 has $n_{1} \times\left(n_{2}-1\right)$ variants corresponding to the lists $B_{p} \mathcal{A}$ and $A_{i} B_{j}$, with $1 \leq i \leq n_{1}$, and $j \neq p, 1 \leq j \leq n_{2}$, and $\left(n_{1}-1\right) \times n_{2}$ variants corresponding to the lists $A_{q} \mathcal{B}$ and $A_{i} B_{j}$, with $1 \leq j \leq n_{2}$, and $i \neq q, 1 \leq$ $i \leq n_{1}$. Algorithm 4 recursively applies these $O\left(n_{1} \times\left(n_{2}-1\right)+\left(n_{1}-1\right) \times n_{2}\right)$ procedures.

It is easy to see that recursively applying Procedure 4 or one of its variants, as appropriate, yields a polynomial- time implementation of Algorithm 4 which when applied to an input graph with n vertices creates an output list \mathcal{L} with $O\left(n^{2 \log _{\frac{10}{9}}\left(n_{1}+n_{2}\right)}\right)$.

The four procedures above are based on those methods applied by de Figueiredo, Klein, Kohayakawa and Reed [5] with appropriate modifications.

4 The Details of the recursive procedures

Procedure 1

Let $n=\left|S_{\mathcal{A B}}(I)\right|$. For an extended skew partition $\left\{A_{1}, \ldots, A_{n_{1}}, B_{1}, \ldots, B_{n_{2}}\right\}$, let $A_{i}^{\prime}=A_{i} \cap S_{\mathcal{A B}}(I)$ and $B_{j}^{\prime}=B_{j} \cap S_{\mathcal{A B}}(I)$ for all $i=1, \ldots, n_{1}$ and $j=1, \ldots, n_{2}$.

Case 1: There exists a vertex v in $S_{\mathcal{A B}}$ such that $\frac{n}{10} \leq\left|S_{\mathcal{A B}} \cap N(v)\right| \leq$ $\frac{9 n}{10}$.
Branch according to whether $v \in A_{1}, \ldots, v \in A_{n_{1}}, v \in B_{1}, \ldots$, or $v \in B_{n_{2}}$ with instances $I_{A_{1}}, \ldots, I_{A_{n_{1}}}, I_{B_{1}}, \ldots, I_{B_{n_{2}}}$, respectively. For all $i=1, \ldots, n_{1}$, define $I_{A_{i}}$ by initially setting $S_{A_{i}}\left(I_{A_{i}}\right)=v+S_{A_{i}}(I)$ and reducing so that Property 2 holds. Define $I_{B_{1}}, \ldots, I_{B_{n_{2}}}$ similarly. Note that by Property 2, if $v \in B_{i}$, then $B_{j} \cap N(v)=\emptyset$ for all $j \neq i$. So, $S_{\mathcal{A B}}\left(I_{B_{i}}\right) \subset S_{\mathcal{A B}}(I) \backslash N(v)$. Because there are at least $\frac{n}{10}$ vertices in $S_{\mathcal{A B}} \cap N(v)$, this means $\left|S_{\mathcal{A B}}\left(I_{B_{i}}\right)\right| \leq$ $\frac{9 n}{10}$ for all $i=1, \ldots, n_{2}$.

Similarly, by Property $2, S_{\mathcal{A B}}\left(I_{A_{i}}\right) \subset S_{\mathcal{A B}}(I) \cap N(v)$, so $\left|S_{\mathcal{A B}}\left(I_{A_{i}}\right)\right| \leq \frac{9 n}{10}$ for all $i=1, \ldots, n_{1}$.

Let $W=\left\{v \in S_{\mathcal{A B}}:\left|S_{\mathcal{A B}} \cap N(v)\right|>\frac{9 n}{10}\right\}$ and $X=\left\{v \in S_{\mathcal{A B}}: \mid S_{\mathcal{A B}} \cap\right.$ $\left.N(v) \left\lvert\,<\frac{n}{10}\right.\right\}$.

Case 2: $|W| \geq \frac{n}{10}$ and $|X| \geq \frac{n}{10}$.
Branch according to :
(i) $I_{1}:\left|A_{1}^{\prime}\right| \geq \frac{n}{10}$, or
(ii) $I_{2}:\left|\cup_{i \neq 1} A_{i}^{\prime}\right| \geq \frac{n}{10}$, or
(iii) $I_{3}:\left|B_{1}^{\prime}\right| \geq \frac{n}{10}$, or
(iv) $I_{4}:\left|\cup_{i \neq 1} B_{i}^{\prime}\right| \geq \frac{n}{10}$.

Each of these choices forces either all the vertices in W or all the vertices in X to have smaller label sets, as follows.
If $\left|A_{1}^{\prime}\right| \geq \frac{n}{10}$, then every vertex in $A_{j}^{\prime} \forall j \neq 1$ has $\frac{n}{10}$ neighbours in $S_{\mathcal{A B}}(I)$, so $A_{j}^{\prime} \cap X=\emptyset$ for all $j \neq 1$.
If $\left|\cup_{i \neq 1} A_{i}^{\prime}\right| \geq \frac{n}{10}$ then every vertex in A_{1}^{\prime} has $\frac{n}{10}$ neighbours in $S_{\mathcal{A B}}(I)$, so $A_{1}^{\prime} \cap X=\emptyset$.
Thus, for $j=1,2$ we have $S_{\mathcal{A B}}\left(I_{j}\right)=S_{\mathcal{A B}}(I) \backslash X$, and $\left|S_{\mathcal{A B}}\left(I_{j}\right)\right| \leq \frac{9 n}{10}$.
If $\left|B_{1}^{\prime}\right| \geq \frac{n}{10}$ then every vertex in $B_{j} \forall j \neq 1$ has at least $\frac{n}{10}$ non-neighbours in $S_{\mathcal{A B}}(I)$. Hence $W \cap B_{j}=\emptyset$ for all $j \neq 1$.
If $\left|\cup_{i \neq 1} B_{i}^{\prime}\right| \geq \frac{n}{10}$ then every vertex in B_{1} has at least $\frac{n}{10}$ non-neighbours in $S_{\mathcal{A B}}(I)$. Hence $W \cap B_{1}=\emptyset$.
Hence, for $j=3,4$ we have $S_{\mathcal{A B}}\left(I_{j}\right)=S_{\mathcal{A B}}(I) \backslash W$, and so $\left|S_{\mathcal{A B}}\left(I_{j}\right)\right| \leq \frac{9 n}{10}$.
Case 3: $|W|>\frac{9 n}{10}$.
In [5], the authors proved that there exists 3 subsets O, T and $N T$ of W satisfying :

- There are all edges between O and T;
- For every w in $N T$, there exists v in O such that w is not adjacent to v;
- The complement of O is connected.

And such that :
(i) $|O|+|N T| \geq \frac{n}{10}$ and $|T| \geq \frac{n}{10}$; or
(ii) $N T=\emptyset$.

In case (i), we consider the following intances :
(b_{1}) $I_{1}: B_{1} \cap O \neq \emptyset$, or \ldots
$\left(b_{n_{2}}\right) I_{n_{2}}: B_{n_{2}} \cap O \neq \emptyset,\left(\cup_{i \neq n_{2}} B_{i}\right) \cap O=\emptyset$, or
(a_{1}) $I_{n_{2}+1}: O \subseteq A_{1}$, or \ldots
$\left(a_{n_{1}}\right) I_{n_{2}+n_{1}}: O \subseteq A_{n_{1}}$.
Recall that the complement of O is connected, which implies that if $O \cap \mathcal{B}=\emptyset$, then $O \subseteq A_{i}$ for some $i \in\left\{1, \ldots, n_{1}\right\}$.
If $O \subseteq A_{i}$ for some i, then $N T \cap A_{j}=\emptyset$ for all $j \neq i$ since for every $w \in N T$ there is a vertex $v \in O$ such that $v w \notin E$.
Thus, $(O \cup N T) \cap S_{\mathcal{A B}}\left(I_{n_{2}+i}\right)=\emptyset$. Hence $\left|S_{\mathcal{A B}}\left(I_{n_{2}+i}\right)\right| \leq \frac{9 n}{10}$ for all $i=$ $1, \ldots, n_{1}$.
If $B_{i} \cap O \neq \emptyset$ for some i, then $\left(\cup_{j \neq i} B_{j}\right) \cap T=\emptyset$.
Thus, $T \cap S_{\mathcal{A B}}\left(I_{i}\right)=\emptyset$, which implies $\left|S_{\mathcal{A B}}\left(I_{i}\right)\right| \leq \frac{9 n}{10}$ for all $i=1, \ldots, n_{2}$.
Hence if (i) holds then we have found $n_{1}+n_{2}$ desired output instances of ELSP. Otherwise O, T and $N T$ satisfy (ii). In this case, the authors in [5] proved that there exist two subsets Y and Z of W such that :

- There are all edges between Y and Z;
- $|Y| \geq \frac{n}{10}$;
- $|Z| \geq \frac{n}{10}$.

Now, we consider the instances :
(b_{1}) $I_{1}: B_{1} \cap Z \neq \emptyset, \ldots$
$\left(b_{n_{1}}\right) I_{n_{1}}: B_{n_{1}} \cap Z \neq \emptyset$,
$\left(b_{n_{1}+1}\right) I_{n_{1}+1}:\left(\cup B_{i}\right) \cap Z=\emptyset$.
Since there are all edges between Y and Z, for every $j \leq n_{1}, S_{\mathcal{A B}}\left(I_{j}\right) \subseteq$ $S_{\mathcal{A B}}(I) \backslash Y$ and $S_{\mathcal{A B}}\left(I_{n_{1}+1}\right) \subseteq S_{\mathcal{A B}}(I) \backslash Z$. Thus for all j, we have $\left|S_{\mathcal{A B}}\left(I_{j}\right)\right| \leq$ $\frac{9 n}{10}$.

Note that the case $|X|>\frac{9 n}{10}$ is symmetric to Case 3 (consider \bar{G}) and is omitted.

Procedure 2

Let $S_{1}=S_{B_{j} \mathcal{A}}(I)$ and and $S_{2}=S_{B_{l} \mathcal{A}}(I)$. Let $s_{1}=\left|S_{1}\right|, s_{2}=\left|S_{2}\right|$. Given $v \in S_{1} \cup S_{2}$, let $d_{i}(v)=\left|N(v) \cap S_{i}\right|, i=1,2$.

Case 1: There exists a vertex $v \in S_{1}$ with $s_{2} / 10 \leq d_{2}(v) \leq 9 s_{2} / 10$.
This case is analogous to Case 1 of Procedure 1: we create $n_{1}+1$ new instances $I_{B_{j}}, I_{A_{1}}, \ldots, A_{n_{1}}$ according to whether $v \in B_{j}$, or $v \in A_{1}$ or \ldots or $v \in A_{n_{1}}$.
Thus $S_{\mathcal{A} B_{l}}\left(I_{A_{k}}\right) \subseteq S_{2} \cap N(v)$ and hence $\left|S_{\mathcal{A} B_{l}}\left(I_{A_{k}}\right)\right| \leq \frac{9 n_{2}}{100}$ for all k. And $S_{\mathcal{A} B_{l}}\left(I_{B_{j}}\right) \subseteq S_{B_{l}} \backslash\left(S_{2} \cap N(v)\right)$ and hence $\left|S_{\mathcal{A} B_{l}}\left(I_{B_{j}}\right)\right| \leq \frac{9 n_{2}}{10}$.

The case "there exists a vertex $v \in S_{2}$ with $\frac{s_{1}}{10} \leq d_{1}(v) \leq \frac{9 s_{1}}{10}$ ", symmetric to Case 1 is ommited.

Case 2: Every vertex v in S_{1} satisfies $d_{2}(v)<\frac{s_{2}}{10}$ or $d_{2}(v)>\frac{9 s_{2}}{10}$. Every vertex v in S_{2} satisfies $d_{1}(v)<\frac{s_{1}}{10}$ or $d_{1}(v)>\frac{9 s_{1}}{10}$.
Define four auxiliary sets, as follows:

$$
\begin{aligned}
X_{1} & =\left\{v \in S_{1}: d_{2}(v)<\frac{s_{2}}{10}\right\}, \\
X_{2} & =\left\{v \in S_{2}: d_{1}(v)<\frac{s_{1}}{10}\right\} \\
W_{1} & =\left\{v \in S_{1}: d_{2}(v)>\frac{9 s_{2}}{10}\right\} \\
W_{2} & =\left\{v \in S_{2}: d_{1}(v)>\frac{9 s_{1}}{10}\right\} .
\end{aligned}
$$

Note that Case 2 means that $S_{1}=X_{1} \cup W_{1}$ and $S_{2}=X_{2} \cup W_{2}$. We handle Case 2 according to the following possibilities.

Case 2.1: $\left|X_{1}\right|,\left|W_{1}\right| \geq \frac{s_{1}}{10}$.
This case is analogous to Case 2 of Procedure 1. We create $n_{1}+1$ new instances of ELSP according to the size of skew partition sets, as follows:
(a_{1}) $I_{1}:\left|A_{1} \cap S_{2}\right| \geq \frac{s_{2}}{10}$, or \ldots
$\left(a_{n_{1}}\right) I_{n_{1}}:\left|A_{n_{1}} \cap S_{2}\right| \geq \frac{s_{2}}{10}$, or
(b_{1}) $I_{n_{1}+1}:\left|B_{l} \cap S_{2}\right| \geq \frac{s_{2}}{10}$.

If $\left|A_{i} \cap S_{2}\right| \geq \frac{s_{2}}{10}$ for some i, then as every vertex in $A_{k}(k \neq i)$ is adjacent to every vertex of $A_{i}, A_{k} \cap X_{1}=\emptyset$ for all $k \neq i$. Thus $S_{\mathcal{A} B_{j}}\left(I_{i}\right) \leq \frac{9 s_{1}}{10}$. Similarly, $S_{\mathcal{A} B_{j}}\left(I_{n_{1}+1}\right) \cap W_{1}=\emptyset$. So, for all $n_{1}+1$ output instances, we have $\left|S_{\mathcal{A} B_{j}}\right| \leq \frac{9 s_{1}}{10}$, as required.

The case "otherwise $\left|X_{2}\right|,\left|W_{2}\right| \geq \frac{s_{2}}{10}$ ", symmetric to Case 2.1, is omitted.
Case 2.2: $\left|X_{1}\right|>\frac{9 s_{1}}{10}$.
In [5], the authors proved that there exists three sets O, M, and $N M$ such that:

- $O \subseteq X_{1}, S_{2}=M \cup N M$;
- There are no edges between O and M;
- For every $u \in N M$, there is a $w \in O$ with $w u \in E$;

And for which either :
(i) $|M| \leq \frac{s_{2}}{2}$; or
(ii) $|O| \geq \frac{3 s_{1}}{10}$.

If condition (ii) holds, i.e., $|O| \geq \frac{3 s_{1}}{10}$ and $|M|>\frac{s_{2}}{2}$, then define two new instances of ELSP as follows:
(a) $I_{1}: O \cap A_{1}=\emptyset$,
(b) $I_{2}: O \cap A_{1} \neq \emptyset$.

Clearly, $S_{\mathcal{A} B_{j}}\left(I_{1}\right) \subseteq S_{1} \backslash O$, so $\left|S_{\mathcal{A} B_{j}}\left(I_{1}\right)\right| \leq \frac{9 s_{1}}{10}$. Further, if $O \cap A_{1} \neq \emptyset$ then $M \cap B_{l}=\emptyset$, so $\left|S_{\mathcal{A} B_{l}}\left(I_{2}\right)\right| \leq \frac{9 s_{2}}{10}$.
If condition (i) holds, i.e., $|M| \leq \frac{s_{2}}{2}$, then the authors in [5] proved that we may assume that $\frac{4 s_{2}}{10}<|M|$ and $|N M| \geq \frac{s_{2}}{2}$. We define $n_{1}+1$ new ELSP instances:
(a_{1}) $I_{1}: O \cap A_{1} \neq \emptyset$, or \ldots
$\left(a_{n_{1}}\right) I_{n_{1}}: O \cap A_{n_{1}} \neq \emptyset$, or
$\left(a_{n_{1}+1}\right) I_{n_{1}+1}: O \subseteq B_{j}$.
If $O \cap A_{i} \neq \emptyset$ for some i, then $A_{k} \subseteq\left(S_{2} \backslash M\right)$ for all $k \neq i$, so $\left|S_{\mathcal{A} B_{l}}\left(I_{i}\right)\right| \leq \frac{9 s_{2}}{10}$. Finally, if $O \subseteq B_{j}$ then $N M \cap B_{l}=\emptyset$ so $\left|S_{\mathcal{A} B_{l}}\left(I_{n_{1}+1}\right)\right| \leq \frac{s_{2}}{2}$.

Note that the case "otherwise $\left|X_{2}\right|>9 s_{2} / 10$ ", symmetric to Case 2.2 , is omitted.

Case 2.3: $\left|W_{1}\right|>\frac{9 s_{1}}{10}$, and $\left|W_{2}\right|>\frac{9 s_{2}}{10}$.
Let $W=W_{1} \cup W_{2}$. In [5], the authors proved that there is a partition of W into three sets O, T and $N T$ such that:

- The complement of O is connected;
- There are all edges between O and T;
- For every $w \in N T$, there exists $u \in O$ such that $u w \notin E$.
and with the property that:
(i) $\left|O \cap S_{1}\right|+\left|N T \cap S_{1}\right| \geq \frac{s_{1}}{10}$, or $\left|O \cap S_{2}\right|+\left|N T \cap S_{2}\right| \geq \frac{s_{2}}{10}$; or
(ii) $N T=\emptyset$.

If condition (i) holds, say w.l.o.g. that $\left|O \cap S_{1}\right|+\left|N T \cap S_{1}\right| \geq \frac{s_{1}}{10}$. In [5], the authors shown that $\left|O \cap S_{1}\right|+\left|N T \cap S_{1}\right|<\frac{s_{1}}{5},\left|O \cap S_{2}\right|+\left|N T \cap S_{2}\right|<\frac{s_{2}}{5}$, and on the other hand, $\left|T \cap S_{1}\right| \geq \frac{s_{1}}{10}$, and $\left|T \cap S_{2}\right| \geq \frac{s_{2}}{10}$.
Recall that the complement of O is connected, which implies that if $O \cap$ $\left(B_{j} \cup B_{l}\right)=\emptyset$, then there exists an $i \in\left\{1, \ldots, n_{1}\right\}$ such that $O \subseteq A_{i}$. So we consider the following $n_{1}+2$ ELSP instances:
(a) $I_{1}: B_{j} \cap O \neq \emptyset$,
(a_{2}) $I_{2}: B_{l} \cap O \neq \emptyset$,
(a_{3}) $I_{3}: O \subseteq A_{1}, \ldots$
$\left(a_{n_{1}+2}\right) I_{n_{1}+2}: O \subseteq A_{n_{1}}$.
If $B_{j} \cap O \neq \emptyset$, then $\left(T \cap S_{2}\right) \cap B_{l}=\emptyset$, so $\left|S_{\mathcal{A} B_{l}}\left(I_{1}\right)\right| \leq \frac{9 s_{2}}{10}$. If $B_{l} \cap O \neq \emptyset$, then $\left(T \cap S_{1}\right) \cap B_{j}=\emptyset$, and analogously $\left|S_{\mathcal{A} B_{j}}\left(I_{2}\right)\right| \leq \frac{9 s_{1}}{10}$.
If $O \subseteq A_{i}$ for some i, then $\left(N T \cap S_{1}\right) \cap A_{k}=\emptyset$ for every $k \neq i$. Thus, $\left|S_{\mathcal{A} B_{j}}\left(I_{2+i}\right)\right| \leq \frac{9 s_{1}}{10}$.

If condition (ii) holds, i.e., $N T=\emptyset$ and both $\left|O \cap S_{1}\right|+\left|N T \cap S_{1}\right|<\frac{s_{1}}{10}$, and $\left|O \cap S_{2}\right|+\left|N T \cap S_{2}\right|<\frac{s_{2}}{10}$. In this case, the authors in [5] proved that we can find two subsets Y and Z of O with all edges between them and such that $|Z| \geq \frac{s_{1}}{10}$ and $|Y| \geq \frac{s_{2}}{10}$. Observe that since there are all edges between Y and Z then either $B_{j} \cap Z=\emptyset$ or $B_{l} \cap Y=\emptyset$.
We now define three new instances of ELSP according to the intersection of skew partition sets C or D with Z, as follows:
(a) $I_{1}: B_{j} \cap Z \neq \emptyset$,
(b) $I_{2}: B_{l} \cap Z \neq \emptyset$,
(c) $I_{3}: Z \subseteq \mathcal{A}$.

If $B_{j} \cap Z \neq \emptyset$, then $B_{l} \cap Y=\emptyset$. Thus, $\left(Y \cap S_{2}\right) \subseteq \mathcal{A}$, which implies $\left|S_{\mathcal{A} B_{l}}\left(I_{1}\right)\right| \leq \frac{9 s_{2}}{10}$.
If $B_{l} \cap Z \neq \emptyset$, then an argument symmetric to $B_{j} \cap Z \neq \emptyset$ shows that $\left|S_{\mathcal{A} B_{j}}\left(I_{2}\right)\right| \leq \frac{9 s_{1}}{10}$.
Otherwise, $Z \subseteq \mathcal{A}$, which implies $\left|S_{\mathcal{A} B_{j}}\left(I_{3}\right)\right| \leq \frac{9 s_{1}}{10}$.
This ends the description of Procedure 2.
Procedure 3 is a mirror image of Procedure 2 and is omitted.

Procedure 4

We will give the details of the procedure constructing the 2 instances I_{1}, I_{2} such that $\left|S_{B_{p} \mathcal{A}}\left(I_{t}\right)\right|\left|S_{A_{a} B_{b}}\left(I_{t}\right)\right| \leq \frac{9}{10}\left|S_{B_{p} \mathcal{A}}(I)\right|\left|S_{A_{a} B_{b}}(I)\right|$ with $b \neq p$. The other 2 instances I_{3}, I_{4} are obtained similarly.
Let $S_{\mathcal{A} B_{p}}=S_{1}$ with $\left|S_{\mathcal{A} B_{p}}\right|=s_{1}$, and $S_{A_{a} B_{b}}=S_{2}$ with $\left|S_{A_{a} B_{b}}\right|=s_{2}$ and $b \neq p$. Given $v \in S_{1} \cup S_{2}$, let $d_{i}(v)=\left|N(v) \cap S_{i}\right|, i=1,2$.

Case 1: There exists a vertex $v \in S_{2}$ with $\frac{s_{1}}{10} \leq d_{1}(v) \leq \frac{9 s_{1}}{10}$.
This case is analogous to Case 1 of Procedure 1. Define two new instances of ELSP, as follows:
(a) $I_{1}: v \in A_{a}$,
(b) $I_{2}: v \in B_{b}$.

If $v \in A_{a}$, then every vertex of S_{1} that is nonadjacent to v cannot be placed in B_{b}, so $\left|S_{\mathcal{A} B_{p}}\left(I_{1}\right)\right| \leq \frac{9 s_{1}}{10}$.
If $v \in B_{b}$, then every vertex of S_{1} that is adjacent to v cannot be placed in B_{p}. So $\left|S_{\mathcal{A} B_{p}}\left(I_{2}\right)\right| \leq \frac{9 s_{1}}{10}$, as required.

Case 2: Every vertex $v \in S_{2}$ has either $d_{1}(v)<\frac{s_{1}}{10}$ or $d_{1}(v)>\frac{9 s_{1}}{10}$.
Let $W=\left\{v \in S_{2}:\left|N(v) \cap S_{1}\right|>\frac{9 s_{1}}{10}\right\}$. We handle Case 2 according to the following two possibilities.

Case 2.1: $|W|>\frac{s_{2}}{2}$.
Let $v_{1} \in W$. In [5], the authors proved that there are three sets O, T, and $N T$ such that:

- O is contained in W;
- $S_{1}=T \cup N T$;
- There are all edges between O and T;
- For every w in $N T$, there exists v in O such that v is not adjacent to w.
satisfying :
(i) $|T| \leq \frac{9 s_{1}}{10}$; or
(ii) $|O| \geq \frac{s_{2}}{10}$.

If condition (i) holds, i.e., $|T| \leq \frac{9 s_{1}}{10}$, then $|N T| \geq \frac{s_{1}}{10}$. In addition, they prove that we may assume that $|T|>\frac{8 s_{1}}{10}$.

Consider two new instances of ELSP, as follows:
(a) $I_{1}: B_{b} \cap O \neq \emptyset$,
(b) $I_{2}: O \subseteq A_{a}$.

If $B_{b} \cap O \neq \emptyset$, then $T \cap B_{p}=\emptyset$ which implies $\left|S_{\mathcal{A} B_{p}}\left(I_{1}\right)\right| \leq \frac{9 s_{1}}{10}$. Otherwise, $O \subseteq A_{a}$, and $N T \cap B=\emptyset$, since for every $w \in N T$ there is a vertex $v \in O$ such that $v w \notin E$. Thus $\left|S_{\mathcal{A} B_{p}}\left(I_{2}\right)\right| \leq \frac{9 s_{1}}{10}$.

Now suppose that condition (ii) holds, i.e., $|O| \geq \frac{s_{2}}{10}$ and $|T|>\frac{9 s_{1}}{10}$. Consider two new instances of ELSP, as follows.
(a) $I_{1}: B_{p} \cap T \neq \emptyset$,
(b) $I_{2}: T \subset \mathcal{A}$.

If $B_{p} \cap T \neq \emptyset$ then $O \cap B_{b}=\emptyset$, so $\left|S_{A B_{b}}\left(I_{1}\right)\right| \leq \frac{9 s_{1}}{10}$.
Clearly, $T \cap S_{\mathcal{A} B_{p}}\left(I_{2}\right)=\emptyset$, so $\left|S_{\mathcal{A} B_{p}}\left(I_{2}\right)\right| \leq \frac{9 s_{1}}{10}$.
Case 2.2: $\left|S_{2} \backslash W\right|>\frac{s_{2}}{2}$.
Let $X=S_{2} \backslash W$, and $v \in X$. In [5], they show that there exist two sets O, and M such that:

- $O \subseteq X, M \subseteq S_{1} ;$
- There are no edges between M and O.
with :
(i) $|M| \leq \frac{9 s_{1}}{10}$; or
(ii) $|O| \geq \frac{s_{2}}{10}$.

If condition (i) holds, i.e., $|M| \leq \frac{9 s_{1}}{10}$ then the authors in [5] show that we may assume that $|M|>\frac{8 s_{1}}{10}$. Then, in either case (i) or (ii), we have $|M|>\frac{8 n_{1}}{10}$.

Define two new ELSP instances as follows;
(a) $I_{1}: A_{a} \cap O \neq \emptyset$,
(b) $I_{2}: O \subseteq B_{b}$.

If $A_{a} \cap O \neq \emptyset$, then $M \cap A_{i}=\emptyset$ for all $i \neq a$. Hence because $|M|>\frac{8 s_{1}}{10}$, we have $\left|S_{\mathcal{A} B_{p}}\left(I_{1}\right)\right|<\frac{2 s_{1}}{10} \leq 9 s_{1} / 10$.
Otherwise, $O \subseteq B_{b}$. In case (i), $|M| \leq 9 s_{1} / 10$, which implies $\left|S_{1} \backslash M\right| \geq$ $s_{1} / 10$, so we have $\left\lvert\, S_{\mathcal{A} B_{p}}\left(I_{2}\right) \leq \frac{9 s_{1}}{10}\right.$.
In case (ii), $|O| \geq \frac{s_{2}}{10}$, which implies $\left|S_{A_{a} B_{b}}\left(I_{2}\right)\right| \leq \frac{9 s_{2}}{10}$. So for either output instance $I_{i}\left|S_{\mathcal{A} B_{p}}\left(I_{i}\right)\right|\left|S_{A_{a} B_{b}}\left(I_{i}\right)\right| \leq \frac{9 s_{1} S_{a}}{10}$ as required.

This ends the description of Procedure 4.

5 Details of Algorithm 5

In this section, we give the details of Algorithm 5 which we call generalized 2-SAT algorithm. This algorithm takes as input an instance of GEN-MAX-2-ELSP. The lists L present in such an instance are either equal to \mathcal{A} or \mathcal{B}, or have size $|L| \leq 2$. We prove below that such restrictions are enough for a solution through an algorithm similar to that of Aspvall et al. [2] for 2-SAT.

Suppose an instance of GEN-MAX-2-ELSP is given, i.e., a graph $G=$ $(V(G), E(G))$ and a set of lists L_{v} of the following types, trivial lists: A_{1}, $A_{2}, \ldots, A_{n_{1}}, B_{1}, B_{2}, \ldots, B_{n_{2}}$; lists of size 2: $A_{i} B_{j}$; lists of size greater than 2: the list \mathcal{A} and the list \mathcal{B}.

Let $A_{i}, A_{k} \in \mathcal{A}$ and $B_{j}, B_{l} \in \mathcal{B}$ with $i \neq k, j \neq l, i, k \in\left\{1, \ldots, n_{1}\right\}$ and $j, l \in\left\{1, \ldots, n_{2}\right\}$.

We define next a digraph $\vec{G}_{f}=\left(V_{f}, E_{f}\right)$. Each directed edge of E_{f} corresponds to a "forcing" defined by the adjacency relation in the original graph G.

The vertex set of \vec{G}_{f} is the following set $V_{f}=\left\{(u, I): u \in V\right.$ and $\left.I \in L_{u}\right\}$.
The edge set of \vec{G}_{f} is the following set E_{f} :
If $u \in A_{i} B_{j}$ and $v \in A_{k} B_{j}: u v \notin E(G):\left(\left(u, A_{i}\right),\left(v, B_{j}\right)\right)$ and $\left(\left(v, A_{k}\right),\left(u, B_{j}\right)\right)$.
If $u \in A_{i} B_{j}$ and $v \in A_{i} B_{l}: u v \in E(G):\left(\left(u, B_{j}\right),\left(v, A_{i}\right)\right)$ and $\left(\left(v, B_{l}\right),\left(u, A_{i}\right)\right)$.
If $u \in A_{i} B_{j}$ and $v \in A_{k} B_{l}: u v \in E(G):\left(\left(u, B_{j}\right),\left(v, A_{k}\right)\right)$ and $\left(\left(v, B_{l}\right),\left(u, A_{i}\right)\right)$; $u v \notin E(G):\left(\left(u, A_{i}\right),\left(v, B_{l}\right)\right)$ and $\left(\left(v, A_{k}\right),\left(u, B_{j}\right)\right)$.

If $u \in A_{i} B_{j}$ and $v \in \mathcal{A}: u v \notin E(G):\left(\left(u, A_{i}\right),\left(v, A_{i}\right)\right)$ and $\left((v, I),\left(u, B_{j}\right)\right)$, $\forall I \in \mathcal{A} \backslash A_{i}$.

If $u \in A_{i} B_{j}$ and $v \in \mathcal{B}: u v \in E(G):\left(\left(u, B_{j}\right),\left(v, B_{j}\right)\right)$ and $\left((v, J),\left(u, A_{i}\right)\right)$, $\forall J \in \mathcal{B} \backslash B_{j}$.

If $u \in \mathcal{A}$ and $v \in \mathcal{A}: u v \notin E(G):\left(\left(u, A_{i}\right),\left(v, A_{i}\right)\right)$ and $\left(\left(v, A_{i}\right),\left(u, A_{i}\right)\right)$, $\forall A_{i} \in \mathcal{A}$.

If $u \in \mathcal{B}$ and $v \in \mathcal{B}: u v \in E(G):\left(\left(u, B_{j}\right),\left(v, B_{j}\right)\right)$ and $\left(\left(v, B_{j}\right),\left(u, B_{j}\right)\right)$, $\forall B_{j} \in \mathcal{B}$.

We define a forcing class $C(v, I)$ as the set of "forcings" induced by the choice of part I for vertex v, i.e., the set of vertices of \vec{G}_{f} that we can reach starting from (v, I).
Proposition 3 Let u and v be two vertices of G. If $(v, J) \in C(u, I)$ then for all $J^{\prime} \in L_{v} \backslash\{J\}$, there exists $I^{\prime} \in L_{u} \backslash\{I\}$ such that $\left(u, I^{\prime}\right) \in C\left(v, J^{\prime}\right)$.

Proof. The proof is by induction on the number of edges in a path p from (u, I) to (v, J). If $|p|=1$ then the path consists of a single forcing edge $((u, I),(v, J)) \in E_{f}$, with $u, v \in V(G), I \in L_{u}, J \in L_{v}$. We consider the possibilities for L_{u}, L_{v} that correspond to forcing edges. In every case, the desired property holds.
Let p be a path, $|p|>1$, from (u, I) to (v, J). Let $((y, M),(v, J))$ be the last edge in the path p. If we have the edge $((y, M),(v, J))$ then, for all $J^{\prime} \in L_{v} \backslash J$, there exists an $M^{\prime} \in L_{y} \backslash M$ such that $\left(\left(v, J^{\prime}\right),\left(y, M^{\prime}\right)\right) \in E_{f}$. Since (y, M) is in the path p before (v, J), by induction, for all $M^{\prime \prime} \in L_{y} \backslash M$, there exists a $I^{\prime \prime} \in L_{u} \backslash I$ such that $\left(u, I^{\prime \prime}\right) \in C\left(y, M^{\prime \prime}\right)$. In particular for M^{\prime}, there exists $I^{\prime} \in L_{u} \backslash I$ such that $\left(u, I^{\prime}\right) \in C\left(y, M^{\prime}\right)$.
Now, $\left(y, M^{\prime}\right) \in C\left(v, J^{\prime}\right)$ and $\left(u, I^{\prime}\right) \in C\left(y, M^{\prime}\right)$ imply the existence of $I^{\prime} \in$ $I \backslash L_{u}$ such that $\left(u, I^{\prime}\right) \in C\left(v, J^{\prime}\right)$, for all $J^{\prime} \in L_{v} \backslash J$, as required.

We say that the graph \vec{G}_{f} admits an Obstruction if there exists a vertex $u \in V(G)$ such that for all $I \in L_{u}$, there is a $I^{\prime} \in L_{u} \backslash I$ such that $\left(u, I^{\prime}\right) \in$ $C(u, I)$. We can decide in polynomial time whether \vec{G}_{f} admits an obstrution by computing the strong connected components of the digraph \vec{G}_{f}.

Proposition 4 The digraph \vec{G}_{f} admits an obstruction, if and only if the corresponding instance of GEN-MAX-2-ELSP has no solution.

Proof. The definition of obstruction immediately implies that the corresponding instance of GEN-MAX-2-ELSP has no solution.
Suppose the digraph \vec{G}_{f} admits no obstruction. So, by hypothesis, every vertex $u \in V(G)$, has a safe part $F_{u} \in L_{u}$ such that $(u, I) \notin C\left(u, F_{u}\right)$, for all $I \in L_{u} \backslash F_{u}$.
Define a solution for the corresponding instance of GEN-MAX-2-ELSP as follows. Choose an arbitrary vertex $u \in V(G)$ and place u in its safe part F_{u}. Note that, if $x \in V(G)$ is such that $(x, K) \in C\left(u, F_{u}\right)$, then $\left(x, K^{\prime}\right) \notin$ $C\left(u, F_{u}\right)$, for all $K^{\prime} \in L_{x} \backslash K$, as otherwise by Proposition 3 we have a contradiction to our hypothesis. Thus, we may place accordingly x in part K, for all $(x, K) \in C\left(u, F_{u}\right)$.
While there exists $w \in V(G)$ not placed, repeat the above rule by placing w in a safe part F_{w} and by placing accordingly all vertices y such that $(y, T) \in C\left(w, F_{w}\right)$.
Suppose there exists $x \in V(G)$ such that $(x, K) \in C\left(u, F_{u}\right)$ and $\left(x, K^{\prime}\right) \in$ $C\left(w, F_{w}\right)$. Then Proposition 3 implies the existence of $K^{\prime \prime} \in L_{w} \backslash F_{w}$ such that $\left(w, K^{\prime \prime}\right) \in C(x, K)$ and hence $\left(w, K^{\prime \prime}\right) \in C\left(u, F_{u}\right)$, which contradicts that w was not placed by placement of vertex u.

6 Conclusion

It is evident to the authors that the techniques we have developed will apply to large classes of list- M-partition problems. For instance, we have studied the concept of H-partition which includes all vertex partitioning problems into nonempty parts with only external restrictions according to the structure of a model graph H. In the present paper, we presented an algorithm for the case where H contains $n_{1}+n_{2}$ vertices such that n_{1} vertices induce a clique and n_{2} vertices induce a stable set. All cases when H has four vertices are studied in [4].

We would like also to make some observations about the status of n_{1} and n_{2}. Our algorithm depends on the values of n_{1} and n_{2}. If a graph admits an $\left(n_{1}, n_{2}\right)$-extended skew partition, then it admits an $\left(n_{1}^{\prime}, n_{2}^{\prime}\right)$-extended skew partition, for any pair $n_{1}^{\prime}, n_{2}^{\prime}$ satisfying $n_{1}^{\prime} \leq n_{1}, n_{2}^{\prime} \leq n_{2}$. This monotonicity property suggests the following combinatorial optimization problem : Find the largest values of n_{1} and n_{2} such that a graph G admits an $\left(n_{1}, n_{2}\right)$ extended skew partition, which stated as a decision problem gives:

Maximum Skew Partition Problem
Input: a graph $G=(V, E)$, and integers n_{1}, n_{2}.
Question: Is there a (k, l)-extended skew partition with $k \geq n_{1}, l \geq n_{2}$?
We conjecture that this problem is NP-complete and we propose the study of its complexity status as an open problem.

We believe that studying the $\left(n_{1}, n_{2}\right)$-extended skew partition problem contributes to a better understanding of the techniques that were used to solve both problems: skew partition and (n_{1}, n_{2})-extended skew partition, and that soon it will be possible to reduce the high complexity of the polynomial-time algorithms known to solve both problems.

References

[1] N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica 12 (1992) 125-134.
[2] B. Aspvall, F. Plass and R.E. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Infor. Process. Lett. 8 (1979) 121-123.
[3] V. Chvátal. Star-cutsets and perfect graphs. Journal of Combinatorial Theory Series B 39 (1985) 189-199.
[4] S. Dantas, C. M. H. de Figueiredo, S. Gravier and S. Klein. On Hpartition problems. Relatório Técnico COPPE/Engenharia de Sistemas e Computação, ES-579/02, Maio - 2002.
[5] C. M. H. de Figueiredo, S. Klein, Y. Kohayakawa, and B. Reed. Finding skew partitions efficiently. Journal of Algorithms, 37 (2000) 505-521.
[6] T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial Theory Series B 72 (1998) 236-250.
[7] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combinatorica 19 (1999) 487-505.
[8] T. Feder, P. Hell, S. Klein, and R. Motwani. Complexity of graph partition problems. In Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing (1999) 464-472.
[9] H. Fleischner and M. Stiebitz. A solution of a coloring problem of P. Erdős. Discrete Mathematics 101 (1992) 39-48.
[10] P. Hell, S. Klein, L. T. Nogueira, and F. Protti. Partitioning chordal graphs into independent sets and cliques. Discrete Applied Mathematics, to appear.
[11] P. Hell, S. Klein, L. T. Nogueira, and F. Protti. Independent K_{r} 's in chordal graphs. In Proceedings of CLAIO'2002 - XI Latin-Iberian American Congress of Operations Research, to appear.
[12] C. Hoàng, K. Cameron, E. Eschen, and R. Sritharan List partitions. In Perfect Graph Conjecture workshop, P. Seymour and R. Thomas, organizers, http://www.aimath.org/ARCC/workshops/perfectgraph.html, American Institute of Mathematics, 2002.
[13] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas. Strong Perfect Graph Theorem. In Perfect Graph Conjecture workshop, P. Seymour and R. Thomas, organizers, http://www.aimath.org/ARCC/workshops/perfectgraph.html, American Institute of Mathematics, 2002.

[^0]: *This research was partially supported by CNPq, MCT/FINEP PRONEX Project 107/97, CAPES (Brazil)/COFECUB (France), project number 213/97, FAPERJ.
 ${ }^{\dagger}$ COPPE, Universidade Federal do Rio de Janeiro, Brazil.
 ${ }^{\ddagger}$ Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Brazil.
 §CNRS, Laboratoire Leibniz, France.

