Extended Skew Partition Problem™*

Simone Dantas' Celina M. H. de Figueiredo?
Sylvain Gravier Sulamita Klein*

Abstract

A skew partition as defined by Chvatal is a partition of the vertex set
of a graph into four nonempty parts A, As, B1, Bs such that there are all
possible edges between A; and Ao, and no edges between B; and Bs. We
introduce the concept of (n1,ng)-extended skew partition which includes all
partitioning problems into n; + ng nonempty parts A;,..., A,,, B1,..., By,
such that there are all possible edges between the A; parts, no edges be-
tween the Bj parts, i € {1,...,n1},j € {1,...,n2}, which generalizes the
skew partition. We present a polynomial-time algorithm for testing whether
a graph admits an (n1,ng)-extended skew partition. As a tool to complete
this task we also develop a generalized 2-SAT algorithm, which by itself may
have application to other partition problems.

Keywords : Algorithms and data structures, Computational and structural
complexity, Skew partition, 2-SAT

1 Introduction

A skew partition is a partition of the vertex set of a graph into four nonempty
parts Ay,As,B1,Bs such that there are all possible edges between A; and
Ay, and no edges between By and By. A skew partition was defined by

*This research was partially supported by CNPq, MCT/FINEP PRONEX Project 107/97,
CAPES (Brazil)/COFECUB (France), project number 213/97, FAPERJ.

fCOPPE, Universidade Federal do Rio de Janeiro, Brazil.

Hnstituto de Matematica and COPPE, Universidade Federal do Rio de Janeiro, Brazil.

SCNRS, Laboratoire Leibniz, France.

Chvétal [3] in the context of perfect graphs and it has a key role in the
recent celebrated proof of the Strong Perfect Graph Conjecture by Seymour
et al. [13]. De Figueiredo et al. [5] presented a polynomial-time algorithm for
testing whether a graph admits a skew partition. In this paper we introduce
the concept of extended skew partition, which generalizes the skew partition.

An (ny,ng)-extended skew partition is a partition of the vertex set of a
graph into n; + ng nonempty parts A;,..., A, , Bi,..., By, such that there
are all possible edges between the A; parts, no edges between the B; parts,
ie{l,...,ni},j €{1,...,na}.

An extended skew partition can be viewed also as a special M-partition
problem. The M-partition problem was defined by Feder et al. [8] as a
partition of the vertex set of a graph into k parts Xi, Xo,..., X with a
fixed “pattern” of requirements as to which X; are independent or complete
and which pairs X;, X; are completely nonadjacent or completely adjacent.
These requirements may be conveniently encoded by a symmetric & x k
matrix M in which the diagonal entry M, ; is 0 if X; is required to be inde-
pendent, 2 if X; is required to be a clique, and 1 otherwise (no restriction).
Similarly, the off-diagonal entry M; ; is 0, 1, or 2, if X; and X; are required
to be completely nonadjacent, have arbitrary connections, or are required to
be completely adjacent, respectively.

In our case, an (n1,ng)-extended skew partition is an M-partition with
the additional constraint that all parts must be nonempty, and M is the
following (n1 +ng) x (n1 +ng2) matrix: M; ; =2,if 1 <i#j <ny; M;; =0,
if i # j > n1; and M, ; = 1 otherwise.

The most convenient way to express these additional constraints is to
allow specifying (as part of the input) for each vertex a “list” of parts in
which the vertex is allowed to be. Specifically, the list-M -partition problem
asks for an M-partition of the input graph in which each vertex is placed
in a part which is in its list. Both the basic M-partition problem (“Does
the input graph admit an M-partition?”) and the problem of existence of
an M-partition with all parts nonempty admit polynomial-time reductions
to the list-M-partition problem, as do all of the above problems with the
“additional” constraints. List partitions generalize list-colorings, which have
proved very fruitful in the study of graph colorings [1, 9]. They also general-
ize list-homomorphisms, which were studied earlier [6, 7]. Feder et al. [8] were
the first to introduce and investigate the list version of these problems. List
partition problems have attracted much attention lately [8, 10, 11, 12, 13].

Our algorithm follows closely the algorithm for finding skew partition
given in [5]. In order to describe a more general algorithm for finding an

extended skew partition we generalize the procedures described in [5]. A key
element of our algorithm is a simple but non obvious way of developping of
what we call generalized 2-SAT procedure. We believe that this procedure
may be of broader use to other partition problems.

2 Overview

The goal of this paper is to present a polynomial-time algorithm for the
following decision problem:

(n1,n2)-Extended Skew Partition Problem
Input: a graph G = (V, E).

Question: Does G admit as extended skew partition Ay, ..., A,,, Bi, ...,
B,,?
For each vertex v, we associate a subset L, of {4y, ..., An,, B1, ...,

By, } which we call list. We actually consider extended list skew partition
(ELSP) problems, stated as decision problems as follows:

(n1,n2)-Extended List Skew Partition Problem

Input: a graph G = (V, E) and, for each vertex v € V', a list L, C {Aq, ...,
Ap,, B1, ..., Bn,}.

Question: Is there an extended skew partition Ay, ..., An,, Bi, ..., Bp, of
G such that each v is contained in some element of the corresponding L,?

Throughout the algorithm, we have a partition of V' into at most
2m+n2 1 gets S, indexed by the nonempty subsets L of {4y, ..., An,,
By, ..., By,}, such that Property 1 below is always satisfied.

Property 1 If the algorithm returns an extended skew partition, then if v
is in S, then the returned extended skew partition set containing v is in L.

The relevant inputs for ELSP have Sy4; and Sp; nonempty, i € {1,...,m1},
j € {1,...,n2}. We refer to the unitary lists as trivial lists. Initially, we
set S, = {v: L, = L}, for each L C {A;,...,A4,,,B1,...,Bp,}. We de-
note the list A = {41, Aa,..., Ap, }, the list B={B1, Ba,...,Bp,}, and the
list AB = {A;1,As,...,An,,B1,Ba,...,By,}. Thus initially the vertex set
is partitioned into n1 + no sets corresponding to the trivial lists, plus a set
corresponding to list AB.

We also restrict our attention to ELSP instances that satisfy the following
property:

Property 2 Ifv € St, for some L with A; € L, then v is adjacent to every
vertex of Sa,, for all Ay, € A\ A;. Ifv € Sp, for some L with B; € L, then
v is nonadjacent to every vertex of Sg,, for all By € B\ Bj.

Both Properties 1 and 2 hold throughout the algorithm. The algorithm
proceeds by reducing the size of nontrivial lists. An extended skew partition
returned by the algorithm is a set of n trivial lists. The following remark
characterizes the set of possible lists throughout the algorithm.

Remark 1 By Property 1, every list L, satisfies
o IfL,NA#0D, then LyNA={Ax} or Ly,N A=A, and
o IfL,NB#0, then Ly,NB={By} or L,NB=B.

For, if A; & Ly, then there exists Ay, € A\ A; such that v is non-adjacent to
w € Ay, which implies that Aj ¢ Ly, for all j # k, i.e., if L, N A # 0, then
L,NnA={A}.

So, the set of possible lists is the following: nji + no trivial lists Ay, Ao,
oo Apy, Bi, Bo, ..., By,; ning lists of type A;Bj; the list A; the list B; nq
lists of type A;B; no lists of type BjA; the list AB.

Remark 2 Since S, must be contained in A;, we know that if v is to be
in Aj for some solution to the problem, then v must be adjacent to all vertices
of Sa,- Thus if some v € Sy, is not adjacent to a vertex of Sa,, then there
is no solution to the problem and we need not continue. If there is some L
with A; properly contained in L and a vertex v in Sy, which is not adjacent
to a vertex of Sa,, then we know that in any solution to the problem v must
be contained in some element of L'\ Aj. So we can reduce to a new problem
where we replace St by Sp,\v, we replace Siaa; by Spya, +v and all other S,
are as before. Such a reduction reduces Y ; |Sp||L| by 1. Since this sum is at
most (n1 + n2)n, where n denotes the number of vertices in the input graph
G, after O(n) similar reductions we must obtain an ELSP problem satisfying
Property 2 (or halt because the original problem has no solution).

Along the algorithm, we often create new ELSP instances and whenever
we do so, we always perform the procedure described in Remark 2 to reduce
to an ELSP problem satisfying Property 2. For an instance I of ELSP we
have {Sp(I) : L C {Ay,...,An,, B1,..., By, }, but we drop the (I) when it
is not needed for clarity.

We consider a number of restricted versions of the ELSP problems:

4

o AB-TRIV-ELSP: an ELSP problem satisfying Property 2 such that
Sap = 0;

¢ GEN-MAX-2-ELSP: an ELSP problem satisfying Property 2 such that
if |[L| >2and L # A and L # B, then Sy, = (;

o A,B,-TRSV-ELSP: an ELSP problem satisfying Property 2 such that
AyBy, is a list transversal for indices ¢ € {1,...,n1}, p € {1,...,na},
i.e., alist Ly that intersects all lists of size at least 2, and such that L is
trivial or nontrivial having no restrictions between the parts contained

i Lp.
Remark 3 Recall that the relevant inputs for ELSP have Sa,, ..., Sa,,,
SBys -+ SB,, nonempty. It is easy to obtain a solution to an instance of

AyBp-TRSV-ELSP as follows:

Ai=Sa, i#q¢A = |J SuBy = |J SuiBj=Sp,, j#0p
A4€L,BpgL ByeL

By Property 2 this is indeed an extended skew partition.

Our algorithm for solving ELSP requires four subalgorithms which re-
place an instance of ELSP by a polynomial number of instances of more
restricted versions of ELSP. Algorithms 1, 2, 3 and 4 replace an instance
of ELSP by a polynomial number of instances of GEN-MAX-2-ELSP or
AyBy — TRSV — ELSP which are solved by Algorithm 5 and 6, respec-
tively.

Algorithm 1 Takes an instance of ELSP and returns in polynomial time a
list L of a polynomial number of instances of AB-TRIV-ELSP such that

(i) a solution to any problem in L is a solution of the original problem, and
(ii) if none of the problems in L have a solution, then the original problem

has no solution.

Algorithm 2 Takes an instance of AB-TRIV-ELSP and returns in polyno-
mial time a list L of a polynomial number of instances of AB-TRIV-ELSP
such that

(i) and (ii) of Algorithm 1 hold, and

(iii) for each problem in L, there exists p € {1,...,n2}, such that Sp, 4 =
0, for all j # p.

Algorithm 3 Takes an instance of AB-TRIV-ELSP and returns in poly-
nomial time a list £ of a polynomial number of instances of AB-TRIV-ELSP
such that

(i) and (ii) of Algorithm 1 hold, and

(iii) for each problem in L, there exists ¢ € {1,...,n1}, such that Sa,5 =0,
for all i # q.

Algorithm 4 Takes an instance of AB-TRIV-ELSP such that
(a) there exists p € {1,...,n2}, such that Sp,a =0, for all j # p, and
(b) there exists ¢ € {1,...,n1}, such that Sa,p =0, for all i # q.

and returns in polynomial time a list L of a polynomial number of problems
each of which is an instance of one of GEN-MAX-2-ELSP or A,B,-TRSV-
ELSP such that (i) and (i1) of Algorithm 1 hold.

Algorithm 5 (generalized 2-SAT) Takes an instance of GEN-MAX-2-
ELSP and returns either

(i) a solution to this instance of GEN-MAX-2-ELSP, or

(ii) the information that this problem instance has no solution.

Algorithm 6 Takes an instance of AyB,-TRSV-ELSP returns a solution
using the partition discussed in Remark 3.

To solve an instance of ELSP, we first apply Algorithm 1 to obtain a
list £1 of instances of AB-TRIV-ELSP. For each problem instance I on Ly,
we apply Algorithm 2 and let £; be the output list of problem I. We let Lo
be the concatenation of the lists {£; : I € L£;}. For each I in Lo, we
apply Algorithm 3. Let L3 be the concatenation of the lists {L; : I € Lo}.
For each problem instance I on L3, we apply Algorithm 4. Let £4 be the
concatenation of the lists {L; : I € L3}. Each element of £4 can be solved
in polynomial time using either Algorithm 5 or Algorithm 6. If any of these
problems has a solution S, then by the specifications of the algorithms, S is
a solution to the original problem. Otherwise, by the specifications of the
algorithms, there is no solution to the original problem. Clearly, the whole
algorithm runs in polynomial time.

3 Some Recursive Procedures

Algorithm 1 recursively applies Procedure 1, which runs in polynomial time.

Procedure 1 Input: An instance I of ELSP.
Output: ny + ng instances Iy, ..., I, +n, of ELSP such that, for 1 <t <
ni + ng, we have [Sag(ly)| < %[Sas(I)|.

It is easy to prove inductively that applying Procedure 1 recursively yields
a polynomial-time implementation of Algorithm 1 which when applied to an
input graph with n vertices creates as output a list £ of instances of ELSP

1 1 +
such that [£] < (ny + ng) - nog%o(m "),

Algorithm 2 recursively applies Procedure 2, which runs in polynomial
time.

Procedure 2 Input: An instance I of AB-TRIV-ELSP.
Output: ny + na instances I, ..., In,+n, of AB-TRIV-ELSP such that, for
all 1 <t <y + na, we have |Sp, A(1)||SB,a(11)] < 151SB,4(D[SBa(1)].

Algorithm 2 recursively applies O(n3) procedures whose definitions are
similar to Procedure 2 and consider all possible values of pairs B; A , BjA,
with j # 1, 7,1 € {1,...,n2}. It is easy to see that recursively applying
Procedure 2 or one of its variants, as appropriate, yields a polynomial- time

implementation of Algorithm 2 which when applied to an input graph with
(n2 log% (n1+n2))

n vertices creates an output list £ with O
Algorithm 3 recursively applies Procedure 3, which runs in polynomial
time.

Procedure 3 Input: An instance I of AB-TRIV-ELSP.
Output: ny + ng instances I, ..., In,+n, of AB-TRIV-ELSP such that, for
all 1 <t < ny+ na, we have |Sa,5(11)||Sa,8(1t)] < %|SA13(I)||SA23(I)|.

Algorithm 3 recursively applies O(n3) procedures whose definitions are
similar to Procedure 3 and consider all possible values of pairs A;B , A;B,
with j # 1, 5,1 € {1,...,n1}. It is easy to see that recursively applying
Procedure 3 or one of its variants, as appropriate, yields a polynomial- time

implementation of Algorithm 3 which when applied to an input graph with

. . . 21 +
n vertices creates an output list £ with O(n *83p(m nz)).

Algorithm 4 recursively applies Procedure 4, which runs in polynomial
time.

Procedure 4 Input: An instance I of AB-TRIV-ELSP such that

e there erists p € {1,...,n2}, such that Sp, 4 = 0, for all j # p, and

e there exists g € {1,...,n1}, such that Sa,g =0, for all i # q.
Output: ny+ng instances I, ..., In,+n, of AB-TRIV-ELSP such that, there
exists j' # p, for all 1 <t < ny + ng, satisfying 1SB,A(I)[|Sa; 8, (It)] <
1615B,4(D|I1Sa;5, (I)]-

Procedure 4 has n; x (ny — 1) variants corresponding to the lists Bp.A
and A;Bj, with 1 <i <nq,and j # p, 1 < j < ng, and (n1 —1) x ny variants
corresponding to the lists A,B and A;Bj, with 1 < j < no,and i # ¢, 1 <
i < njp. Algorithm 4 recursively applies these O(n; X (n2 — 1)+ (n1 —1) X ng)
procedures.

It is easy to see that recursively applying Procedure 4 or one of its vari-
ants, as appropriate, yields a polynomial- time implementation of Algorithm
4 which when applied to an input graph with n vertices creates an output

1
list £ with O(n” 24 ""2)y

The four procedures above are based on those methods applied by de Figueiredo,
Klein, Kohayakawa and Reed [5] with appropriate modifications.

4 The Details of the recursive procedures

Procedure 1

Let n = |Sap(I)|. For an extended skew partition { Ay, ..., An,, B1,..., Bn, },
let Aj = A; N Sap(l) and B; = B; N Sap(I) for all i = 1,...,n; and
j: 1,...,712.

Case 1: There exists a vertex v in Syp such that & < [SapNN(v)| <

on 0
10°

Branch according to whether v € Ay, ..., v € A,,,v € By,...,or v € By,
with instances I4,,...,1a,, 1B, .-, IB,,, respectively. For alli =1,...,nq,

define 14, by initially setting Sa,(/4,) = v+ S4,(I) and reducing so that
Property 2 holds. Define Ip,,...,Ip,, similarly. Note that by Property 2,
if v € B;, then B; N N(v) = 0 for all j # i. So, Sas(Ip,) C Sas(I)\ N(v).
Because there are at least {f vertices in S45N N (v), this means [S45(Ip;)| <
% foralli=1,...,no.

Similarly, by Property 2, Sag(1a,) C Sag(I) NN (v), so [Sap(Ia,)| < 32 for
alli=1,...,n1. m

Let W = {v € Sag : |Sap N N(v)| > %} and X = {v € Syup: |Sap N
N(v)| < 1"—0}

Case 2: |[W|> { and |X| > &
Branch accordlng to :

(i) I :|A}l> 15,0

() Io: |Uin A, r >

(iii) I3 : |By| > 15, 0

(iv) I4:|Uia B£| > 15

10, or

Each of these choices forces either all the vertices in W or all the vertices in
X to have smaller label sets, as follows.

If |A}] > {5, then every vertex in A} Vj # 1 has 1y neighbours in Sa(1),
so AL N X =0 for all j # 1.

If | Uiz Aj| > {5 then every vertex in A} has {j neighbours in S4s(I), so
AiNnX=0.

Thus, forj = 1,2 we have Syp(I;) = Sap(l) \ X, and \SAB(L) < %

If [Bi| > {4 then every vertex in Bj; Vj # 1 has at least {j non-neighbours
in Sa(I) Hence W N B; =0 for allj # 1.

If | Uiz1 Bj| > {5 then every vertex in Bj has at least {5 non-neighbours in
Sap(I). Hence WﬂBl 0.

Hence, for j = 3,4 we have S5(I;) = Sag(I)\W, and so [Sap(l;)| < 32. =

Case 3: [IW| > 2

In [5], the authors proved that there exists 3 subsets O, T and NT of W
satisfying :

e There are all edges between O and T}

e For every w in NT, there exists v in O such that w is not adjacent to
v;

e The complement of O is connected.

And such that :

(i) [O] +|NT| > {5 and |T| > {; or
(i) NT = 0.
In case (i), we consider the following intances :

(b1) I : BiNO #0,or ...

(bny) Iny : BnyNO #0, (Uizn, B;) NO =10, or
(a1) Iny41: O C A or...

(any) Ingtn, : O C Ay,

Recall that the complement of O is connected, which implies that if ONB = 0,
then O C A; for some i € {1,...,n1}.

If O C A; for some 4, then NT'NA; = () for all j # i since for every w € NT
there is a vertex v € O such that vw ¢ E.

Thus, (O UNT) N Sag(Inyti) = 0. Hence [Sap(Iny+i)| < o for all i =
1, NN A

If B;NO # 0 for some 4, then (Ujx;B;) NT = 0.

Thus, T N S4p(1;) = 0, which implies [Sap(L;)| < 32 for all i = 1,...,no.
Hence if (i) holds then we have found n; + ny desired output instances of
ELSP. Otherwise O, T and NT satisfy (ii). In this case, the authors in [5]
proved that there exist two subsets Y and Z of W such that :

e There are all edges between Y and Z;
° |Y| > 1%;
o |Z] > 3.

Now, we consider the instances :

(b1) : BiNZ #40, ...

(bn,) Iny: BpyNZ #0,

(bny+1) Iny+1: (UB;)NZ =10.

Since there are all edges between Y and Z, for every j < nq, Sap(lj)

Sag(I)\Y and Sag(In,+1) € Sag(L)\Z. Thus for all j, we have |Sap(;)|

In
10 |

IA 1IN

Note that the case |X| > 9% is symmetric to Case 3 (consider G) and is
omitted. m

10

Procedure 2

Let S1 = SBJ.A(I) and and Sy = Sp,a(I). Let s; = |Si1|, s2 = [S2]. Given
v e S USy, let di(v) = |N(v) NS, i =1,2.

Case 1: There exists a vertex v € Sy with s5/10 < da(v) < 9s2/10.

This case is analogous to Case 1 of Procedure 1: we create n; + 1 new
instances Ip;, I4,, ..., Ap, according to whether v € Bj, or v € Ay or ... or
vEA,.

Thus Sap,({a,) € S2 N N(v) and hence |Sap,({a,)

| < for all k. And
Sap,(I;) € S, \ (S2 N N(v)) and hence |Sap,(I5,)| <9

9Ino

610
2

0 - |

The case “there exists a vertex v € Sy Wlth 5 < dy(v) < —90 7 symmetric

to Case 1 is ommited.

932

Case 2: Every vertex v in S satisfies dy(v) < {2 or dy(v) > 5. Every

. . 9
vertex v in Sy satisfies dy(v) < {% or di(v) > S

Define four auxiliary sets, as follows:

52

0
S1

TO}’
982
2

107"
Wy = {U6522d1(0)>7}

X, = {’UGSltdg(v)<
Xo = {veSy:di(v) <

W, = {UGSltdg(v)>

981

Note that Case 2 means that S;1 = X7 UW; and S = Xo U W5, We
handle Case 2 according to the following possibilities.

Case 2.1: | Xy, [Wy] > $&

This case is analogous to Case 2 of Procedure 1. We create ny + 1 new
instances of ELSP according to the size of skew partition sets, as follows:

((ll) Il |Alm52| >]_07
(any) Iny: [Ap, N S2| > 3 167 0
(bl) In1+1: ’Bl n SQ| > 3 T

11

If |A; N Sa| > {3 for some i, then as every vertex in Ay (k # i) is adjacent

to every vertex of A;, Ay N Xy = 0 for all k # i. Thus Sap;(I;) < 9%01.

Similarly, Sap; (In,+1) W1 = (. So, for all nq + 1 output instances, we have

|SaB;| < 91%1, as required. W

The case “otherwise |Xs|, |[Wa| > {27, symmetric to Case 2.1, is omitted.

Case 2.2: |X;| > %L

In [5], the authors proved that there exists three sets O, M, and NM such
that:

e OC Xy, So=MUNDM;
e There are no edges between O and M;
e For every u € NM, there is a w € O with wu € E;
And for which either :
(i) [M]<%;or
(ii) |O] > 2.
If condition (ii) holds, ie., |O] > 2% and [M| > £, then define two new
instances of ELSP as follows:
(a) I : ONA; =0,
(b) I : ONA; #0.
Clearly, Sap,(I1) € 51\ O, so [Sap,(I1)| < %L, Further, if ON Ay # () then

MNB; =0,s0 |Sap,(I2)] < 91%

If condition (i) holds, i.e., [M| < %, then the authors in [5] proved that we

may assume that %2 < |M| and [INM| > %. We define n; + 1 new ELSP
instances:

(a1) L : ONAyL #0,or ...

(any) In, : ON Ay #0,0r

(an,41) Inyj+1: O C B;.

If ONA; # () for some 4, then Ay C (So\ M) for all k # ¢, so [Sap, ()] < 9%02.
Finally, if O C B; then NM N By =0 so |SaB,(In;41)] < %. =

Note that the case “otherwise |Xa| > 9s2/10”, symmetric to Case 2.2, is
omitted.

12

Case 2.3: [Wi| > 21 and [W,| > %2.

Let W = W; UW,. In [5], the authors proved that there is a partition of W
into three sets O, T and NT such that:

e The complement of O is connected;
e There are all edges between O and T}
e For every w € NT, there exists u € O such that uw ¢ E.

and with the property that :

(i) ONSi|+|NT NSy >4
(ii) NT = 0.

15, 0r [ON S|+ |NT N S| > 3350

If condition (i) holds, say w.l.o.g. that \OﬂSl| +[INT NSt > {§. In [5], the
authors shown that |O N Sp| + |NTﬁ Sl < Z, 10N S2| +]NTO Syl < 2
and on the other hand, |T'N S1| > {§, and |T ﬂ So| > 3

Recall that the complement of O is connected, Which implies that if O N
(B; U B;) = 0, then there exists an ¢ € {1,...,n1} such that O C A;. So we
consider the following ny + 2 ELSP instances:

(a1) Ii: B;nO # 0,

(a2) Ir: BINO #10,

(a3) Iy: O C Ay, ...

(an,+2) In,42: O C Ay,

If BjNO # 0, then (T'NS3) N By =0, so [Sap, (L) < %2 If BNO # 0,

then (T'N S1) N Bj =0, and analogously |Sap; (I2)] < 951
If O C A; for some i, then (NT N Sy) N A = 0 for every k # i. Thus,

S, (Io+i)| < T3

If condition (ii) holds, i.e., NT 0 and both [ONS1|+|NT N S| < {§, and
|ON S|+ |NT NSy < 2. In this case, the authors in [5] proved that we
can find two subsets Y and Z of O with all edges between them and such
that |Z| > {§ and |Y| > {2. Observe that since there are all edges between
Y and Z then either B; ﬁZ Oor BNY = 0.

We now define three new instances of ELSP according to the intersection of
skew partition sets C' or D with Z, as follows:

(a) Ir: BjﬂZ?é@,

13

(b) Ir: BNZ # (Z),
(c) In: ZC A

If B;NZ # 0, then B;NY = (. Thus, (Y NS2) C A, which implies
|Sap, (1] < 53

If BN Z # 0, then an argument symmetric to B; N Z # () shows that
1Sas, (I2)] < %L

Otherwise, Z C A, which implies |S4p;(I3)] < 91%. |

This ends the description of Procedure 2. =

Procedure 3 is a mirror image of Procedure 2 and is omitted.

Procedure 4

We will give the details of the procedure constructing the 2 instances I, Io
such that [Sp a(1})[|Sa,B,(It)] < %|SBPA(I)||SAaBb(I)] with b # p. The
other 2 instances I3, I, are obtained similarly.

Let Sap, = S1 with |Sap,| = s1, and Sa,p, = S2 with [S4,p,| = s2 and
b# p. Given v € 51U Sy, let d;i(v) = |[N(v)NS;|, i =1, 2.

Case 1: There exists a vertex v € Sy with T <d (v) < 9%01.

This case is analogous to Case 1 of Procedure 1. Define two new instances
of ELSP, as follows:

(a) I1: ve A,

(b) Iy: v € By.

If v € A,, then every vertex of S that is nonadjacent to v cannot be placed
in By, so [Sag, (I1)] < %L

If v € By, then every vertex of S that is adjacent to v cannot be placed in

By. So |Sap,(I2)| < %, as required. m

Case 2: Every vertex v € S5 has either di(v) < 5 or d(v) > 9.

Let W ={v € Sy: |N(v) N S| > 91%1}. We handle Case 2 according to the
following two possibilities.

14

Case 2.1: [W|> 2.

Let v € W. In [5], the authors proved that there are three sets O, T', and
NT such that:

e O is contained in W;
e Sy =TUNT;
e There are all edges between O and T}

e For every w in NT', there exists v in O such that v is not adjacent to

w.
satisfying :

(i) 7] < %5 or
(i) 0] = 15

If condition (i) holds, i.e., |T'| < 91501, then |[NT'| > 2L, In addition, they

prove that we may assume that |T| > 881
Consider two new instances of ELSP as follows:

(a) Li: ByNnO #0,
(b) I>: O C A,.

If B,NO # 0, then TNB, = () which implies |Sap,(11)| < 2. Otherwise,
O C A,, and NT N B = (), since for every w € NT there is a vertex v e
such that vw € E. Thus |Syp,(l2)| < 951

Now suppose that condition (ii) holds, ie, |0O] > %2 and |T| > %
Consider two new instances of ELSP, as follows.

(a) Iy: B,NT #0,

(b) Ir: T C A.

If B,NT # 0 then O N By =0, so |Sap,(I1)| < 3.
Clearly, T N Sap,(I2) =0, so [Sap,(I2)| < 981 m
Case 2.2: [S;\ W] > 2.

Let X = So \ W, and v € X. In [5], they show that there exist two sets O,
and M such that:

e OCX, MCSy;

15

e There are no edges between M and O.

with :
(i) [M] < 55 or
(ii) |O] > ‘19—2

If condition (i) holds, i.e., |M| < 951 then the authors in [5] show that
we may assume that |M| > 81501 Then in either case (i) or (ii), we have
S

Deﬁne two new ELSP instances as follows;

(a) I]I z4aﬁO7'é @,
(b) IQZ O C Bb-

If A,NO #0, then M N A; =0 for all i # a. Hence because |M| > 81501,
have [Sap, (I1)| < 231 < 9s1/10.

Otherwise, O C Bb In case (i), |[M| < 9s1/10, which implies |S; \ M| >
51/10, so we have |SAB (I7) < 91501

In case (ii), |O| > {3, which implies |Sa, B, (I2)| < So for either output

instance I; [Sag, (1;)|[Sa,B,(L;)| < 95152 as requ1red |

952

This ends the description of Procedure 4. m

5 Details of Algorithm 5

In this section, we give the details of Algorithm 5 which we call generalized
2-SAT algorithm. This algorithm takes as input an instance of GEN-MAX-
2-ELSP. The lists L present in such an instance are either equal to A or B,
or have size |L| < 2. We prove below that such restrictions are enough for a
solution through an algorithm similar to that of Aspvall et al. [2] for 2-SAT.

Suppose an instance of GEN-MAX-2-ELSP is given, i.e., a graph G =
(V(G), E(G)) and a set of lists L, of the following types, trivial lists: Aj,
Ao, ..., Ap,, B1, Bo, ..., By,; lists of size 2: A;Bj; lists of size greater than
2: the list A and the list B.

Let A;, Ay € Aand B;, B € Bwithi#k, j#1,i,ke{l,...,n} and
gy le{l,...,na}.

We deﬁne next a digraph el ¢t = (Vy,Ey). Each directed edge of Ef
corresponds to a “forcing” defined by the adjacency relation in the original
graph G.

16

The vertex set of ﬁf is the following set Vy = {(u,I) :u € V and I € L,}.

The edge set of el 7 is the following set Ey:

Ifu e A;Bjandv € ApB;: wv ¢ E(G): ((u, 4;), (v, Bj)) and ((v, Ag), (u, Bj)).

Ifu e A;Bjandv € A;B;: wv € E(G): ((u, Byj), (v, 4;)) and ((v, By), (u, 4;)).

Ifue A;Bjandv € ApB;: wv € E(G): ((u, Bj), (v, Ag)) and ((v, By), (u, A;));
uo ¢ E(G): ((u, 43), (v, Bi)) and ((v, Ag), (u, Bj)).

Ifue AjBjand v € A: uwv ¢ E(G): ((u, 4;), (v, 4;)) and ((v,), (u, Bj)),
VIe A\ A;.

Ifue AjBjand v € B: wv € E(G): ((u, Bj), (v, Bj)) and ((v, J), (u, 4;)),
vJ e B \ Bj.

Ifue Aand v € A: wv ¢ E(G): ((u, 4;), (v, 4;)) and ((v, 4;), (u, 4;)),
VA; € A.

If wue Band v € B: wv € E(GQ): ((u,Bj), (v, B;)) and ((v, By), (u, Bj)),
VBJ' € B.

We define a forcing class C(v,I) as the set of “forcings” induced by the
choice of part I for vertex v, i.e., the set of vertices of G ¢ that we can reach
starting from (v, I).

Proposition 3 Let u and v be two vertices of G. If (v,J) € C(u,I) then
for all J" € L, \ {J}, there exists I' € L, \ {I} such that (u,I") € C(v,J’).

Proof. The proof is by induction on the number of edges in a path p from
(u,I) to (v,J). If |p| = 1 then the path consists of a single forcing edge
((u, 1), (v,J)) € Ey, with u,v € V(G), I € Ly, J € L,. We consider the
possibilities for L,, L, that correspond to forcing edges. In every case, the
desired property holds.

Let p be a path, |p| > 1, from (u,I) to (v,J). Let ((y, M), (v,J)) be the
last edge in the path p. If we have the edge ((y, M), (v, J)) then, for all
J' € Ly \ J, there exists an M’ € L, \ M such that ((v,J’), (y, M")) € Ey.
Since (y, M) is in the path p before (v, J), by induction, for all M" € L,\ M,
there exists a I” € L, \ I such that (u,I"”) € C(y, M"). In particular for M’,
there exists I’ € L, \ I such that (u,I") € C(y, M").

Now, (y,M') € C(v,J") and (u,I') € C(y, M') imply the existence of I’ €
I\ L, such that (u,I') € C(v,J"), for all J' € L, \ J, as required. =

We say that the graph G 7 admits an Obstruction if there exists a vertex
u € V(G) such that for all I € L,, there is a I' € L, \ I such that (u,I’) €
C(u, I). We can decide in polynomial time whether G £ admits an obstrution
by computing the strong connected components of the digraph el i

17

Proposition 4 The digraph E’}f admits an obstruction, if and only if the
corresponding instance of GEN-MAX-2-ELSP has no solution.

Proof. The definition of obstruction immediately implies that the corre-
sponding instance of GEN-MAX-2-ELSP has no solution.

Suppose the digraph G ¢ admits no obstruction. So, by hypothesis, every
vertex u € V(G), has a safe part F, € L, such that (u,I) ¢ C(u, F,), for all
IeL,\F,.

Define a solution for the corresponding instance of GEN-MAX-2-ELSP as
follows. Choose an arbitrary vertex u € V(G) and place u in its safe part
F,. Note that, if x € V(G) is such that (z,K) € C(u, F,), then (z,K') ¢
C(u, Fy), for all K' € L, \ K, as otherwise by Proposition 3 we have a
contradiction to our hypothesis. Thus, we may place accordingly = in part
K, for all (z,K) € C(u, F,).

While there exists w € V(G) not placed, repeat the above rule by placing
w in a safe part F,, and by placing accordingly all vertices y such that
(v, T) € Clw, F).

Suppose there exists x € V(G) such that (z,K) € C(u, F,) and (z,K') €
C(w, F,). Then Proposition 3 implies the existence of K" € L,, \ F,, such
that (w, K"”) € C(x,K) and hence (w, K") € C(u, F,), which contradicts
that w was not placed by placement of vertex u. m

6 Conclusion

It is evident to the authors that the techniques we have developed will apply
to large classes of list-M-partition problems. For instance, we have studied
the concept of H-partition which includes all vertex partitioning problems
into nonempty parts with only external restrictions according to the struc-
ture of a model graph H. In the present paper, we presented an algorithm
for the case where H contains nq + no vertices such that ny vertices induce a
clique and ns vertices induce a stable set. All cases when H has four vertices
are studied in [4].

We would like also to make some observations about the status of n; and
ng. Our algorithm depends on the values of n; and no. If a graph admits an
(n1,n2)-extended skew partition, then it admits an (nf, n})-extended skew
partition, for any pair n}, nf satisfying n} < nq, nf, < ng. This monotonicity
property suggests the following combinatorial optimization problem : Find
the largest values of n; and ng such that a graph G admits an (ng,n2)-
extended skew partition, which stated as a decision problem gives:

18

Mazimum Skew Partition Problem
Input: a graph G = (V, E), and integers ni, no.
Question: Is there a (k,l)-extended skew partition with k& > ny, [> ng?

We conjecture that this problem is NP-complete and we propose the

study of its complexity status as an open problem.

We believe that studying the (n1,n2)-extended skew partition problem

contributes to a better understanding of the techniques that were used
to solve both problems: skew partition and (nj,ng)-extended skew parti-
tion, and that soon it will be possible to reduce the high complexity of the
polynomial-time algorithms known to solve both problems.

References

1]

2]

N. Alon and M. Tarsi. Colorings and orientations of graphs. Combina-
torica 12 (1992) 125-134.

B. Aspvall, F. Plass and R.E. Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Infor. Process. Lett. 8
(1979) 121-123.

V. Chvétal. Star-cutsets and perfect graphs. Journal of Combinatorial
Theory Series B 39 (1985) 189-199.

S. Dantas, C. M. H. de Figueiredo, S. Gravier and S. Klein. On H-
partition problems. Relatério Técnico COPPE /Engenharia de Sistemas
e Computagcao, ES-579/02, Maio - 2002.

C. M. H. de Figueiredo, S. Klein, Y. Kohayakawa, and B. Reed. Finding
skew partitions efficiently. Journal of Algorithms, 37 (2000) 505-521.
T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal
of Combinatorial Theory Series B T2 (1998) 236-250.

T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc
graphs. Combinatorica 19 (1999) 487-505.

T. Feder, P. Hell, S. Klein, and R. Motwani. Complexity of graph
partition problems. In Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing (1999) 464-472.

H. Fleischner and M. Stiebitz. A solution of a coloring problem of
P. Erd6s. Discrete Mathematics 101 (1992) 39-48.

P. Hell, S. Klein, L. T. Nogueira, and F. Protti. Partitioning chordal
graphs into independent sets and cliques. Discrete Applied Mathematics,
to appear.

19

[11]

[12]

P. Hell, S. Klein, L. T. Nogueira, and F. Protti. Independent K,’s
in chordal graphs. In Proceedings of CLAIO’2002 - XI Latin-Iberian
American Congress of Operations Research, to appear.

C. Hoang, K. Cameron, E. Eschen, and R. Sritharan List partitions. In
Perfect Graph Conjecture workshop, P. Seymour and R. Thomas, orga-
nizers, http://www.aimath.org/ARCC/workshops/perfectgraph.html,
American Institute of Mathematics, 2002.

M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas.
Strong Perfect Graph Theorem. In Perfect Graph Conjec-
ture workshop, P. Seymour and R. Thomas, organizers,
http://www.aimath.org/ARCC/workshops/perfectgraph.html, Ameri-
can Institute of Mathematics, 2002.

20

