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Abstract

A skew partition as defined by Chvátal is a partition of the vertex set
of a graph into four nonempty parts A1, A2, B1, B2 such that there are all
possible edges between A1 and A2, and no edges between B1 and B2. We
introduce the concept of (n1, n2)-extended skew partition which includes all
partitioning problems into n1 + n2 nonempty parts A1, . . . , An1 , B1, . . . , Bn2

such that there are all possible edges between the Ai parts, no edges be-
tween the Bj parts, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, which generalizes the
skew partition. We present a polynomial-time algorithm for testing whether
a graph admits an (n1, n2)-extended skew partition. As a tool to complete
this task we also develop a generalized 2-SAT algorithm, which by itself may
have application to other partition problems.

Keywords : Algorithms and data structures, Computational and structural
complexity, Skew partition, 2-SAT

1 Introduction

A skew partition is a partition of the vertex set of a graph into four nonempty
parts A1,A2,B1,B2 such that there are all possible edges between A1 and
A2, and no edges between B1 and B2. A skew partition was defined by

∗This research was partially supported by CNPq, MCT/FINEP PRONEX Project 107/97,
CAPES (Brazil)/COFECUB (France), project number 213/97, FAPERJ.

†COPPE, Universidade Federal do Rio de Janeiro, Brazil.
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Chvátal [3] in the context of perfect graphs and it has a key role in the
recent celebrated proof of the Strong Perfect Graph Conjecture by Seymour
et al. [13]. De Figueiredo et al. [5] presented a polynomial-time algorithm for
testing whether a graph admits a skew partition. In this paper we introduce
the concept of extended skew partition, which generalizes the skew partition.

An (n1, n2)-extended skew partition is a partition of the vertex set of a
graph into n1 + n2 nonempty parts A1, . . . , An1 , B1, . . . , Bn2 such that there
are all possible edges between the Ai parts, no edges between the Bj parts,
i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}.

An extended skew partition can be viewed also as a special M -partition
problem. The M -partition problem was defined by Feder et al. [8] as a
partition of the vertex set of a graph into k parts X1, X2, . . . , Xk with a
fixed “pattern” of requirements as to which Xi are independent or complete
and which pairs Xi, Xj are completely nonadjacent or completely adjacent.
These requirements may be conveniently encoded by a symmetric k × k
matrix M in which the diagonal entry Mi,i is 0 if Xi is required to be inde-
pendent, 2 if Xi is required to be a clique, and 1 otherwise (no restriction).
Similarly, the off-diagonal entry Mi,j is 0, 1, or 2, if Xi and Xj are required
to be completely nonadjacent, have arbitrary connections, or are required to
be completely adjacent, respectively.

In our case, an (n1, n2)-extended skew partition is an M -partition with
the additional constraint that all parts must be nonempty, and M is the
following (n1 +n2)× (n1 +n2) matrix: Mi,j = 2, if 1 ≤ i 6= j ≤ n1; Mi,j = 0,
if i 6= j > n1; and Mi,j = 1 otherwise.

The most convenient way to express these additional constraints is to
allow specifying (as part of the input) for each vertex a “list” of parts in
which the vertex is allowed to be. Specifically, the list-M -partition problem
asks for an M -partition of the input graph in which each vertex is placed
in a part which is in its list. Both the basic M -partition problem (“Does
the input graph admit an M -partition?”) and the problem of existence of
an M -partition with all parts nonempty admit polynomial-time reductions
to the list-M -partition problem, as do all of the above problems with the
“additional” constraints. List partitions generalize list-colorings, which have
proved very fruitful in the study of graph colorings [1, 9]. They also general-
ize list-homomorphisms, which were studied earlier [6, 7]. Feder et al. [8] were
the first to introduce and investigate the list version of these problems. List
partition problems have attracted much attention lately [8, 10, 11, 12, 13].

Our algorithm follows closely the algorithm for finding skew partition
given in [5]. In order to describe a more general algorithm for finding an
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extended skew partition we generalize the procedures described in [5]. A key
element of our algorithm is a simple but non obvious way of developping of
what we call generalized 2-SAT procedure. We believe that this procedure
may be of broader use to other partition problems.

2 Overview

The goal of this paper is to present a polynomial-time algorithm for the
following decision problem:

(n1, n2)-Extended Skew Partition Problem
Input: a graph G = (V, E).
Question: Does G admit as extended skew partition A1, . . ., An1 , B1, . . .,
Bn2?

For each vertex v, we associate a subset Lv of {A1, . . ., An1 , B1, . . .,
Bn2} which we call list. We actually consider extended list skew partition
(ELSP) problems, stated as decision problems as follows:

(n1, n2)-Extended List Skew Partition Problem
Input: a graph G = (V,E) and, for each vertex v ∈ V , a list Lv ⊆ {A1, . . .,
An1 , B1, . . ., Bn2}.
Question: Is there an extended skew partition A1, . . ., An1 , B1, . . ., Bn2 of
G such that each v is contained in some element of the corresponding Lv?

Throughout the algorithm, we have a partition of V into at most
2n1+n2 − 1 sets SL, indexed by the nonempty subsets L of {A1, . . ., An1 ,
B1, . . ., Bn2}, such that Property 1 below is always satisfied.

Property 1 If the algorithm returns an extended skew partition, then if v
is in SL, then the returned extended skew partition set containing v is in L.

The relevant inputs for ELSP have SAi and SBj nonempty, i ∈ {1, . . . , n1},
j ∈ {1, . . . , n2}. We refer to the unitary lists as trivial lists. Initially, we
set SL = {v : Lv = L}, for each L ⊆ {A1, . . . , An1 , B1, . . . , Bn2}. We de-
note the list A = {A1, A2, . . . , An1}, the list B = {B1, B2, . . . , Bn2}, and the
list AB = {A1, A2, . . . , An1 , B1, B2, . . . , Bn2}. Thus initially the vertex set
is partitioned into n1 + n2 sets corresponding to the trivial lists, plus a set
corresponding to list AB.

We also restrict our attention to ELSP instances that satisfy the following
property:
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Property 2 If v ∈ SL, for some L with Ai ∈ L, then v is adjacent to every
vertex of SAk

, for all Ak ∈ A \Ai. If v ∈ SL, for some L with Bj ∈ L, then
v is nonadjacent to every vertex of SBl

, for all Bl ∈ B \Bj.

Both Properties 1 and 2 hold throughout the algorithm. The algorithm
proceeds by reducing the size of nontrivial lists. An extended skew partition
returned by the algorithm is a set of n trivial lists. The following remark
characterizes the set of possible lists throughout the algorithm.

Remark 1 By Property 1, every list Lv satisfies

• If Lv ∩ A 6= ∅, then Lv ∩ A = {Ak} or Lv ∩ A = A, and

• If Lv ∩ B 6= ∅, then Lv ∩ B = {Bk} or Lv ∩ B = B.

For, if Ai 6∈ Lv, then there exists Ak ∈ A\Ai such that v is non-adjacent to
w ∈ Ak, which implies that Aj 6∈ Lv, for all j 6= k, i.e., if Lv ∩ A 6= ∅, then
Lv ∩ A = {Ak}.

So, the set of possible lists is the following: n1 + n2 trivial lists A1, A2,
. . ., An1 , B1, B2, . . ., Bn2 ; n1n2 lists of type AiBj ; the list A; the list B; n1

lists of type AiB; n2 lists of type BjA; the list AB.

Remark 2 Since SAl
must be contained in Al, we know that if v is to be

in Aj for some solution to the problem, then v must be adjacent to all vertices
of SAl

. Thus if some v ∈ SAj is not adjacent to a vertex of SAl
, then there

is no solution to the problem and we need not continue. If there is some L
with Aj properly contained in L and a vertex v in SL which is not adjacent
to a vertex of SAl

, then we know that in any solution to the problem v must
be contained in some element of L \Aj. So we can reduce to a new problem
where we replace SL by SL\v, we replace SL\Aj

by SL\Aj
+v and all other SL

are as before. Such a reduction reduces
∑

L |SL||L| by 1. Since this sum is at
most (n1 + n2)n, where n denotes the number of vertices in the input graph
G, after O(n) similar reductions we must obtain an ELSP problem satisfying
Property 2 (or halt because the original problem has no solution).

Along the algorithm, we often create new ELSP instances and whenever
we do so, we always perform the procedure described in Remark 2 to reduce
to an ELSP problem satisfying Property 2. For an instance I of ELSP we
have {SL(I) : L ⊆ {A1, . . . , An1 , B1, . . . , Bn2}, but we drop the (I) when it
is not needed for clarity.

We consider a number of restricted versions of the ELSP problems:
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• AB-TRIV-ELSP: an ELSP problem satisfying Property 2 such that
SAB = ∅;

• GEN-MAX-2-ELSP: an ELSP problem satisfying Property 2 such that
if |L| > 2 and L 6= A and L 6= B, then SL = ∅;

• AqBp-TRSV-ELSP: an ELSP problem satisfying Property 2 such that
AqBp is a list transversal for indices q ∈ {1, . . . , n1}, p ∈ {1, . . . , n2},
i.e., a list LT that intersects all lists of size at least 2, and such that LT is
trivial or nontrivial having no restrictions between the parts contained
in LT .

Remark 3 Recall that the relevant inputs for ELSP have SA1, . . ., SAn1
,

SB1, . . ., SBn2
nonempty. It is easy to obtain a solution to an instance of

AqBp-TRSV-ELSP as follows:

Ai = SAi , i 6= q; Aq =
⋃

Aq∈L,Bp 6∈L

SL;Bp =
⋃

Bp∈L

SL; Bj = SBj , j 6= p.

By Property 2 this is indeed an extended skew partition.

Our algorithm for solving ELSP requires four subalgorithms which re-
place an instance of ELSP by a polynomial number of instances of more
restricted versions of ELSP. Algorithms 1, 2, 3 and 4 replace an instance
of ELSP by a polynomial number of instances of GEN-MAX-2-ELSP or
AqBq − TRSV − ELSP which are solved by Algorithm 5 and 6, respec-
tively.

Algorithm 1 Takes an instance of ELSP and returns in polynomial time a
list L of a polynomial number of instances of AB-TRIV-ELSP such that

(i) a solution to any problem in L is a solution of the original problem, and

(ii) if none of the problems in L have a solution, then the original problem
has no solution.

Algorithm 2 Takes an instance of AB-TRIV-ELSP and returns in polyno-
mial time a list L of a polynomial number of instances of AB-TRIV-ELSP
such that

(i) and (ii) of Algorithm 1 hold, and

(iii) for each problem in L, there exists p ∈ {1, . . . , n2}, such that SBjA =
∅, for all j 6= p.
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Algorithm 3 Takes an instance of AB-TRIV–ELSP and returns in poly-
nomial time a list L of a polynomial number of instances of AB-TRIV-ELSP
such that

(i) and (ii) of Algorithm 1 hold, and

(iii) for each problem in L, there exists q ∈ {1, . . . , n1}, such that SAiB = ∅,
for all i 6= q.

Algorithm 4 Takes an instance of AB-TRIV-ELSP such that

(a) there exists p ∈ {1, . . . , n2}, such that SBjA = ∅, for all j 6= p, and

(b) there exists q ∈ {1, . . . , n1}, such that SAiB = ∅, for all i 6= q.

and returns in polynomial time a list L of a polynomial number of problems
each of which is an instance of one of GEN-MAX-2-ELSP or AqBp-TRSV-
ELSP such that (i) and (ii) of Algorithm 1 hold.

Algorithm 5 (generalized 2-SAT) Takes an instance of GEN-MAX-2-
ELSP and returns either

(i) a solution to this instance of GEN-MAX-2-ELSP, or

(ii) the information that this problem instance has no solution.

Algorithm 6 Takes an instance of AqBp-TRSV-ELSP returns a solution
using the partition discussed in Remark 3.

To solve an instance of ELSP, we first apply Algorithm 1 to obtain a
list L1 of instances of AB-TRIV-ELSP. For each problem instance I on L1,
we apply Algorithm 2 and let LI be the output list of problem I. We let L2

be the concatenation of the lists {LI : I ∈ L1}. For each I in L2, we
apply Algorithm 3. Let L3 be the concatenation of the lists {LI : I ∈ L2}.
For each problem instance I on L3, we apply Algorithm 4. Let L4 be the
concatenation of the lists {LI : I ∈ L3}. Each element of L4 can be solved
in polynomial time using either Algorithm 5 or Algorithm 6. If any of these
problems has a solution S, then by the specifications of the algorithms, S is
a solution to the original problem. Otherwise, by the specifications of the
algorithms, there is no solution to the original problem. Clearly, the whole
algorithm runs in polynomial time.
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3 Some Recursive Procedures

Algorithm 1 recursively applies Procedure 1, which runs in polynomial time.

Procedure 1 Input: An instance I of ELSP.
Output: n1 + n2 instances I1, . . . , In1+n2 of ELSP such that, for 1 ≤ t ≤
n1 + n2, we have |SAB(It)| ≤ 9

10 |SAB(I)|.
It is easy to prove inductively that applying Procedure 1 recursively yields

a polynomial-time implementation of Algorithm 1 which when applied to an
input graph with n vertices creates as output a list L of instances of ELSP

such that |L| ≤ (n1 + n2)
log 10

9
n

= n
log 10

9
(n1+n2)

.

Algorithm 2 recursively applies Procedure 2, which runs in polynomial
time.

Procedure 2 Input: An instance I of AB-TRIV-ELSP.
Output: n1 + n2 instances I1, . . . , In1+n2 of AB-TRIV-ELSP such that, for
all 1 ≤ t ≤ n1 + n2, we have |SB1A(It)||SB2A(It)| ≤ 9

10 |SB1A(I)||SB2A(I)|.
Algorithm 2 recursively applies O(n2

2) procedures whose definitions are
similar to Procedure 2 and consider all possible values of pairs BjA , BlA,
with j 6= l, j, l ∈ {1, . . . , n2}. It is easy to see that recursively applying
Procedure 2 or one of its variants, as appropriate, yields a polynomial- time
implementation of Algorithm 2 which when applied to an input graph with

n vertices creates an output list L with O(n
2 log 10

9
(n1+n2)

).

Algorithm 3 recursively applies Procedure 3, which runs in polynomial
time.

Procedure 3 Input: An instance I of AB-TRIV-ELSP.
Output: n1 + n2 instances I1, . . . , In1+n2 of AB-TRIV-ELSP such that, for
all 1 ≤ t ≤ n1 + n2, we have |SA1B(It)||SA2B(It)| ≤ 9

10 |SA1B(I)||SA2B(I)|.
Algorithm 3 recursively applies O(n2

2) procedures whose definitions are
similar to Procedure 3 and consider all possible values of pairs AjB , AlB,
with j 6= l, j, l ∈ {1, . . . , n1}. It is easy to see that recursively applying
Procedure 3 or one of its variants, as appropriate, yields a polynomial- time
implementation of Algorithm 3 which when applied to an input graph with

n vertices creates an output list L with O(n
2 log 10

9
(n1+n2)

).

Algorithm 4 recursively applies Procedure 4, which runs in polynomial
time.
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Procedure 4 Input: An instance I of AB-TRIV-ELSP such that

• there exists p ∈ {1, . . . , n2}, such that SBjA = ∅, for all j 6= p, and

• there exists q ∈ {1, . . . , n1}, such that SAiB = ∅, for all i 6= q.

Output: n1+n2 instances I1, . . . , In1+n2 of AB-TRIV-ELSP such that, there
exists j′ 6= p, for all 1 ≤ t ≤ n1 + n2, satisfying |SBpA(It)||SAiBj′ (It)| ≤
9
10 |SBpA(I)||SAiBj′ (I)|.

Procedure 4 has n1 × (n2 − 1) variants corresponding to the lists BpA
and AiBj , with 1 ≤ i ≤ n1, and j 6= p, 1 ≤ j ≤ n2, and (n1−1)×n2 variants
corresponding to the lists AqB and AiBj , with 1 ≤ j ≤ n2, and i 6= q, 1 ≤
i ≤ n1. Algorithm 4 recursively applies these O(n1×(n2−1)+(n1−1)×n2)
procedures.

It is easy to see that recursively applying Procedure 4 or one of its vari-
ants, as appropriate, yields a polynomial- time implementation of Algorithm
4 which when applied to an input graph with n vertices creates an output

list L with O(n
2 log 10

9
(n1+n2)

).

The four procedures above are based on those methods applied by de Figueiredo,
Klein, Kohayakawa and Reed [5] with appropriate modifications.

4 The Details of the recursive procedures

Procedure 1

Let n = |SAB(I)|. For an extended skew partition {A1, . . . , An1 , B1, . . . , Bn2},
let A′i = Ai ∩ SAB(I) and B′

j = Bj ∩ SAB(I) for all i = 1, . . . , n1 and
j = 1, . . . , n2.

Case 1: There exists a vertex v in SAB such that n
10
≤ |SAB ∩N(v)| ≤

9n
10

.

Branch according to whether v ∈ A1, . . . , v ∈ An1 , v ∈ B1, . . . , or v ∈ Bn2

with instances IA1 , . . . , IAn1
, IB1 , . . . , IBn2

, respectively. For all i = 1, . . . , n1,
define IAi by initially setting SAi(IAi) = v + SAi(I) and reducing so that
Property 2 holds. Define IB1 , . . . , IBn2

similarly. Note that by Property 2,
if v ∈ Bi, then Bj ∩N(v) = ∅ for all j 6= i. So, SAB(IBi) ⊂ SAB(I) \N(v).
Because there are at least n

10 vertices in SAB∩N(v), this means |SAB(IBi)| ≤
9n
10 for all i = 1, . . . , n2.
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Similarly, by Property 2, SAB(IAi) ⊂ SAB(I)∩N(v), so |SAB(IAi)| ≤ 9n
10 for

all i = 1, . . . , n1.

Let W = {v ∈ SAB : |SAB ∩ N(v)| > 9n
10 } and X = {v ∈ SAB : |SAB ∩

N(v)| < n
10}.

Case 2: |W | ≥ n
10

and |X| ≥ n
10

.

Branch according to :

(i) I1 : |A′1| ≥ n
10 , or

(ii) I2 : | ∪i6=1 A′i| ≥ n
10 , or

(iii) I3 : |B′
1| ≥ n

10 , or

(iv) I4 : | ∪i6=1 B′
i| ≥ n

10 .

Each of these choices forces either all the vertices in W or all the vertices in
X to have smaller label sets, as follows.
If |A′1| ≥ n

10 , then every vertex in A′j ∀j 6= 1 has n
10 neighbours in SAB(I),

so A′j ∩X = ∅ for all j 6= 1.
If | ∪i6=1 A′i| ≥ n

10 then every vertex in A′1 has n
10 neighbours in SAB(I), so

A′1 ∩X = ∅.
Thus, for j = 1, 2 we have SAB(Ij) = SAB(I) \X, and |SAB(Ij)| ≤ 9n

10 .
If |B′

1| ≥ n
10 then every vertex in Bj ∀j 6= 1 has at least n

10 non-neighbours
in SAB(I). Hence W ∩Bj = ∅ for all j 6= 1.
If | ∪i6=1 B′

i| ≥ n
10 then every vertex in B1 has at least n

10 non-neighbours in
SAB(I). Hence W ∩B1 = ∅.
Hence, for j = 3, 4 we have SAB(Ij) = SAB(I)\W , and so |SAB(Ij)| ≤ 9n

10 .

Case 3: |W | > 9n
10

.

In [5], the authors proved that there exists 3 subsets O, T and NT of W
satisfying :

• There are all edges between O and T ;

• For every w in NT , there exists v in O such that w is not adjacent to
v;

• The complement of O is connected.

And such that :
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(i) |O|+ |NT | ≥ n
10 and |T | ≥ n

10 ; or

(ii) NT = ∅.
In case (i), we consider the following intances :

(b1) I1 : B1 ∩O 6= ∅, or . . .

(bn2) In2 : Bn2 ∩O 6= ∅, (∪i6=n2Bi) ∩O = ∅, or

(a1) In2+1 : O ⊆ A1, or . . .

(an1) In2+n1 : O ⊆ An1 .

Recall that the complement of O is connected, which implies that if O∩B = ∅,
then O ⊆ Ai for some i ∈ {1, . . . , n1}.
If O ⊆ Ai for some i, then NT ∩Aj = ∅ for all j 6= i since for every w ∈ NT
there is a vertex v ∈ O such that vw 6∈ E.
Thus, (O ∪ NT ) ∩ SAB(In2+i) = ∅. Hence |SAB(In2+i)| ≤ 9n

10 for all i =
1, . . . , n1.
If Bi ∩O 6= ∅ for some i, then (∪j 6=iBj) ∩ T = ∅.
Thus, T ∩ SAB(Ii) = ∅, which implies |SAB(Ii)| ≤ 9n

10 for all i = 1, . . . , n2.
Hence if (i) holds then we have found n1 + n2 desired output instances of
ELSP. Otherwise O, T and NT satisfy (ii). In this case, the authors in [5]
proved that there exist two subsets Y and Z of W such that :

• There are all edges between Y and Z;

• |Y | ≥ n
10 ;

• |Z| ≥ n
10 .

Now, we consider the instances :

(b1) I1: B1 ∩ Z 6= ∅, . . .

(bn1) In1 : Bn1 ∩ Z 6= ∅,
(bn1+1) In1+1: (∪Bi) ∩ Z = ∅.
Since there are all edges between Y and Z, for every j ≤ n1, SAB(Ij) ⊆
SAB(I)\Y and SAB(In1+1) ⊆ SAB(I)\Z. Thus for all j, we have |SAB(Ij)| ≤
9n
10 .

Note that the case |X| > 9n
10 is symmetric to Case 3 (consider G) and is

omitted.
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Procedure 2

Let S1 = SBjA(I) and and S2 = SBlA(I). Let s1 = |S1|, s2 = |S2|. Given
v ∈ S1 ∪ S2, let di(v) = |N(v) ∩ Si|, i = 1, 2.

Case 1: There exists a vertex v ∈ S1 with s2/10 ≤ d2(v) ≤ 9s2/10.

This case is analogous to Case 1 of Procedure 1: we create n1 + 1 new
instances IBj , IA1 , . . . , An1 according to whether v ∈ Bj , or v ∈ A1 or . . . or
v ∈ An1 .
Thus SABl

(IAk
) ⊆ S2 ∩ N(v) and hence |SABl

(IAk
)| ≤ 9n2

10 for all k. And
SABl

(IBj ) ⊆ SBl
\ (S2 ∩N(v)) and hence |SABl

(IBj )| ≤ 9n2
10 .

The case “there exists a vertex v ∈ S2 with s1
10 ≤ d1(v) ≤ 9s1

10 ”, symmetric
to Case 1 is ommited.

Case 2: Every vertex v in S1 satisfies d2(v) < s2

10
or d2(v) > 9s2

10
. Every

vertex v in S2 satisfies d1(v) < s1

10
or d1(v) > 9s1

10
.

Define four auxiliary sets, as follows:

X1 = {v ∈ S1 : d2(v) <
s2

10
},

X2 = {v ∈ S2 : d1(v) <
s1

10
},

W1 = {v ∈ S1 : d2(v) >
9s2

10
},

W2 = {v ∈ S2 : d1(v) >
9s1

10
}.

Note that Case 2 means that S1 = X1 ∪ W1 and S2 = X2 ∪ W2. We
handle Case 2 according to the following possibilities.

Case 2.1: |X1|, |W1| ≥ s1

10
.

This case is analogous to Case 2 of Procedure 1. We create n1 + 1 new
instances of ELSP according to the size of skew partition sets, as follows:

(a1) I1: |A1 ∩ S2| ≥ s2
10 , or . . .

(an1) In1 : |An1 ∩ S2| ≥ s2
10 , or

(b1) In1+1: |Bl ∩ S2| ≥ s2
10 .
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If |Ai ∩ S2| ≥ s2
10 for some i, then as every vertex in Ak (k 6= i) is adjacent

to every vertex of Ai, Ak ∩ X1 = ∅ for all k 6= i. Thus SABj (Ii) ≤ 9s1
10 .

Similarly, SABj (In1+1)∩W1 = ∅. So, for all n1 +1 output instances, we have
|SABj | ≤ 9s1

10 , as required.

The case “otherwise |X2|, |W2| ≥ s2
10”, symmetric to Case 2.1, is omitted.

Case 2.2: |X1| > 9s1

10
.

In [5], the authors proved that there exists three sets O, M , and NM such
that:

• O ⊆ X1, S2 = M ∪NM ;

• There are no edges between O and M ;

• For every u ∈ NM , there is a w ∈ O with wu ∈ E;

And for which either :

(i) |M | ≤ s2
2 ; or

(ii) |O| ≥ 3s1
10 .

If condition (ii) holds, i.e., |O| ≥ 3s1
10 and |M | > s2

2 , then define two new
instances of ELSP as follows:

(a) I1 : O ∩A1 = ∅,
(b) I2 : O ∩A1 6= ∅.
Clearly, SABj (I1) ⊆ S1 \O, so |SABj (I1)| ≤ 9s1

10 . Further, if O∩A1 6= ∅ then
M ∩Bl = ∅, so |SABl

(I2)| ≤ 9s2
10 .

If condition (i) holds, i.e., |M | ≤ s2
2 , then the authors in [5] proved that we

may assume that 4s2
10 < |M | and |NM | ≥ s2

2 . We define n1 + 1 new ELSP
instances:

(a1) I1 : O ∩A1 6= ∅, or . . .

(an1) In1 : O ∩An1 6= ∅, or

(an1+1) In1+1 : O ⊆ Bj .

If O∩Ai 6= ∅ for some i, then Ak ⊆ (S2\M) for all k 6= i, so |SABl
(Ii)| ≤ 9s2

10 .
Finally, if O ⊆ Bj then NM ∩Bl = ∅ so |SABl

(In1+1)| ≤ s2
2 .

Note that the case “otherwise |X2| > 9s2/10”, symmetric to Case 2.2, is
omitted.
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Case 2.3: |W1| > 9s1

10
, and |W2| > 9s2

10
.

Let W = W1 ∪W2. In [5], the authors proved that there is a partition of W
into three sets O, T and NT such that:

• The complement of O is connected;

• There are all edges between O and T ;

• For every w ∈ NT , there exists u ∈ O such that uw 6∈ E.

and with the property that :

(i) |O ∩ S1|+ |NT ∩ S1| ≥ s1
10 , or |O ∩ S2|+ |NT ∩ S2| ≥ s2

10 ; or

(ii) NT = ∅.
If condition (i) holds, say w.l.o.g. that |O∩S1|+ |NT ∩S1| ≥ s1

10 . In [5], the
authors shown that |O ∩ S1| + |NT ∩ S1| < s1

5 , |O ∩ S2| + |NT ∩ S2| < s2
5 ,

and on the other hand, |T ∩ S1| ≥ s1
10 , and |T ∩ S2| ≥ s2

10 .
Recall that the complement of O is connected, which implies that if O ∩
(Bj ∪Bl) = ∅, then there exists an i ∈ {1, . . . , n1} such that O ⊆ Ai. So we
consider the following n1 + 2 ELSP instances:

(a1) I1: Bj ∩O 6= ∅,
(a2) I2: Bl ∩O 6= ∅,
(a3) I3: O ⊆ A1, . . .

(an1+2) In1+2: O ⊆ An1 .

If Bj ∩ O 6= ∅, then (T ∩ S2) ∩ Bl = ∅, so |SABl
(I1)| ≤ 9s2

10 . If Bl ∩ O 6= ∅,
then (T ∩ S1) ∩Bj = ∅, and analogously |SABj (I2)| ≤ 9s1

10 .
If O ⊆ Ai for some i, then (NT ∩ S1) ∩ Ak = ∅ for every k 6= i. Thus,
|SABj (I2+i)| ≤ 9s1

10 .

If condition (ii) holds, i.e., NT = ∅ and both |O∩S1|+ |NT ∩S1| < s1
10 , and

|O ∩ S2| + |NT ∩ S2| < s2
10 . In this case, the authors in [5] proved that we

can find two subsets Y and Z of O with all edges between them and such
that |Z| ≥ s1

10 and |Y | ≥ s2
10 . Observe that since there are all edges between

Y and Z then either Bj ∩ Z = ∅ or Bl ∩ Y = ∅.
We now define three new instances of ELSP according to the intersection of
skew partition sets C or D with Z, as follows:

(a) I1: Bj ∩ Z 6= ∅,
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(b) I2: Bl ∩ Z 6= ∅,
(c) I3: Z ⊆ A.

If Bj ∩ Z 6= ∅, then Bl ∩ Y = ∅. Thus, (Y ∩ S2) ⊆ A, which implies
|SABl

(I1)| ≤ 9s2
10 .

If Bl ∩ Z 6= ∅, then an argument symmetric to Bj ∩ Z 6= ∅ shows that
|SABj (I2)| ≤ 9s1

10 .
Otherwise, Z ⊆ A, which implies |SABj (I3)| ≤ 9s1

10 .

This ends the description of Procedure 2.

Procedure 3 is a mirror image of Procedure 2 and is omitted.

Procedure 4

We will give the details of the procedure constructing the 2 instances I1, I2

such that |SBpA(It)||SAaBb
(It)| ≤ 9

10 |SBpA(I)||SAaBb
(I)| with b 6= p. The

other 2 instances I3, I4 are obtained similarly.
Let SABp = S1 with |SABp | = s1, and SAaBb

= S2 with |SAaBb
| = s2 and

b 6= p. Given v ∈ S1 ∪ S2, let di(v) = |N(v) ∩ Si|, i = 1, 2.

Case 1: There exists a vertex v ∈ S2 with s1

10
≤ d1(v) ≤ 9s1

10
.

This case is analogous to Case 1 of Procedure 1. Define two new instances
of ELSP, as follows:

(a) I1: v ∈ Aa,

(b) I2: v ∈ Bb.

If v ∈ Aa, then every vertex of S1 that is nonadjacent to v cannot be placed
in Bb, so |SABp(I1)| ≤ 9s1

10 .
If v ∈ Bb, then every vertex of S1 that is adjacent to v cannot be placed in
Bp. So |SABp(I2)| ≤ 9s1

10 , as required.

Case 2: Every vertex v ∈ S2 has either d1(v) < s1

10
or d1(v) > 9s1

10
.

Let W = {v ∈ S2 : |N(v) ∩ S1| > 9s1
10 }. We handle Case 2 according to the

following two possibilities.
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Case 2.1: |W | > s2

2
.

Let v1 ∈ W . In [5], the authors proved that there are three sets O, T , and
NT such that:

• O is contained in W ;

• S1 = T ∪NT ;

• There are all edges between O and T ;

• For every w in NT , there exists v in O such that v is not adjacent to
w.

satisfying :

(i) |T | ≤ 9s1
10 ; or

(ii) |O| ≥ s2
10 .

If condition (i) holds, i.e., |T | ≤ 9s1
10 , then |NT | ≥ s1

10 . In addition, they
prove that we may assume that |T | > 8s1

10 .
Consider two new instances of ELSP, as follows:

(a) I1: Bb ∩O 6= ∅,
(b) I2: O ⊆ Aa.

If Bb∩O 6= ∅, then T∩Bp = ∅ which implies |SABp(I1)| ≤ 9s1
10 . Otherwise,

O ⊆ Aa, and NT ∩ B = ∅, since for every w ∈ NT there is a vertex v ∈ O
such that vw 6∈ E. Thus |SABp(I2)| ≤ 9s1

10 .
Now suppose that condition (ii) holds, i.e., |O| ≥ s2

10 and |T | > 9s1
10 .

Consider two new instances of ELSP, as follows.

(a) I1: Bp ∩ T 6= ∅,
(b) I2: T ⊂ A.

If Bp ∩ T 6= ∅ then O ∩Bb = ∅, so |SABb
(I1)| ≤ 9s1

10 .
Clearly, T ∩ SABp(I2) = ∅, so |SABp(I2)| ≤ 9s1

10 .

Case 2.2: |S2 \W | > s2

2
.

Let X = S2 \W , and v ∈ X. In [5], they show that there exist two sets O,
and M such that:

• O ⊆ X, M ⊆ S1;
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• There are no edges between M and O.

with :

(i) |M | ≤ 9s1
10 ; or

(ii) |O| ≥ s2
10 .

If condition (i) holds, i.e., |M | ≤ 9s1
10 then the authors in [5] show that

we may assume that |M | > 8s1
10 . Then, in either case (i) or (ii), we have

|M | > 8n1
10 .

Define two new ELSP instances as follows;

(a) I1: Aa ∩O 6= ∅,
(b) I2: O ⊆ Bb.

If Aa ∩O 6= ∅, then M ∩ Ai = ∅ for all i 6= a. Hence because |M | > 8s1
10 , we

have |SABp(I1)| < 2s1
10 ≤ 9s1/10.

Otherwise, O ⊆ Bb. In case (i), |M | ≤ 9s1/10, which implies |S1 \ M | ≥
s1/10, so we have |SABp(I2) ≤ 9s1

10 .
In case (ii), |O| ≥ s2

10 , which implies |SAaBb
(I2)| ≤ 9s2

10 . So for either output
instance Ii |SABp(Ii)||SAaBb

(Ii)| ≤ 9s1s2
10 as required.

This ends the description of Procedure 4.

5 Details of Algorithm 5

In this section, we give the details of Algorithm 5 which we call generalized
2-SAT algorithm. This algorithm takes as input an instance of GEN-MAX-
2-ELSP. The lists L present in such an instance are either equal to A or B,
or have size |L| ≤ 2. We prove below that such restrictions are enough for a
solution through an algorithm similar to that of Aspvall et al. [2] for 2-SAT.

Suppose an instance of GEN-MAX-2-ELSP is given, i.e., a graph G =
(V (G), E(G)) and a set of lists Lv of the following types, trivial lists: A1,
A2, . . ., An1 , B1, B2, . . ., Bn2 ; lists of size 2: AiBj ; lists of size greater than
2: the list A and the list B.

Let Ai, Ak ∈ A and Bj , Bl ∈ B with i 6= k, j 6= l, i, k ∈ {1, . . . , n1} and
j, l ∈ {1, . . . , n2}.

We define next a digraph −→
Gf = (Vf , Ef ). Each directed edge of Ef

corresponds to a “forcing” defined by the adjacency relation in the original
graph G.
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The vertex set of −→Gf is the following set Vf = {(u, I) : u ∈ V and I ∈ Lu}.

The edge set of −→Gf is the following set Ef :
If u ∈ AiBj and v ∈ AkBj : uv /∈ E(G): ((u,Ai), (v, Bj)) and ((v, Ak), (u,Bj)).
If u ∈ AiBj and v ∈ AiBl: uv ∈ E(G): ((u,Bj), (v,Ai)) and ((v, Bl), (u,Ai)).
If u ∈ AiBj and v ∈ AkBl: uv ∈ E(G): ((u,Bj), (v, Ak)) and ((v, Bl), (u,Ai));

uv /∈ E(G): ((u,Ai), (v, Bl)) and ((v, Ak), (u,Bj)).
If u ∈ AiBj and v ∈ A: uv /∈ E(G): ((u,Ai), (v, Ai)) and ((v, I), (u,Bj)),

∀I ∈ A \Ai.
If u ∈ AiBj and v ∈ B: uv ∈ E(G): ((u,Bj), (v, Bj)) and ((v, J), (u,Ai)),

∀J ∈ B \Bj .
If u ∈ A and v ∈ A: uv /∈ E(G): ((u, Ai), (v,Ai)) and ((v, Ai), (u,Ai)),

∀Ai ∈ A.
If u ∈ B and v ∈ B: uv ∈ E(G): ((u,Bj), (v, Bj)) and ((v, Bj), (u,Bj)),

∀Bj ∈ B.

We define a forcing class C(v, I) as the set of “forcings” induced by the
choice of part I for vertex v, i.e., the set of vertices of −→Gf that we can reach
starting from (v, I).

Proposition 3 Let u and v be two vertices of G. If (v, J) ∈ C(u, I) then
for all J ′ ∈ Lv \ {J}, there exists I ′ ∈ Lu \ {I} such that (u, I ′) ∈ C(v, J ′).

Proof. The proof is by induction on the number of edges in a path p from
(u, I) to (v, J). If |p| = 1 then the path consists of a single forcing edge
((u, I), (v, J)) ∈ Ef , with u, v ∈ V (G), I ∈ Lu, J ∈ Lv. We consider the
possibilities for Lu, Lv that correspond to forcing edges. In every case, the
desired property holds.
Let p be a path, |p| > 1, from (u, I) to (v, J). Let ((y, M), (v, J)) be the
last edge in the path p. If we have the edge ((y, M), (v, J)) then, for all
J ′ ∈ Lv \ J , there exists an M ′ ∈ Ly \M such that ((v, J ′), (y, M ′)) ∈ Ef .
Since (y,M) is in the path p before (v, J), by induction, for all M ′′ ∈ Ly \M ,
there exists a I ′′ ∈ Lu \ I such that (u, I ′′) ∈ C(y, M ′′). In particular for M ′,
there exists I ′ ∈ Lu \ I such that (u, I ′) ∈ C(y, M ′).
Now, (y,M ′) ∈ C(v, J ′) and (u, I ′) ∈ C(y, M ′) imply the existence of I ′ ∈
I \ Lu such that (u, I ′) ∈ C(v, J ′), for all J ′ ∈ Lv \ J , as required.

We say that the graph −→Gf admits an Obstruction if there exists a vertex
u ∈ V (G) such that for all I ∈ Lu, there is a I ′ ∈ Lu \ I such that (u, I ′) ∈
C(u, I). We can decide in polynomial time whether −→Gf admits an obstrution
by computing the strong connected components of the digraph −→Gf .
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Proposition 4 The digraph −→Gf admits an obstruction, if and only if the
corresponding instance of GEN-MAX-2-ELSP has no solution.

Proof. The definition of obstruction immediately implies that the corre-
sponding instance of GEN-MAX-2-ELSP has no solution.
Suppose the digraph −→

Gf admits no obstruction. So, by hypothesis, every
vertex u ∈ V (G), has a safe part Fu ∈ Lu such that (u, I) 6∈ C(u, Fu), for all
I ∈ Lu \ Fu.
Define a solution for the corresponding instance of GEN-MAX-2-ELSP as
follows. Choose an arbitrary vertex u ∈ V (G) and place u in its safe part
Fu. Note that, if x ∈ V (G) is such that (x,K) ∈ C(u, Fu), then (x,K ′) /∈
C(u, Fu), for all K ′ ∈ Lx \ K, as otherwise by Proposition 3 we have a
contradiction to our hypothesis. Thus, we may place accordingly x in part
K, for all (x,K) ∈ C(u, Fu).
While there exists w ∈ V (G) not placed, repeat the above rule by placing
w in a safe part Fw and by placing accordingly all vertices y such that
(y, T ) ∈ C(w,Fw).
Suppose there exists x ∈ V (G) such that (x,K) ∈ C(u, Fu) and (x,K ′) ∈
C(w, Fw). Then Proposition 3 implies the existence of K ′′ ∈ Lw \ Fw such
that (w,K ′′) ∈ C(x,K) and hence (w,K ′′) ∈ C(u, Fu), which contradicts
that w was not placed by placement of vertex u.

6 Conclusion
It is evident to the authors that the techniques we have developed will apply
to large classes of list-M -partition problems. For instance, we have studied
the concept of H-partition which includes all vertex partitioning problems
into nonempty parts with only external restrictions according to the struc-
ture of a model graph H. In the present paper, we presented an algorithm
for the case where H contains n1 +n2 vertices such that n1 vertices induce a
clique and n2 vertices induce a stable set. All cases when H has four vertices
are studied in [4].

We would like also to make some observations about the status of n1 and
n2. Our algorithm depends on the values of n1 and n2. If a graph admits an
(n1, n2)-extended skew partition, then it admits an (n′1, n′2)-extended skew
partition, for any pair n′1, n′2 satisfying n′1 ≤ n1, n′2 ≤ n2. This monotonicity
property suggests the following combinatorial optimization problem : Find
the largest values of n1 and n2 such that a graph G admits an (n1, n2)-
extended skew partition, which stated as a decision problem gives:
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Maximum Skew Partition Problem
Input: a graph G = (V, E), and integers n1, n2.
Question: Is there a (k, l)-extended skew partition with k ≥ n1, l ≥ n2?

We conjecture that this problem is NP-complete and we propose the
study of its complexity status as an open problem.

We believe that studying the (n1, n2)-extended skew partition problem
contributes to a better understanding of the techniques that were used
to solve both problems: skew partition and (n1, n2)-extended skew parti-
tion, and that soon it will be possible to reduce the high complexity of the
polynomial-time algorithms known to solve both problems.
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