

VIDEO GAME DEVELOPMENT ONTOLOGY

Glauco Ofranti Trindade

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia de

Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

título de Mestre em Engenharia de Sistemas e

Computação.

Orientadores: Mario Roberto Folhadela

 Benevides

 Ivan José Varzinczak

Rio de Janeiro

Dezembro de 2015

VIDEO GAME DEVELOPMENT ONTOLOGY

Glauco Ofranti Trindade

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA

(COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE

DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

__

Prof. Mario Roberto Folhadela Benevides, Ph.D.

__

Prof. Ivan José Varzinczak, Ph.D.

__

Prof. Alexandre Rademaker, D.Sc.

__

Profa. Sheila Regina Murgel Veloso, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

DEZEMBRO DE 2015

iii

Trindade, Glauco Ofranti

Video Game Development Ontology / Glauco Ofranti

Trindade. – Rio de Janeiro: UFRJ/COPPE, 2015.

XIV, 200 p.: il.; 29,7 cm.

Orientadores: Mario Roberto Folhadela Benevides

 Ivan José Varzinczak

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2015.

 Referencias Bibliográficas: p. 169-176.

1. Ontologias. 2. Video Games. 3. Desenvolvimento de

Video Games. I. Benevides, Mario Roberto Folhadela et al.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III

Título.

iv

To my family.

v

AKNOWLEDGEMENTS

This dissertation was the hardest and harshest challenge I have ever taken in my life

and many people have, directly or indirectly, helped me in developing it over these three

years. Here, I would like to take the opportunity to thank them.

First of all, I would like to thank Geraldo Bonorino Xexéo for the short time where he

initially supervised this dissertation and acted as my advisor. I thank him for the knowledge

imparted that helped me in writing this dissertation.

I would like to thank my advisors Mario Benevides and Ivan Varzinczak. I thank them

for giving me the opportunity to conclude this dissertation, the invaluable advice that helped

me conclude this dissertation and the confidence they gave me.

I would like to thank Alexandre Rademaker and Sheila R. Murgel Veloso which were

members of the examining board. I thank them for their invaluable contributions that helped

me improve this dissertation.

I would like to thank my friend Filipe Braida. I thank him for insightful advice

regarding dissertations, giving me a model of dissertation to make this one, the rides he gave

me to UFRJ and to home, but more importantly I thank for his friendship.

I would like to thank of the many colleagues I made in COPPE post-graduate program.

I thank them for exchanging of ideas, sharing the difficulties and teaming up to overcome

many of the program challenges.

I would like to thank my hypnotherapist Heloísa Helena. I thank her for helping me

overcome my internal struggles, keeping my mind healthy and developing the necessary

mental strength to conclude the dissertation. Thanks to you I have a more positive outlook of

my life.

Finally, I would like to thank my family for their constant support and strength to

conclude this dissertation. I am grateful to be blessed to have such wonderful parents because

I would not be here if not for their efforts. Thank you very much for everything you have

done for me.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Mestre em Ciências (M.Sc.)

ONTOLOGIA DE DESENVOLVIMENTO DE VÍDEO GAMES

Glauco Ofranti Trindade

Dezembro/2015

Orientadores: Mario Roberto Folhadela Benevides

 Ivan José Varzinczak

Programa: Engenharia de Sistemas e Computação

O desenvolvimento de vídeo games herda muitos dos problemas encontrados em

projetos de engenharia de software como complexidade e escopo inviável. Entretanto, ele é

uma atividade de desenvolvimento de software mais complexa quando comparada a outras

porque envolve equipes multidisciplinares altamente especializadas compostas de

programadores, designers, escritores, artistas, etc., que causa um déficit de comunicação entre

essas equipes. Além disso, não existem padrões para documentação e vocabulário na literatura

e indústria de vídeo games. Neste contexto, ontologias podem ser uma potencial solução

porque elas fornecem uma representação consensual e compartilhada do conhecimento de um

domínio que pode ser usada para solucionar problemas de comunicação e auxiliar em

atividades de desenvolvimento e engenharia de software. Portanto, o objetivo deste trabalho é

construir a Ontologia de Desenvolvimento de Vídeo Games que tem o objetivo de facilitar a

identificação de requisitos técnicos no game design. A ontologia é construída seguindo uma

metodologia de construção composta de cinco fases: aquisição de conhecimento,

especificação, conceptualização, implementação e avaliação. A ontologia é validada usando

seus termos e relações para modelar uma parte do gameplay de um vídeo game. O resultado

deste trabalho é uma ontologia testada e validada tecnicamente e implementada em OWL 2.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements

for the degree of Master of Science (M.Sc.)

VIDEO GAME DEVELOPMENT ONTOLOGY

Glauco Ofranti Trindade

December/2015

Advisors: Mario Roberto Folhadela Benevides

 Ivan José Varzinczak

Department: Computer Science Engineering

 Video game development inherits many of the problems found in software engineering

projects such as project complexity and unrealistic scope. However, it is a more complex

software development activity when compared to others because it involves highly specialized

multidisciplinary teams composed of programmers, designers, scriptwriters, artists, etc. which

causes a communication gap between those teams. Also, there are no standards for

documentation and vocabulary in the video game literature and the industry. In this context,

ontologies can be a potential solution because they provide a consensual and shared

representation of the knowledge of a domain which can be used to solve communication

problems and assist in software engineering and development activities. Thus, this work has

the objective of building the Video Game Development Ontology which has the objective of

facilitating the identification of technical requirements in the game design. The ontology is

built following a building methodology composed of five phases: knowledge acquisition,

specification, conceptualization, implementation and evaluation. The ontology is validated by

using its terms and relations to model a gameplay segment of a video game. The result of this

work is a technically tested and validated ontology implemented in OWL 2.

viii

INDEX

Chapter 1 – Introduction 1

1.1 – Motivation 1

1.1.1 – Creativity and Design Problems 2

1.1.2 – Software Application Problems 4

1.1.3 – Software Engineering Problems 4

1.1.4 – Multidisciplinary Problems 6

1.1.5 – Documentation Problems 6

1.1.6 – Requirements Engineering Problems 8

1.1.7 – Solution 9

1.2 – Objectives 12

1.3 – Hypothesis 13

1.4 – Organization 13

Chapter 2 – Ontologies 14

2.1 – Knowledge 14

2.2 – History of Ontologies 16

2.3 – Definitions of Ontology in Computer Science 18

2.4 – Ontologies as Knowledge Artifacts 20

2.5 – Applications of Ontologies 23

2.5.1 – Ontologies in Knowledge Engineering 25

2.5.2 – Ontologies in Computer Science 26

2.5.3 – Ontologies in Software Engineering 27

2.6 – What Are Ontologies Made Of? 28

2.7 – Differences between Ontologies and Models 31

2.8 – Types of Ontologies 34

2.9 – Ontological Engineering 35

2.10 – Ontology Design Principles 36

2.11 – Ontology Development Methodologies 38

2.12 – Ontology Development Tools 41

2.12.1 – Ontology Representation Languages 41

2.12.2 – Ontology Development Environments 43

Chapter 3 – Games 45

3.1 – What Are Games? 45

3.1.1 – What Are Games Made Of? 48

3.2 – What Are Video Games? 50

ix

3.2.1 – What Are Video Games Made Of? 53

3.3 – Game Design 57

3.4 – Video Game Development Process 59

3.4.1 – Video Game Development Phases 60

3.4.2 – Video Game Development Roles 62

3.4.3 – Video Game Development Documents 66

Chapter 4 – Related Work 70

4.1 – Vocabularies for Game Design 70

4.2 – Informal Video Game Knowledge Models 73

4.3 – Formal Video Game Knowledge Models 76

4.4 – Game Ontologies 77

4.5 – Conclusion 80

Chapter 5 – Building Methodology 82

5.1 – METHONTOLOGY 82

5.1.1 – Ontology Development Process 82

5.1.2 – Ontology Life Cycle 84

5.2 – Ontology Building Activities 86

5.2.1 – Knowledge Acquisition 86

5.2.2 – Specification 86

5.2.3 – Conceptualization 88

5.2.4 – Formalization and Implementation 89

5.2.5 – Evaluation 90

Chapter 6 – Specification 92

6.1 – Purpose 92

6.2 – Intended Users 93

6.3 – Characteristics 93

6.4 – Formality 94

6.5 – Knowledge Sources 94

6.6 – Scope 95

Chapter 7 – Conceptualization of Internal Modules 101

7.1 – Game Object Module 101

7.2 – Attribute Module 104

7.2.1 – Atomic Attribute Types 107

7.3 – Event Module 107

7.4 – Action Module 110

x

7.5 – State Module 112

7.6 – Space Module 115

7.6.1 – Discrete Space 117

7.6.2 – Continuous Space 119

7.6.3 – Spatial Attributes, Actions, States and Events 121

7.7 – Time Module 121

7.7.1 – Discrete and Continuous Time 124

7.7.2 – Rewinding Time 125

Chapter 8 – Conceptualization of External Modules 126

8.1 – External Object Module 126

8.2 – Hardware Module 127

8.3 – Software Module 128

8.4 – Player Module 129

8.5 – Input Module 130

8.5.1 – Non-physical Input 132

8.5.2 – Physical Input 132

8.6 – Output Module 133

8.6.1 – Non-physical Output 135

8.6.2 – Physical Output 135

8.6.3 – Audio Output Actions 136

8.7 – Video Output Module 136

8.8 – Asset Module 139

8.9 – Video Game Module 140

Chapter 9 – Implementation 143

9.1 – Implementation Process Overview 143

9.2 – Implementation Phase Steps 144

9.3 – Implementation Process Phases 145

Chapter 10 – Evaluation 146

10.1 – Evaluation Process Overview 146

10.2 – Ontology Verification Findings 147

10.3 – Ontology Validation 152

10.3.1 – Identification of Game Elements 152

10.3.2 – Ontology Extensions 158

10.3.3 – Modelling the Gameplay Segment 159

10.3.4 – Problems in the Modelling Activity 160

xi

10.3.5 – Ontology Validation Conclusion 161

Chapter 11 – Conclusion 162

11.1 – Final Considerations 162

11.2 – Comparison to Other Game Ontologies 163

11.3 – Limitations 164

11.4 – Contributions 165

11.5 – Future Work 166

Bibliographic References 169

Appendix A – OWL 2 177

A.1 – What is OWL? 177

A.2 – OWL Types 178

A.3 – OWL Features 178

A.3.1 – Basic Elements 178

A.3.2 – Equality and Inequality 179

A.3.3 – Property Characteristics 180

A.3.4 – Property Restrictions 180

A.3.5 – Complex Classes 182

A.4 – OWL 2 New Features 183

A.4.1 – Property Chains 183

A.5 – OWL 1 and OWL 2 Limitations 183

A.5.1 – Difference between Classes and Individuals 184

A.5.2 – Expressivity Limits 184

Bibliographic References 184

Appendix B – Conceptualization Tables 186

Appendix C – Competency Questions 199

C.1 – Internal Module Questions 199

C.2 – External Module Questions 200

xii

LIST OF FIGURES

Figure 1 – Mario jumping 10

Figure 2 – Runtime game engine architecture (GREGORY, 2014) 55

Figure 3 – Decomposition of a game within a development team (LEWIS et al., 2007) 63

Figure 4 – Ontology Development Process (CORCHO et al.,2005) 83

Figure 5 – Ontology life cycle (CORCHO et al., 2005) 84

Figure 6 – Game Object Module 104

Figure 7 – Attribute Module 106

Figure 8 – Event Module 110

Figure 9 – Action Module 111

Figure 10 – Monster Hunter 4 Ultimate, Great Sword Move Chart 113

Figure 11 – State Module 115

Figure 12 – Space Module Hierarchy 117

Figure 13 – Space Module Relations 118

Figure 14 – Time Module Hierarchy 123

Figure 15 – Time Module Relations 123

Figure 16 – External Object Module Hierarchy 126

Figure 17 – External Object Module Relations 127

Figure 18 – Hardware Module 128

Figure 19 – Software Module 129

Figure 20 – Player Module 130

Figure 21 – Input Module 131

Figure 22 – Output Module 134

Figure 23 – Video Output Module 137

Figure 24 – Asset Module 139

Figure 25 – Video Game Module 141

Figure 26 – First stage of Super Mario bros. 152

xiii

LIST OF TABLES

Table 1 – List of some existing ontologies 24

Table 2 – Identified Visual Assets 155

Table 3 – Identified Audio Assets 156

Table 4 – Player Inputs 156

Table 5 – Space Logic 157

Table 6 – Specific logic 157

Table 7 – Game Object module taxonomy 187

Table 8 – Game Object module relations 187

Table 9 – Game Object module axioms 188

Table 10 – Attribute module taxonomy 188

Table 11 – Attribute Module relations 189

Table 12 – Attribute module axioms 189

Table 13 – Event module taxonomy 189

Table 14 – Event module relations 190

Table 15 – Event module axioms 190

Table 16 – Action module taxonomy 190

Table 17 – Action module relations 191

Table 18 – Action module axioms 191

Table 19 – State module taxonomy 191

Table 20 – State module relations 192

Table 21 – State module axioms 192

Table 22 – Space module relations 193

Table 23 – Space module axioms 193

Table 24 – Time module relations 193

Table 25 – Time module axioms 193

Table 26 – External Object module taxonomy 194

Table 27 – External Object module relations 194

Table 28 – Hardware module relations 194

Table 29 – Hardware module axioms 194

Table 30 – Software module relations 195

Table 31 – Software module axioms 195

Table 32 – Player module relations 195

xiv

Table 33 – Player module axioms 195

Table 34 – Input module taxonomy 196

Table 35 – Input module relations 196

Table 36 – Input module axioms 196

Table 37 – Output module taxonomy 196

Table 38 – Output module relations 197

Table 39 – Output module axioms 197

Table 40 – Video Output module axioms 197

Table 41 – Asset module taxonomy 197

Table 42 – Asset module relations 198

Table 43 – Asset module axioms 198

Table 44 – Video Game module relations 198

Table 45 – VGDO data properties 198

1

Chapter 1 – Introduction

1.1 – Motivation

 Video games are an important part of society culture nowadays. The Entertainment

Software Association (ESA) “2015 Essential Facts About the Computer and Video Game

Industry” report shows that video games are a strong engine for economic growth. They have

evolved into a mass medium: more than 150 million Americans play video games and 42

percent play video games regularly, or at least three hours per week. In 2014, the industry sold

over 135 million games and generated more than $22 billion in revenue. Fifty two percent of

total game sales were generated by purchases of digital content, including online

subscriptions, downloadable content, mobile applications, and social networking games (ESA,

2015).

 The evolution of video games into a mass medium can be credited at how they have

quickly evolved technically and artistically these last decades. From simple pixel screens that

did not provide detail to photo realistic games that provide physics simulations and cinematic

experiences that engrosses the players into the medium, video games can provide experiences

not available in movies and books. However, such quick evolution came with high costs.

Compared to the first generation of video games where a development team was composed

roughly of five people and had a development time of half a year, they have evolved to be

large projects employing hundreds of people and development time measured in years

(KANODE & HADDAD, 2009).

 The end products of other creative industries like fashion, music, and movies are

unchangeable after the release or production, but games are similar to conventional software

products that can evolve incrementally with updates (KASURINEN et al,. 2014) making it an

evolving product by nature. Because of its nature, a “perfect” project scope will never be

achieved, but it is the goal of the manager to develop a solid scope that will help guide the

project to its conclusion (KANODE & HADDAD, 2009). Thus, to achieve this objective there

is the video game development process.

 Video game development is an iterative and non-linear process (Flynt and Salem,

2004) since many features are introduced, modified or eliminated during the process. It can be

2

divided in three phases: pre-production, production and post-production. Pre-production

consists in activities such as design, prototyping features of the game, feasibility study and

requirements identification. Generally, the end product of this phase is a design document that

will be used as reference to transform the design in functional software. The production phase

mainly consists in the production of software code, integration of assets (images, videos) into

the software and quality assurance (correction of bugs). Post-production involves marketing

and maintenance (patches that correct bugs that passed the QA process) of the game

(SALAZAR et al., 2012).

 Video game development is characterized by a high level of creativity when compared

to other fields of software development. That is because video games cover a multitude of

themes and genres, and represent a heterogeneous group of different products with varying

requirements and business goals (KASURINEN et al., 2014) and because they count on

highly specialized multidisciplinary teams, having simultaneously software developers,

designers, musicians, scriptwriters, artists and many other professionals (PETRILLO et al.,

2008) depending on the size of the project. This makes video games different from most other

software application domains, since its development presents unique challenges originated

from the multiple disciplines involved (KANODE & HADDAD, 2009). Thus, video game

projects bring with them a myriad of problems with them, each problem being rooted in their

respective discipline.

 I classify the problems according to the following characteristics of a video game: it is

a software application; it is a software engineering project; it is made by a multidisciplinary

team; and it is a creative endeavor. Also there are two specific problems regarding software

engineering that deserve a more detailed view: documentation and requirements engineering.

Each type of problem can cause problems of other types, which can have a cascading effect. I

will first talk about problems of being a creative work.

1.1.1 – Creativity and Design Problems

 A fundamental difference from other software is that game software aims to provide

an experience instead of a function. Because of that the game requirements elaboration is

much more complex, therefore subjective elements as the “fun” does not have efficient

techniques for its determination (CALLELE et al., 2005).

3

 WINGET & SAMPSON (2011) assert that video game development is a process that

is primarily concerned with design problems, as opposed to production. Design accounts for

the majority of game development challenges because in many cases it cannot be fully solved

or even anticipated at the outset of the development process since the interaction between

game elements is unpredictable. Another problem is that the elaboration of the game design

document (GDD) is generally made by professionals with little or no technical background,

making this document informal and not accurate.

 CALLELE et al. (2005) assert that it is difficult to assess the player experience early

in the development cycle for significant progress must be made on building the underlying

game engine infrastructure before gameplay testing can begin. This is a particularly high-risk

scenario because of the likelihood that new requirements will emerge as gameplay testing

continues, new requirements that must be tracked, and for which test plans must be

developed. The emerging requirements may even force significant changes to the fundamental

architecture of the system that, in extreme cases, may cause project failure. This occurred

during the development of Xenoblade X developed by Monolith Soft and Nintendo Software

Planning & Development. In an Iwata Asks
1
 , the developers revealed that in the middle of

development they decided to make Xenoblade X compatible with online play. According to

them, this decision caused a "mass construction" (revision) in the game to change the main

character into an avatar (customizable character with no defined personality) and rewrite

some of the story to match with the content (NINTENDO, 2015).

 Problems in the production of the game assets such as music, images, models, scripts,

etc., are of creative nature since they are a labor of creativity. Failure at providing those assets

according to schedule can slow down other teams since assets need to be integrated with the

game code as well as they need to be evaluated by other organizations (for example,

determination if the game content is adequate to an age group).

1
 Iwata Asks is a series of interviews conducted by the late Nintendo Global President Satoru Iwata with key

creators behind the making of Nintendo games and hardware. Those interviews are available at

http://iwataasks.nintendo.com.

4

1.1.2 – Software Application Problems

 As a video game is a software application, the most common problems are from

technical nature such as wrong implementation of features, bugs, optimization, etc. According

to BLOW (2004), video games are hard. The hardest part of making a game has always been

the engineering. In past times, game engineering was mainly about low-level optimization—

writing code that would run quickly on the target computer, leveraging clever little tricks

whenever possible. But in the past decade prior 2004, games have ballooned in complexity

causing the primary technical challenge to be simply getting the code to work to produce an

end result that bears some resemblance to the desired functionality.

 The overall project size and complexity and the highly domain-specific requirements

are the main difficulties that causes problems in the development of games (BLOW, 2004).

Those requirements are related to the skill sets needed by the development team such as 3D

mathematics, artificial intelligence, linear algebra, programming in a specific language,

algorithms, specific hardware knowledge, etc. As a result of the increased technical

complexity, game developers carry a lot of technical risks (determining accurately how a

feature will interact with the rest of the system is impossible) as well as game design risks

(how will this never-implemented feature feel to the end user?) (BLOW, 2004). One of the

worst technical problems that can happen is a feature of the finished design of the game being

impossible to be implemented with the available technology. It can cause a revision of the

design of the game or a change of the actual technology being used, halting the progress of

the development and damaging the schedule. This problem generates problems to members

outside of the programming team.

1.1.3 – Software Engineering Problems

 The design and engineering of video game software is a subset of another relatively

young discipline, software engineering. This is why the video game industry inherits all

problems that come naturally in a software engineering project. That is, the percentage of

software delivered on time, within budget, and without faults is incredibly low (CONGDON,

2008). While software application problems are technical, problems from a software

engineering project are related to management and planning of the project.

5

 FLYNT & SALEM (2004) assert that the biggest reason of games project

imperfection is the failure in clearly establishing the project scope. If a project does not have a

well-established target, emergent requirements can cause significant structural changes in the

system's architecture, causing serious problems (CALLELE et al., 2005). The development

teams lose themselves in the scope when some difficulties arise: problems with the

exaggerated size and complexity of the project, in addition to facing highly specific

requirements of the games domain (BLOW, 2004). However, the main cause of scope

problems is the common situation where new functionalities are added during the

development phase, increasing the project's size. This practice is known in the industry as

feature creep.

 Those assertions are supported by PETRILLO et al.’s (2008) survey that shows that

all the main problems of traditional software industry are also found in the games industry,

and it is possible to affirm that they are much related. In both contexts, for example, the

unreal scope was pointed out as critical, as the problems with requirements definition. Also,

FLOOD (2003) claims that all game development postmortems reveal the same problems: the

project was delivered behind schedule; it contained many defects; the functionalities were not

the ones that had originally been projected; a lot of pressure and an immense amount of

development hours in order to complete the project. Those problems are clearly related to

poor planning and management of the project such as the lack of a realistic estimate on the

initial plan of development, making the team not capable of finding a deadline for the

projects; and the production of inaccurate estimates of time needed to complete a task due to

lack of historical data that should assist the perception of time needed to execute it, causing

cumulative schedule delays (FLYNT & SALEM, 2004).

 It also should be noted that, according to CALLELE et al. (2005), the software

engineering process in video game development is not clearly understood, hindering the

development of reliable practices and processes for this field. The main reason for that is that

the electronic games industry, for its competitiveness and corporative way of working,

generally turns difficult to access internal data from projects (PETRILLO et al, 2008) as there

are significant monetary disincentives for game companies to talk to any outsider about their

development theories, practices, or processes, particularly if that outsider is going to go talk to

6

other companies about the same processes. Also there are copyright and intellectual property

problems (WINGET & SAMPSON, 2011).

1.1.4 – Multidisciplinary Problems

 According to CALLELE et al. (2005), the multidisciplinarity of the development team

causes an important problem, present in the game industry but not in the traditional software

industry, which is the communication among the teams. This mixture, in spite of being

positive in the sense of having a more creative work environment, seems to produce a true

split on the team, dividing it into “the artists” and “the programmers”. This division, that

basically does not exist in the traditional software industry, is the main source of important

misunderstanding problems (FLYNT & SALEM, 2004), since both teams believe to

communicate clearly when using their specific vocabularies to express their ideas (CALLELE

et al., 2005). According to CONGDON (2008), both art and programming teams express their

own objectives in their own terms, in their own types of documentation. These are appropriate

for laying out the needs of both teams, but do not express how art and programming issues

relate to each other in the game world.

 This issue is magnified as team and projects grow in size, the group needs to know

what stage each individual is at as well as the state of the entire project. Video game

development has a challenge in that information that needs to be expressed has to be

presented to people of many disciplines. If the game content is not expressed properly to each

discipline then the continuity of the design of the game world may get lost (CONGDON,

2008). All of those problems along with the unique nature of video games projects impact in

the generation of documents, an important process in a software engineering project.

1.1.5 – Documentation Problems

 Effective documentation is essential for quality control as it forces development team

members to review their own. It also introduces the element of accountability to software

production and is there to help make clear what has been done in the past. It is known that

software engineering projects are often being poorly documented. This combination of high

complexity and poor documentation is perfect for creating confusion and mistakes. These

mistakes end up costing valuable time and money for projects that already have enormous

budgets. While software engineers are trying to establish their own documentation standards,

7

game designers have not been quick to contribute to the solution. As such, documentation

dealing specifically with video game design is scarce and not well developed. Part of the

problem is how a large number of disciplines come together to produce games (CONGDON,

2008).

 The multidisciplinarity of a game development team can be observed from the

documents described by WINGET & SAMPSON (2011) interviews with game development

team members. There are different kinds of design documents, like technical design

documents, which precisely describe the game’s technical challenges and proposed solutions;

pitch and concept documents, which are often used for promotional and fundraising; and

miscellaneous others such as impromptu sketches or whiteboard diagrams and charts.

CONGDON (2008) claims that developing documentation for multiple disciplines requires an

understanding of what each party needs to accomplish and what they use to accomplish it, in

other words domain knowledge is needed. When documentation is developed it is important

to be as useful as possible while being fast and easy to create so that team members are more

likely to use it properly.

 According to FULLERTON (2014), best practices for producing games are evolving

to recognize the need for flexibility and iteration as part of the game development process.

Many developers now use a mix of agile development methods and traditional software

production methods to produce their games. The core difference between those distinct

development methods is a focus on creating working software versus documentation and

managing the team so that it can respond to discoveries in the process, rather than following a

predetermined plan. Because of this shift in the game development process and its iterative

nature is that GDDs are literally out of date the moment they are written (SCHELL, 2014).

BETHKE (2003) comments that he has never seen a completed design document, and one of

the reasons is that game design documents need to be maintained through the course of

production. With time-to-market pressures so prevalent, it is easy to see how documentation

maintenance is given low priority. WINGET & SAMPSON (2011) conclude in their article

that traditional design documentation loses significant accuracy and descriptive ability as

development progresses, and should be complemented by records that communicate more of

the creative process in video game production and design. These materials are: the iterative

8

versions of game assets and the game itself as it may exist at any time, as well as models or

other abstractions of the game.

 Undoubtedly the GDDs are the most important documents in the game development

process, as the game’s overall design is most frequently communicated in these documents

written in the pre-production phase. Its uses vary from studio to studio and project to project,

but it always serves as a general reference point for members of the development team

(WINGET & SAMPSON 2011). The GDDs are an important piece of the requirements

gathering process. It is from those documents that the many type of requirements are

identified such as number of assets needed, technology needed to implement the game design,

professionals needed, etc. From those requirements other types of documentation are written

such as technical documents describing the technology used to implement the game design.

1.1.6 – Requirements Engineering Problems

 Requirements engineering for media production in video game development is

particularly challenging because of the interactions between the requirements of the video

game artifact, the requirements of the tools needed to create the video game artifact, and the

strongly differentiated user groups (CALLELE et al., 2005). According to SALAZAR et al.

(2012), requirements engineering best practices may support preproduction and production

stages, by bringing structure, detail and establishing relationships among video-game

elements in order to improve the best experiences during the play time. According to

KANODE & HADDAD (2009), gathering all the needed requirements will cut down on the

number of iterations needed, mitigate the late addition of features (feature creep), reduce

errors due to miscommunication with the customers (the designers) and identify unstated

requirements.

 The identification of requirements start once the first version of the game design is

finished. CALLELE et al. (2005) claim that, in a sense, the GDD is the requirements

document as defined by the preproduction team. However, the GDD leads to challenges in the

accuracy and reliability of the identified requirements. CALLELE et al. (2005) assert that by

its nature as a creative work, a game design document is replete with implied information

because significant elements of the game design documentation are informal, often with

substantial visual content. Identifying these implications requires careful analysis,

9

understanding the ramifications of such implications require significant domain knowledge. If

one attempts to formalize this document, they must understand large portions of both the

preproduction and production realms, in other words, domain knowledge is required.

 According to CALLELE et al. (2005), performing and managing the transformation of

the GDD into requirements is complex. Each of these documents requires a different writing

style and a single individual may not have the requisite writing skills to author materials for

all purposes. In addition, creating the requirements document or specification document often

requires considerable a priori knowledge of the available technology so that the requirements

can be presented in context. There is also a multiplicative effect: each successive document is

larger than the prior document as the author(s) attempt to precisely capture the required

information. The authors must manage multiple stakeholder viewpoints, synthesizing a

common domain language, numerous nonfunctional requirements, and inconsistencies as the

project evolves. There are many types of requirements that are placed on a game such as

creative, functional, technical, fiscal, license and temporal requirements (BETHKE, 2003).

 CALLELE et al.’s (2005) investigation of factors leading to success or failure in video

game development suggests that many failures can be traced back to problems with the

transition from preproduction to production. There are three problems: how to transform

documentation from its preproduction form to a form that can be used as a basis for

production; how to identify implied information in preproduction documents; and how to

apply domain knowledge without hindering the creative process. They conclude that creating

documentation to support the transition from game design document through formal

requirements and specifications is difficult, requiring significant preproduction and

production domain knowledge to perform successfully. A formal process to support this

transition would likely increase the reliability of the process.

1.1.7 – Solution

 CALLELE et al. (2005) assert that requirements engineering requires the creation of a

common (domain) language (and implied world model) specific to the task at hand because of

the diversity of a game development team. Once all stakeholders fully commit to the domain

language, then a set of requirements that capture the stakeholders wants and necessities can be

generated. A common language, ontology, or vision is often mentioned as the solution to

10

communications issues between disparate stakeholders. In other words, management of the

knowledge of the various domains of the game development process is required.

 There is a lot of implied knowledge in GDDs and its materials (NIESENHAUS &

LOHMANN, 2009). CALLELE et al. (2005) assert that at least three levels of implication can

be identified from the GDD: implications that can be derived directly from the materials

presented; implications that can only be derived with the introduction of general knowledge of

the domain; and implications that can only be derived with the introduction of implementation

details such as the target architecture. I will use as an example Figure 1, which is artwork

from the game Mario vs Donkey Kong developed by Nintendo for the Game Boy Advance:

Figure 1 – Mario jumping

 The first level of implication that can be derived from the image is that Mario can

jump, how the player should see Mario, etc. In other words, what we see in the image should

be seen in the game. The implications of the second level can be: an artist making an

animation that represents the artwork, the game designer imposes restrictions to Mario jumps

such as height; how the player input will make Mario execute the jump action; what sounds

Mario makes when he jumps; etc. In other words, these implications are generally detected

and handled by the creative part of the development team. Finally, the implications of the last

level can be: since Mario can jump and land in a surface, it means that a collision and physics

system must be implemented; how much time each jump animation plays; how many frames

11

each animation has; etc. In other words, these implications are handled by the technical part of

the development team.

 Therefore, a knowledge management solution should be adopted to solve these

problems since in a single image many types of knowledge can be inferred and there are

professionals of different knowledge domains. NIESENHAUS & LOHMANN (2009)

propose that appropriate knowledge management solutions for video game development must

satisfy a number of criteria:

 Adaptable: being easily adaptable to changing project demands such as the addition

and removal of new features in a game;

 Lightweight: following the principles of simplicity and ease-of-use which means that

the advantages that the solution brings are worth the effort and time needed to learn it;

 Immediate: adding immediate benefit to the project and all its participants such as

being a knowledge repository that can easily be queried, modified and stored;

 Generic: providing a general solution for various projects which means that it can be

used in many types of video games;

 Nonrestrictive: not dictating strict procedures but fostering creativity. It means that the

ontology is simply a tool to be used by the development team.

 Ontologies are promising candidates because they can satisfy those criteria as they are

a form of structured knowledge of a domain, giving meaning to the objects and relations of

the domain. They are adaptable because you can extend a generic domain ontology to

describe a more specific domain within, they can be generic because there are generic

ontologies that can be used in a number of different domains, they can be immediate because

ontologies can be easily modified by software programs and can be used as tools to support

other software, they can be lightweight because there is software that allows smooth browsing

and editing of ontologies and they can be nonrestrictive because the users can set how rigid

the ontology structure can be. Also, ontologies can improve communication between different

disciplines because they are providing a shared understanding of the domain.

 A game development team will surely benefit from ontologies that meet these criteria;

the potential advantages they provide are many. As ontologies provide a shared and

12

consensual vocabulary, concepts and ideas from a game will have an unambiguous meaning

and their relations will be explicitly exposed to all team members. The ontology will fill the

communication gaps between the team members as they can communicate without

misunderstandings since the team agreed to such vocabulary. Another advantage is the fact

that it is a shared knowledge repository, team members can query the ontology for any doubts

they have regarding certain concepts of the game in the event of a member being

uncommunicable and his knowledge is required. Also, the knowledge repository will increase

the speed of the development process because, according to SCHELL (2014), as real-world

designer and developers work without a standardized vocabulary, whenever there is an

ambiguity in some concepts the designer have to stop his work and explain what those

concepts mean. Ontologies can be easily modified and support evolution mechanisms such as

version control making them an appropriate form of documentation for the iterative and

dynamic nature of the development process since the user will be able to see previous

versions of the ontology enabling developers to see the rationale behind the game design

changes. Finally, because of the formalism an ontology possess, automatic reasoning on them

can be performed inferring implicit knowledge. This can help designers and other team

members to find flaws in the game design, assets that needs to be made, patterns, etc. Even

THORN (2013) asserts that a computer needs more formal, concrete, and explicit definitions

to be given for all concepts that are to be found throughout the game. It demands that there is

a systematic and precise linguistic means of breaking down reality conceptually to say what

exists. A way of dividing up and cataloguing the world, in other words, an ontology.

 Therefore, this work has the objective to introduce an ontology that provides a

common vocabulary and assists in the transition between preproduction and production

phases of the game development process by helping the identification implied knowledge in

GDDs. Thus, it makes the gathering of requirements more accurate and reliable and, in

consequence, mitigates several problems in the game development process. The ontology will

be called the Video Game Development Ontology (VGDO) and it will be designed with the

design and programming teams as the intended end-users.

1.2 – Objectives

 The objectives of this work are:

13

 To propose an ontology that provides a common vocabulary and helps in the

identification of technical requirements in the game design;

 To implement the ontology in an ontology representation language;

 To validate the ontology.

1.3 – Hypothesis

 The hypothesis of this work is:

 It is possible to identify knowledge, from other domains present in the game

development process, which is hidden implicitly in the game designer knowledge

(images, videos, documents) using an ontology.

 Thus, to arrive at an answer I need to make a new ontology and validate it.

1.4 – Organization

 This dissertation is organized as such:

 Chapters 2, 3 and 4 compose the theoretical basis of the work. Chapter 2 discusses the

concepts of ontologies. Chapter 3 discusses video games. Those are discussed in great detail

in order to understand what they are, what are they made of and how they are made. Chapter 4

presents related work regarding the proposal of knowledge structures to describe games and

application of ontologies are discussed.

 Chapter 5 presents the methodology of construction of the ontology.

 Chapter 6 presents the specification of the ontology. Here the ontology purpose and

scope are defined and the main terms to be used are identified.

 Chapter 7 and 8 presents the conceptualization of the ontology.

 Chapter 9 presents the implementation of the ontology. Here the ontology structure is

formalized and implemented in an ontology representation language.

 Chapter 10 presents the evaluation of the ontology. Here the ontology is validated

following an evaluation process.

 Finally, in the conclusion the potential many uses of the ontology in the game

development process are discussed as well as the limitation of the work.

14

Chapter 2 – Ontologies

 In this chapter, I will talk about ontologies and the relevant concepts surrounding it.

First, I will talk about the importance of knowledge nowadays since an ontology is a formal

description of shared knowledge in a domain. Second, I will talk about its evolution through

history to provide the context in which it is used in Computer Science. Third, ontologies

characteristics and potential applications will be presented. Finally, ontological engineering

will be detailed and explained.

2.1 – Knowledge

 “Knowledge is power”. This is a famous aphorism found in the Meditations Sacrae

(1597) written by Sir Francis Bacon, one of the founders of empiricism. It has great

significance because the fact that many of humanity technological advancements were

achieved because of the culmination of knowledge developed through the centuries and new

knowledge derived or reasoned from it. Knowledge is so important and valuable nowadays

that we have laws that protect intellectual property, patents that grant exclusivity rights to a

certain idea or invention and corporations making their own knowledge secret. Depending on

the domain of the subject, a person who has extensive knowledge of the domain can be worth

millions and is highly desired in any kind of organization.

 Companies realize more and more that the knowledge they possess (also known as

corporate memory) is of essential importance for successful operation on the market. Such

knowledge should be accessible for the appropriate people and should be maintained to be

always up-to-date (STUDER et al., 1998). Therefore, knowledge is now part of the capital

and resources of organizations, and an efficient information system is a vital asset. In the

kingdom of information, knowledge is king (GANDON, 2010). One of the definitions of

knowledge is that it is the understanding of a subject area. It includes concepts and facts about

that subject area, as well as relations among them and mechanisms for how they are combined

to solve problems in that area. (GAŠEVIC et al., 2009a)

 The problem with knowledge is that its “power” is not easily attainable since it is

intangible thus making it hard to represent formally. First, not all knowledge can be

represented in a written or electronic form, because some knowledge is abstract and

15

subjective making it hard to capture its semantics or the domain of the subject dos not have an

adequate vocabulary to communicate the knowledge.

 Second, it is hard to acquire knowledge from knowledge sources. People might not be

able to understand and learn the knowledge already available in books or the Internet because

of many reasons: the vocabulary may cause ambiguity, how the knowledge is structured or

how the knowledge is communicated to the reader. The knowledge can be perceived as

incoherent and incomprehensible. Relevant knowledge items can appear in a multitude of

different document formats: text documents, spreadsheets, presentation slides, database

entries, Web pages, construction drawings, or email, to name but a few. The challenge lies in

how you handle the knowledge (STAAB et al., 2001).

 Finally, many people mistake possessing information as the same thing as possessing

knowledge. Raw information in large quantities does not by itself solve business problems,

produce value, or provide competitive advantage. Information is useless without

understanding of how to apply it effectively. But with the volume of information available

increasing rapidly, turning information into useful knowledge has become a major problem

(FENSEL, 2003).

 The field of Knowledge Engineering (KE) exists to solve those issues regarding

knowledge. KE is a broad research domain where the core issues include knowledge

acquisition and the modeling of knowledge. Modeling knowledge consists in representing it in

order to store it, to communicate it or to externally manipulate it (GANDON, 2010). The term

KE is often associated with the development of expert-systems, involving methodologies as

well as knowledge representation techniques (AHMED, 2008) and the people who perform

them are knowledge engineers.

 In KE, a number of activities were developed to be used in the development of

practical knowledge bases: acquisition of human knowledge (from human experts or from

other sources), understanding it properly, transformation into a form suitable for applying

various knowledge representation formalisms, encoding it in the knowledge base using

appropriate representation techniques, languages, and tools, verification and validation of

knowledge by running the practical intelligent system that relies on it, and maintenance of the

knowledge over time (GAŠEVIC et al., 2009a).

16

 Knowledge representation, one of the core issues of KE, raises the problem of the

choice of a representation formalism that allows us to capture the semantics at play in the

targeted pieces of knowledge. One approach that emerged in the late 80s is based on the

concept of ontologies (GANDON, 2010). It has appeared with the aim of sharing and reusing

knowledge in KE (JAZIRI & GARGOURI, 2010).

 However, before talking about the role of ontologies in various domains of

applications in more detail, it is necessary to understand the origin of this concept and the

history behind its adoption in KE and Computer Science (CS).

2.2 – History of Ontologies

 The history of ontologies in philosophy and CS are discussed in the works of

GANDON (2010), CORCHO et al. (2006), JAZIRI & GARGOURI (2010), USCHOLD &

TATE (1998) and especially in great detail in Guizzardi thesis (2005, Chapter 3). In this

section, I will provide a brief history of ontologies based on the content of the mentioned

works.

 The term “ontology” was constructed from the Greek Ontos (“what is”, “what exists”)

and Logos (“the discourse, “the study”). In philosophy, ontology is a fundamental branch of

metaphysics, concerned with the concept of existence, the basic categories of existing and the

most general properties of being. As a branch of philosophy, Ontology is the metaphysical

study of the nature and relations of existence (GANDON, 2010, GUIZZARDI, 2005).

 The ancient Greeks were concerned with the question: “what is the essence of things

through the changes?” Many different answers to this question were proposed by Greek

philosophers, from Parmenides of Elea, the precursor of ontology, to Aristotle, author of

Metaphysics (CORCHO et al., 2006).

 In his study of the essence of things, Aristotle distinguished different modes of being

to establish a system of categories (substance, quality, quantity, relation, action, passion, place

and time) to classify anything that may be predicated (said) about anything in the world. The

categorization proposed by Aristotle was widely accepted until the eighteenth century

(CORCHO et al., 2006).

17

 In the modern age, Immanuel Kant (1724-1804) asserted that the essence of things is

determined not only by the things themselves, but also by the contribution of whoever

perceives and understands them. According to Kant, a key question is “what structures does

our mind use to capture the reality?” The answer to this question leads to Kant’s

categorization. Kant’s framework is organized into four classes, each of which presents a

triadic pattern: quantity (unity, plurality, totality), quality (reality, negation, limitation),

relation (inherence, causality, community) and modality (possibility, existence, necessity)

(CORCHO et al., 2006). A classification of categories, such as the ones mentioned above, is

known as an ontology by philosophers (GUARINO, 1998).

 The notion and the software artifact that we now name “ontologies” existed in

computer science far before the term “ontology” was imported from philosophy. Back in the

70s, the notion of ontology was already used without being named as such and under various

names in different knowledge representation frameworks of symbolic artificial intelligence.

Even the relational schema of a database is a kind of ontological knowledge (GANDON,

2010).

 In the beginning of the 1990s, ontologies have become a popular research topic

investigated by several Artificial Intelligence (AI) research communities, including KE,

natural-language processing and knowledge representation (STUDER et al., 1998). Although

ontology as a science comes from philosophy, it has mainly been developed by the AI

community. This community has focused on developing reasoning mechanisms that would

alleviate the task of enriching an ontology by addition of new concepts (JAZIRI &

GARGOURI, 2010). Therefore, one can say that CS ontologies are children of AI that

recently came to maturity and powerful conceptual tools of knowledge modeling (GANDON,

2010).

 As time passed, the notion of ontology also became widespread in fields such as

intelligent information integration, information retrieval on the Internet, and knowledge

management. This is also caused many definitions of ontology to be proposed and evolved

over time in those different fields (JAZIRI & GARGOURI, 2010). The reason for ontologies

being so popular is in large part because what they promise: a shared and common

understanding of some domain that can be communicated across people and computers. The

main motivation behind ontologies is that they allow for sharing and reuse of knowledge

18

bodies in computational form (STUDER et al., 1998). At this point, it is very important to

take into account that ‘an ontology’ is not the same as ‘ontology’. An ontology is a

classification of categories, whereas ontology is a branch of philosophy (CORCHO et al.,

2006).

 According to USCHOLD & TATE (1998), there was a highly varied and inconsistent

usage of a wide variety of terms, most notably, “ontology”, rendering cross-discipline

communication difficult. However, this issue was mitigated because subsequent workshops

that addressed various aspects of the field, including theoretical issues, methodologies for

building ontologies, as well as specific applications in government and industry. This caused

progress to be made toward understanding the commonality among the disciplines.

 As mentioned above, in the field of CS there are several definitions for the term

‘ontology’. It is important to understand the different aspects of ontologies that each field of

CS use in order to define what an ontology really is, as well as to understand the common

characteristics that those different interpretations have. Therefore, in the next section, I will

explore some of the most important definitions that ontologies have in CS in order to answer

the question “What is an ontology in CS?”

2.3 – Definitions of Ontology in Computer Science

 According to GANDON (2010), the delay to reach a precise definition for a definition

of the term “ontology” is probably largely because of the very abstract nature of the concept

of ontologies. Once used outside philosophy, several interpretations of the concept of

ontology are possible. The term ontology has an unquestionable definite meaning in the

science of philosophy. Once imported into other domains, it loses some of its characteristics

and gains others without any of these phenomena to be explained and defined by the

borrowers (JAZIRI & GARGOURI, 2010).

 In CS, one of the first definitions of ontology was “an ontology defines the basic terms

and relations comprising the vocabulary of a topic area as well as the rules for combining

terms and relations to define extensions to the vocabulary” (NECHES et al., 1991).

 A few years later, GRUBER (1995) propose a new definition: “An ontology is an

explicit specification of a conceptualization”. A conceptualization is viewed as an abstract,

19

simplified view of the world to be formally represented (GRUBER, 1995). This definition

became the most quoted in literature and by the ontology community.

 BORST (1997) has given an elaboration of GRUBER’s definition, as follows:

“Ontologies are defined as formal specification of a shared conceptualization”. A year later,

GRUBER’s and BORST’s definitions have been merged and explained by STUDER et al.

(1998): “Ontologies are explicit formal specification of a shared conceptualization”.

According to the same authors, conceptualization refers to an abstract model of some

phenomenon in the world by having identified the relevant concepts of that phenomenon.

Explicit means that the type of concepts used, and the constraints on their use are explicitly

defined. Formal refers to the fact that the ontology should be machine readable, which

excludes natural language. Shared reflects the notion that an ontology captures consensual

knowledge, that is, it is not private for some individuals, but accepted by a group.

 In AI, the term “ontology” has largely come to mean one of two related things

(CHANDRASEKARAN et al., 1999): a representation vocabulary, often specialized to some

domain or subject matter or a body of knowledge describing some particular domain. In both

cases, there is always an associated underlying data structure that represents the ontology

(GAŠEVIC et al., 2009b).

 The artificial intelligence interpretation of an ontology differs from the philosophical

understanding. While ontology for a philosopher is a particular system of categories

accounting for a certain vision of the world (GUARINO, 1998), independent of a particular

language, for the artificial intelligence researcher, it refers to a particular artifact constituted

by a specific vocabulary (NECHES et al., 1991, CHANDRASEKARAN et al., 1999) that

describes a certain domain by explicitly constraining the intended meaning of the vocabulary

words (JAZIRI & GARGOURI, 2010).

 According to JAZIRI & GARGOURI (2010), the common understanding of all the

definitions and interpretations of an ontology orbit around two main characteristics: formality

and consensus. All of the ontology definitions accentuate the importance of representing the

knowledge in a consensual manner. Not the same thing can be said about formality

requirements because some authors choosing different requirements. Nevertheless, the general

vision is that ontologies should be machine-readable, if not directly human readable, they

20

should at least contain plain text notices or explanations of concepts and relations to the

human user.

 While analyzing the above most relevant definitions of ontology, JAZIRI &

GARGOURI (2010) assert that there is consensus among the ontology community and so

there is not confusion about its usage. Different definitions provide different and

complementary points of view of the same reality. The authors conclude their analysis by

asserting that ontologies aim to capture consensual knowledge in a generic and formal way,

and that they may be reused and shared across applications and by groups of people.

 JAZIRI & GARGOURI (2010), GANDON (2010) and GUIZZARDI (2005, Chapter

3) provide a more complete compilation of definitions as well as a deeper discussion about

their differences and similarities. For this dissertation I will use (STUDER et al., 1998)

definition as a point of reference because how it adopts the most important characteristics an

ontology can have and how each characteristic is thoroughly explained.

 Regardless of the domain they are used for, ontologies are essentially knowledge

artifacts. This means that the properties they have and the advantages they bring as knowledge

artifacts apply when being used as software artifacts in CS or as an artifact in another specific

domain. Therefore, in the next section, I will first present the goals that ontologies aim to

achieve as knowledge artifacts and the advantages they bring when applied in a particular

domain.

2.4 – Ontologies as Knowledge Artifacts

 First, the question “Why would someone want to develop an ontology?” made by

NOY & MCGUINESS (2001) need to be answered. In order to do so, I will present the goals

ontologies aim to achieve and I will explain how ontologies help to achieve them.

 Knowledge sharing and reuse

 The two most important goals of ontologies that I identified in my research are

knowledge sharing and knowledge reuse. Those terms appeared in the articles of

GRÜNINGER & FOX (1995), CHANDRASEKARAN et al. (1999), CORCHO et al. (2003,

2006), NOY & MCGUINNESS (2001), RUIZ & HILERA (2006), GAŠEVIC et al. (2009b)

and many others.

21

 GAŠEVIC et al. (2009b) claim that the major purpose of ontologies is not to serve as

vocabularies and taxonomies; but to provide knowledge sharing and knowledge reuse to

applications. Therefore, ontologies provide a description of the concepts and relationships that

can exist in a domain and that can be shared and reused among intelligent agents and

applications. This reuse can provide the basis for semantic interoperability between different

systems (GANDON, 2010). Semantic interoperability is a knowledge-level concept that

provides the ability to bridge semantic conflicts arising from differences in implicit meanings,

perspectives, and assumptions (JAZIRI & GARGOURI, 2010).

 According to GAŠEVIC et al. (2009b) and USCHOLD & GRÜNINGER (1996),

knowledge sharing and reuse is still not easy in practice, even if an ontology is readily

available for a given purpose, which severely limits interoperability. First, there are several

different languages for representing ontologies, and knowledge base development tools may

not support the language used to develop the ontology. Second, competing approaches and

working groups that create different technologies, traditions, and cultures. Third, different

ontologies have been developed to describe the same topic or domain. Finally, the reusability-

usability trade-off problem applied to the ontology field states that the more reusable an

ontology is, the less usable, it is, and vice versa. It means that the more generic ontologies are,

the more reusable they become, because they do not make any commitment to a particular

domain. However, at the same time, applying such ontology in a particular application

requires considerable refinement and adaptation (GÓMEZ-PÉREZ & BENJAMINS, 1999).

 Ambiguity elimination

 According to RUIZ & HILERA (2006) and GANDON (2010), ontologies are

considered a powerful tool to reduce conceptual and terminological ambiguity. They specify

terms with unambiguous meanings, with semantics independent of reader and context.

Translating the terms in an ontology from one language to another does not change it

conceptually. Thus, an ontology provides a vocabulary and a machine processable common

understanding of the topics that the terms denote. The meanings of the terms in an ontology

can be communicated between users and applications (GAŠEVIC et al., 2009b).

22

 Clarifying the knowledge structure

 The advantage of clarifying the knowledge structure is that it makes the domain

assumptions explicit. Implicit knowledge made explicit (NOY & MCGUINNESS, 2001,

RUIZ & HILERA, 2006). Any knowledge base built is based on a conceptualization that is

usually owned by its builders and it is usually implicit. An ontology is an explicit

representation of the very implicit knowledge. It contributes greatly to knowledge reuse and

sharing considering that implicit knowledge prevents sharing and reuse (MIZOGUCHI,

2001).

 Ease of communication

 USCHOLD & JASPER (1999) claim that, fundamentally, ontologies are used to

improve communication between either human or computers. Since they provide a consensual

vocabulary, it solves problems like the lack of a shared understanding that leads to poor

communication within and between these people and their organizations that arise because

different needs and backgrounds contexts, widely varying viewpoints and assumptions

regarding what is essentially the same subject matter. Each uses different jargon; each may

have differing, overlapping and/or mismatched concepts, structures and methods (USCHOLD

& GRUNINGER 1996). When all participants in the communication process commit to the

definitions provided by the ontology vocabulary, it eliminates those problems by providing an

agreed communication protocol (STUDER et al., 1998).

 Metamodel

 Being shared world models, content theories, representational artifacts of essential

knowledge about topics and domains, and reusable building blocks of knowledge-based

systems, ontologies are also tightly coupled to other concepts related to domain/world

modeling, such as metadata and metamodeling. A metamodel is an explicit model of the

constructs and rules needed to build specific models within a domain of interest (GAŠEVIC et

al., 2009b).

 MIZOGUCHI (2001) claims that ontologies provide meta-model functionality. A

model is usually built in the computer as an abstraction of the domain. And, an ontology

provides us with concepts and relations among them which are used as building blocks of the

23

model. Thus, an ontology specifies the models to build by giving guidelines and constraints

which should be satisfied.

 Domain knowledge, operational knowledge and instance knowledge

 NOY & MCGUINESS (2001) assert that ontologies help separate domain knowledge

from the operational (reasoning) knowledge. While ontologies are the repositories of the

declarative knowledge and rules of the domain, problem solving methods (PSMs) specify the

reasoning to solve concrete problems in a procedural way (JAZIRI & GARGOURI 2010,

GÓMEZ-PÉREZ & BENJAMINS, 1999).

 WONGTHONGTHAM et al. (2009) note that the domain knowledge is separate from

the instance knowledge. The instance knowledge varies depending on its use for a particular

project. The domain knowledge is quite definite, while the instance knowledge is particular to

the problem domain and developmental domain in a project.

 In the next section, I will present the potential applications of ontologies in the areas

of KE, CS and Software Engineering as well as examples of existing ontologies.

2.5 – Applications of Ontologies

 Ontologies have become a major conceptual backbone for a broad spectrum of

applications. They are not developed just for knowledge-based systems, but for all software

systems – all software needs models of the world, and hence can make use of ontologies at

design time (CHANDRASEKARAN et al., 1999). The major application fields for ontologies

nowadays include knowledge management, e-learning, e-commerce, and integration of Web

resources, intranet documents, and databases. They also include cooperation of Web services

with enterprise applications, natural-language processing, bio-informatics tools, intelligent

information retrieval (especially from the Internet), virtual organizations, and simulation and

modeling (GAŠEVIC et al., 2009b, GANDON, 2010).

 Ontologies are very popular mainly within research fields that require a knowledge-

intensive approach to their methodologies and system development, such as knowledge

engineering (GRUBER, 1993, USCHOLD & GRUNINGER, 1996, GUARINO, 1998,

GÓMEZ-PÉREZ & BENJAMINS 1999), knowledge representation, qualitative modeling,

24

language engineering, database design, information modeling, information integration,

knowledge management and organization etc. (JAZIRI & FAIEZ, 2010).

 According to USCHOLD & TATE (1998), ontologies have been used within

commercial applications already. However, details are rarely disseminated. This is because

commercial sensitivity, or the fact that applications are often deeply embedded, so it is

difficult to demonstrate clearly the important benefits of an ontology in a practical context.

 Although an ontology can possibly be used as a solution to represent all the concepts

and the relationships characterizing a specific field (JAZIRI & GARGOURI, 2010), the use of

one ontology for all application contexts will never be possible. Neither will an ontology be

suitable for all subjects and domains nor will such a large and heterogeneous community as

the Web community ever agree on a complex ontology for describing all their issues

(FENSEL, 2003).

 GANDON (2010) lists some existing ontologies and their subjects. Table 1 provides a

list with some of these. Note how different the domains they describe are from each other.

Table 1 – List of some existing ontologies

Ontology Description

Bibliographic ontology Reuses data types taken from ISO standard.

SUMO
2
 It is the largest formal public ontology in existence today. Written in

SUO-KIF. It is free and owned by the IEEE.

CHEMICALS ontology Contains knowledge within the domain of chemical elements and

crystalline structures.

CoreLex Ontology for lexical semantic database and tagset nouns.

EngMath Contains ontologies for mathematics and engineering.

Gene Ontology An ontology for molecular functions, biological processes and cellular

components.

Gentology Ontology for genealogy applications

Open Cyc An upper ontology containing concepts of common knowledge.

2
 http://www.adampease.org/OP/

25

2.5.1 – Ontologies in Knowledge Engineering

 The role of ontologies in the KE process is to facilitate three activities: the

construction or modelling of the domain knowledge into a domain model; the analysis of the

domain knowledge and its implementation. They also influence problem-solving knowledge

(STUDER et al., 1998).

 Knowledge management is a popular and commercially successful application of KE

(STUDER et al., 1998). Knowledge management is concerned with acquiring, maintaining,

and accessing knowledge of an organization. It aims to exploit an organization’s intellectual

assets for greater productivity, new value, and increased competitiveness (FENSEL, 2003).

 GAŠEVIC et al. (2009c) claim that the Semantic Web has been one of the hottest

R&D topics in recent years in the AI community, as well as in the Internet community – the

Semantic Web is an important W3C activity. According to BERNERS-LEE (2000) and

BERNERS-LEE et al. (2001), the Semantic Web is an extension of the current Web in which

information is given well-defined meaning, better enabling computers and people to work in

cooperation.

 GAŠEVIC et al. (2009c) assert that the Semantic Web is about how to implement

reliable, large-scale interoperation of Web services, to make such services computer

interpretable – to create a Web of machine-understandable and interoperable services that

intelligent agents can discover, execute, and compose automatically.

 Ontologies play multiple roles in the architecture of the Semantic Web (GAŠEVIC et

al., 2009c):

 They enable Web-based knowledge processing, sharing, and reuse between

applications, by the sharing of common concepts and the specialization of the concepts

and vocabulary for reuse across multiple applications;

 They establish further levels of interoperability (semantic interoperability) on the Web

in terms of mappings between terms within the data, which requires content analysis;

 They add a further representation and inference layer on top of the Web’s current

layers;

26

2.5.2 – Ontologies in Computer Science

 In CS, an ontology is a software artifact. It is a computer representation of chosen

properties of existing things; this representation being usually done in a formalism allowing

for some form of rational and automated reasoning. An ontology is the result of an exhaustive

and rigorous formulation of the conceptualization of a domain. This conceptualization is often

said to be partial because it is impossible that one could capture the full complexity of a

domain in such formalisms (GANDON, 2010).

 Formerly reserved to expert systems that simulate human reasoning in specific areas,

ontologies are now integrated in a large family of information systems. They are used to:

describe and deal with multimedia resources; ground the interoperability of network

applications; pilot automatic processing of natural language; build multilingual and

intercultural solutions; allow integration of heterogeneous sources of information; describe

complex interaction protocols; check the consistency of models; support temporal and spatial

reasoning; make logical approximations; and so on (GANDON, 2010).

 In the context of building an information system, this lack of a shared understanding

leads to difficulties in identifying requirements and thus in the definition of a specification of

the system (USCHOLD & GRUNINGER, 1996). The lack of a precise and complete

specification is harmful for the development of an information system because its modeling

requires a perfect knowledge of the studied domain and a deep analysis of the user’s

requirements. This task becomes very difficult because the current applications become

increasingly complex and use an enormous quantity of concepts coming from heterogeneous

sources (JAZIRI & GARGOURI, 2010). Another major hindrance to successful system

development projects is the lack of consistent terminology. Since systems development is a

collaborative activity, involving not only system developers but also domain experts and user

representatives, the understanding of each other is a prerequisite for an effective collaboration

(HALLBERG et al., 2014). Finally, any software that does anything useful cannot be written

without a commitment to a model of a relevant world, i.e., commitments to entities,

properties, and relations in that world (CHANDRASEKARAN et al., 1999, GUIZZARDI et

al., 2002).

 The introduction of an ontology in an information system aims at reducing or even

eliminating the conceptual and terminological confusion and at aligning our understanding in

27

order to improve communication, sharing, interoperability and the degree of possible reuse.

Ontologies in computer science offer a unifying framework and provide primitives i.e., basic

elements, building blocks for improving communication between people, between people and

systems, and between systems (GANDON, 2010). Well-structured and well-developed

ontologies enable various kinds of consistency checking from applications (e.g., type and

value checking for ontologies that include class properties and restrictions) (GAŠEVIC et al.,

2009b).

2.5.3 – Ontologies in Software Engineering

 Software Engineering (SE) is the “application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software”. In order to cope with

the complexity inherent to software, there has been a constant drive to raise the level of

abstraction through modeling and higher-level programming languages (AHMED, 2008).

 One of the main benefits of the use of ontologies in software development is the

opportunity to adopt a reuse-based approach to the requirements engineering. In traditional

SE, for each new application to be built, a new conceptualization is developed. This approach

is extremely useful since elicitation is the activity that requires most effort in the software

development. Experts are scarce and costly resources but they are essential to this activity.

Therefore, it is important to share and reuse the captured knowledge (GUIZZARDI et al.,

2002).

 There are many works in the SE community that identify places in software cycle

(requirement elicitation, for example) where ontologies can contribute to improve the current

state of SE (GAŠEVIĆ et al., 2009, HAPPEL & SEEDORF, 2006, AHMED, 2008).

 The system engineering benefits when using ontology-based development can be

summarized as follows (USCHOLD & JASPER, 1999, USCHOLD & GRUNINGER, 1996):

 Communication: ontologies allow for the reduction of conceptual and terminological

ambiguity, as they provide us with a framework for unification. Ontologies also permit

an increased consistency, eliminating ambiguity and integrating distinct user

viewpoints

28

 Interoperability: When different users or systems need to exchange data or when

different software tools are used, the concept of interoperability has some important

repercussions. In this sense, the ontologies can act as an “interlingua”, that is, they can

be used to support the translation between different languages and representations, as

it is more efficient to have a translator for each part involved (with an exchange

ontology) than to design a translator for each pair of involved parts (languages or

representations).

 Reusability: the ontology encodes domain information (including software

components) in such way that sharing and reuse are possible.

 Search: an ontology may be used as metadata serving as an index into a repository of

information.

 Knowledge acquisition: the ontology guides knowledge acquisition if it is used as the

starting point of the knowledge acquisition process because it provides terms and

concepts of the domain the user is researching.

 Reliability: the ontology allows the automation of consistency checking resulting in

more reliable software.

 Specification: the ontology can assist the process of identifying requirements and

defining specification for an IT system.

 Maintenance: use of ontologies in system development, or as part of an end

application, can render maintenance easier in a number of ways. Systems which are

built using explicit ontologies serve to improve software documentation which reduces

maintenance costs.

 In the next section, I will present the components that make an ontology.

2.6 – What Are Ontologies Made Of?

 Ontologies define with different levels of formality the meaning of the concepts

(terms) and the relationships between them. The concepts and relationships defined in the

ontology form a vocabulary that is used to model the domain (STUDER et al., 1998).

29

 They are usually organized in taxonomies which are a hierarchical organization of the

relevant concepts and the relevant relationships between these concepts, as well as rules and

axioms that constrain these representations (GANDON, 2010). A good taxonomy should

separate its corresponding entities into mutually exclusive, unambiguous groups and

subgroups that, taken together, include all possibilities. It should also be simple, easy to

remember, and easy to use. Every ontology provides a taxonomy in a machine-readable and

machine-processable form (GAŠEVIC et al., 2009b). It is important not to confuse ontologies

and taxonomies. Ontological knowledge goes far beyond the taxonomical knowledge since it

is a full specification of a domain with complete formal definitions of the concepts of the

domain (GANDON, 2010).

 The set of all the properties of a concept is called the intension of the concept, and the

set of all the objects or beings that are instances of this concept is called the extension of the

concept. In ontologies, the intensions are usually organized in a taxonomy or hierarchy of

types. The act of placing a class below another is called subsumption. It is also the name of

the link between a sub-category and a parent category. The importance of taxonomic

organization is justified by the fact that classification and identification and categorization are

very common inferences that we use all day long (GANDON, 2010).

 Despite the representation language being used, ontologies share a common set of

characteristics and components in order to make knowledge representation and inference tasks

possible. The following components of ontologies are: concepts, slots, relationships, axioms,

instances and operations (JAZIRI & GARGOURI, 2010).

 Concepts: Also called classes. They are the description of the common features that a

set of individuals/objects have. Concepts are general, abstract or concrete notions

within a domain of discourse (GÓMEZ-PÉREZ & BENJAMINS, 1999, NOY &

MCGUINNESS, 2001). They are similar to the classes in the object-oriented modeling

paradigm. A concept can have sub-concepts using inheritance relationships. In the

frame-based knowledge representation paradigm, metaclasses can also be defined.

Metaclasses are classes whose instances are classes. They usually allow for gradations

of meaning, since they establish different layers of classes in the ontology where they

are defined. (CORCHO et al., 2006)

30

 Relations: Represent a type of association between concepts of the domain. Ontologies

usually contain binary relations. The first argument is known as the domain of the

relation, and the second argument is the range. Binary relations are sometimes used to

express concept attributes (slots). Attributes are usually distinguished from relations

because their range is a datatype (CORCHO et al., 2006).

 Slots: Also called properties, attributes or roles. They describe the various features and

attributes of a concept (and its instances). Facets (sometimes called role restrictions)

describe restrictions on slots (NOY & MCGUINNESS, 2001).

 Axioms: Also called constraints. Are formal sentences that are always true

(GUARINO, 1998, GÓMEZ-PÉREZ & BENJAMINS, 1999). They specify some

constraints on the ontology elements (they constrain their interpretation) and are

normally used to represent knowledge that cannot be formally defined by the other

components. In addition, they are used to verify the consistency of the ontology itself

or the consistency of the knowledge stored in a knowledge base and to infer new

knowledge (CORCHO et al., 2006).

 Instances: They are individuals holding concept definitions and facts representing

relationships between individuals. An ontology together with a set of individuals

instances of classes constitutes a knowledge base (NOY & MCGUINNESS, 2001,

GÓMEZ-PÉREZ & BENJAMINS, 1999).

 Operations/Functions/Rules: Rules are generally used to infer knowledge in the

ontology, such as attribute values, relation instances, etc. Ontological representation

languages enable the execution of a certain basic set of operations to cover updating

and querying tasks on ontologies. Likewise, new concepts can be defined, properties

related to concepts and values changed or added during the entire life of the ontology.

 In the next section, I will present the difference between ontologies, models and data

models.

31

2.7 – Differences between Ontologies and Models

 In the SE and Information Systems (IS) communities, perhaps because of the historical

importance of conceptual modeling, exists frequent confusion between ontology and

conceptual models (AHMED, 2008). It is important to establish the difference between them.

 A most fundamental feature of a model is that it can be descriptive or prescriptive

(SEIDEWITZ, 2003). In the former case, the model describes reality, but reality is not

constructed from it. In the latter case, the model prescribes the structure or behavior of reality

and reality is constructed according to the model; that is, the model is a specification of reality

(AßMANN et al., 2006).

 AßMANN et al. (2006) defines that an ontology is a shared, descriptive, structural

model, representing reality by a set of concepts, their interrelations, and constraints under the

open-world assumption. They also define that a specification model is a prescriptive model,

representing a set of artifacts by a set of concepts, their interrelations, and constraints under

the closed-world assumption. Finally, they assume that specification models focus on the

specification, control, and generation of systems; while ontologies focus on description and

conceptualization (structural modelling) of things. Both kinds of models have in common the

qualities of abstraction and causal connection.

 SPYNS et al. (2002) establish that the main difference between the data models and

ontologies is that while the former are task specific and implementation oriented, the latter

should be as much generic and task independent as possible. Also, they assert that, unlike data

models, the fundamental asset of ontologies is their relative independence of particular

applications, i.e., an ontology consists of relatively generic knowledge that can be reused by

different kinds of applications/tasks.

 There are several important differences between ontologies and database schemas

described by FENSEL (2003) and RUIZ & HILERA (2006):

 Languages for defining and representing ontologies (OWL, KIF, etc.) are syntactically

and semantically richer than common approaches for databases (SQL, etc.).

 The knowledge that is described by an ontology consists of semi-structured

information (that is, text in natural language) as opposed to the very structured data of

the database (tables, classes of objects, etc.).

32

 An ontology must be a shared and consensual conceptualization because it is used for

information sharing and exchange. Identifiers in a database schema are used

specifically for a concrete system and do not have the need to make an effort to reach

the equivalent of ontological agreements. Also, the conceptualization and the

vocabulary of a data model are not intended a prori to be shared by other applications

(SPYNS et al., 2002).

 An ontology provides a domain theory and not the structure of a data container.

 An important property of ontologies is the so-called open-world assumption (OWA).

It states, intuitively, that anything not explicitly expressed by an ontology is unknown. Hence,

ontologies use a form of partial description or under-specification as an important means of

abstraction. In contrast, most system models underlie the closed-world assumption (CWA)

which what has not been specified as true must be false, to restrict arbitrary extensions of the

system, which could introduce inconsistencies (AßMANN et al., 2006, SEQUEDA, 2012).

 According to SEQUEDA (2012), OWA applies when a system has incomplete

information. This is the case when we want to represent knowledge (ontologies) and want to

discover (infer) new information. For example, consider a patient's clinical history system. If

the patient's clinical history does not include a particular allergy, it would be incorrect to state

that the patient does not suffer from that allergy. It is unknown if the patient suffers from that

allergy, unless more information is given to disprove the assumption.

 On the other hand, the CWA applies when a system has complete information. This is

the case for many database applications. For example, consider a database application for

airline reservations. If a passenger is looking for a direct flight between Austin and Madrid,

and it doesn't exist in the database, then the result is "There is no direct flight between Austin

and Madrid." For this type of application, this is the expected and correct answer

(SEQUEDA, 2012).

 Diego Calvanese
3
 states that the CWA does not refer to the fact that your inference

problem can have only two answers, but to the fact that the objects in the domain of discourse

3
 https://www.linkedin.com/grp/post/119766-6026870883128270850. You must be registered in the group to see

the post.

https://www.linkedin.com/grp/post/119766-6026870883128270850

33

are only those that are explicitly mentioned in your knowledge base. In other words, under the

CWA, you cannot infer the existence of new objects. Even so, CWA can be used for

reasoning.

 Diego provides an example that illustrates the difference of how reasoning works in

CWA and OWA. Suppose you assert an axiom stating that every person has a father, who is a

person, and that the only person you know of is John. If someone asks for the name of those

persons who have a grand-grand-father, by using the axiom you can infer that "John" is a

correct answer, even if you don't know who the grand-grandfather of John is. Now, if you also

ask for the name of the grand-grandfather of John, under the OWA you cannot return any

answer, since this is an unknown object in your domain of discourse. Instead, under the CWA,

since the only person you know of is John, and the grand-grandfather of John must exist and

be a person (due to the axiom), you can infer that the grand-grandfather of John must be John

itself.

 Sequeda (2012) also provides a simple example that illustrates another difference

between OWA and CWA. Consider the following statement: "Juan is a citizen of the USA".

The answer to "Is Juan a citizen of Colombia?" under a CWA is no, whereas under the OWA

is unknown. Now, the following statements are true: "a person can only be citizen of one

country" and "Juan is a citizen of Colombia". In a CWA system, this would be an error

because we previously stated that person can only be a citizen of one country and we assume

that USA and Colombia are different countries. In an OWA system, instead of generating an

error, it would infer the following logic: "If a person can only be citizen of one country, and if

Juan is a citizen of USA and Colombia, then USA and Colombia must be the same thing".

 In the CWA case, it is assumed that USA and Colombia are different countries. With

OWA, this is not assumed. This is called the Unique Names Assumption (UNA). CWA

systems have UNA but OWA systems do not. However, one could manually add the UNA. In

other words, if I have a list of all the countries, I would have to explicitly state that each

country is different from each other. In our example, if we add the following statement: "USA

is different from Colombia," the OWA would now generate an inconsistency (SEQUEDA,

2012).

 In the next section, I will present the different types of ontologies.

34

2.8 – Types of Ontologies

 GUARINO (1997) establishes that an ontology can be classified depending on the

level of detail. It allows distinguishing 2 types of ontology: reference ontologies (off-line) and

shareable ontologies (on-line). While a fine-grained ontology will specify more precisely the

intended meaning of a vocabulary (and therefore it can be used off-line for reference

purposes), it would be difficult to be assembled and reasoned on it (GUARINO, 1998). On the

other hand, a coarse (shareable) ontology would be much more easily shared among its clients

that already agree on the underlying conceptualization (GUARINO, 1998), and therefore it

can be used on-line to support the system’s services.

 GUARINO (1997) also claims that the level of dependence on a particular task or

point of view allows us to distinguish:

 Top-level ontologies: specify very general concepts, which are independent of a

particular problem or domain (GUARINO, 1998);

 Domain ontologies: specializes the general concepts (of top-level ontologies),

referring to a generic domain;

 Task ontologies: domain ontologies and task ontologies specialize the concepts (of

top-level ontologies), referring to a generic task or activity (GUARINO, 1998);

 Application ontologies: level further specialization is involved by describing concepts

depending on a particular domain or task and is often roles of domain or task entities

performed during a certain activity (GUARINO, 1998).

 GÓMEZ-PÉREZ & BENJAMINS (1999) simplifies the classification proposed by

GUARINO (1997) by asserting that meta-ontologies (top-level), domain ontologies and

application ontologies capture static knowledge in a problem-solving independent way,

whereas PSMs ontologies, task ontologies and domain-task ontologies are concerned with

problem solving knowledge.

 While some authors request for an ontology language to be a formal one, USCHOLD

& GRÜNINGER (1996) adopt a weak position regarding the formality requirement. The

classifications are as follows:

 Highly informal: Ontologies expressed in loosely natural language;

35

 Structured informal: Ontologies expressed in a restricted and structured form of

natural language, greatly increasing clarity by reducing ambiguity (USCHOLD &

GRUNINGER, 1996);

 Semi-formal: Ontologies expressed through an artificial language;

 Rigorously formal: Ontologies are expressed by meticulously defined terms with

formal semantics, theorems and proofs of such properties as soundness and

completeness (USCHOLD & GRUNINGER, 1996).

 There is also the distinction to be made between lightweight and heavyweight

ontologies. It is a simplification of the classification based on the level of richness of their

internal structure, whereby lightweight ontologies will be principally taxonomies, while

heavyweight ontologies are those which model a certain knowledge “in a deeper way and

provide more restrictions on domain semantics”. The former include concepts, concepts

taxonomies, relationships between concepts, and properties that describe these concepts. The

latter add axioms and constraints, in order to clarify the meaning of terms (RUIZ & HILERA,

2006). There are much more types of classifications of ontologies. Check JAZIRI &

GARGOURI (2010) and RUIZ & HILERA (2006) for a deeper discussion on the matter.

 Now that I presented what ontologies are and what are they made of, I can now talk

about how one does build an ontology. In the next section, I will present the field of

ontological engineering.

2.9 – Ontological Engineering

 Ontological engineering is a successor of knowledge engineering which has been

considered a technology for building knowledge-intensive systems. Although knowledge

engineering has contributed to eliciting expertise, organizing it into a computational structure,

and building knowledge bases, AI researchers have noticed the necessity of a more robust and

theoretically sound engineering which enables knowledge sharing/reuse and formulation of

the problem solving process itself (MIZOGUCHI, 2001). Also, to develop a really useful

ontology requires a lot of engineering effort, discipline, and rigor (GAŠEVIC et al., 2009b).

 Ontological engineering denotes a set of design principles, development processes and

activities, supporting technologies, and systematic methodologies that facilitate ontology

36

development and use throughout its life cycle – design, implementation, evaluation,

validation, maintenance, deployment, mapping, integration, sharing and reuse (GAŠEVIC et

al., 2009b).

 Unlike software engineering where there are well-documented standards for the

domain (SWEBOK - Software Engineering Body of Knowledge), there is no definition and

standardization of the life cycle of an ontology, methodologies and techniques that drive the

development of ontologies. GÓMEZ-PÉREZ et al. (1996) assert that ontological engineering

is a craft rather than a science.

 In the next section, I will present the design principles that an ontology engineer must

follow to ensure that the developed ontology satisfies certain criteria. According to (STUDER

et al., 1998), an ontology is optimal if it satisfies as much as possible all design principles.

2.10 – Ontology Design Principles

 Ontology design principles are objective criteria for guiding and evaluating ontology

designs. GRUBER (1995) identified the following five principles:

 Clarity and Objectivity: An ontology should communicate effectively the intended

meaning of defined terms. Definitions should be objective. Definitions can be stated

on formal axioms, and a complete definition (defined by necessary and sufficient

conditions) is preferred over a partial definition (defined by only necessary or

sufficient conditions). All definitions should be documented with natural language.

 Minimal encoding bias: The conceptualization should be specified at the knowledge

level without depending on a particular symbol-level encoding. Encoding bias should

be minimized, because knowledge-sharing agents may be implemented in different

representation systems and styles of representation.

 Maximum Monotonic Extendibility: An ontology should be designed to anticipate the

uses of the shared vocabulary. One should be able to define new terms for special uses

based on the existing vocabulary, in a way that does not require the revision of

existing definitions.

37

 Coherence: An ontology should be coherent: that is, it should sanction inferences that

are consistent with the definitions. If a sentence that can be inferred from the axioms

contradicts a definition or example given informally, then the ontology is inconsistent.

 Minimal ontological commitments: An ontology should make as few claims as

possible about the world being modeled, allowing the parties committed to the

ontology freedom to specialize and instantiate the ontology as needed. According to

this principle, we should not commit to a specific format for dates, for currencies, etc.,

when designing our ontologies, since such details could be different in different

systems (CORCHO et al., 2006). This principle assures maximum reusability, but

there is a well-known trade-off between reusability and usability (the more reusable,

the less usable, and vice versa) (STUDER et al., 1998).

SMITH (2006) lists fourteen principles for ontology design. Some of them are:

 Openness: An ontology should be open and available to be used by all potential users

without any constraint;

 Reusing available resources: An ontology should utilize recognized resource that

already deals with entities and operators that the ontology covers;

 Intelligible definitions: Use definitions which are both humanly intelligible (to avoid

error in human use) and formally specifiable (in order to support a type of software);

 Non-subjective definitions: When formulating definitions avoid the use of phrases that

invite subjective interpretations, for example “X may be something…”

 Some other principles have proven useful in ontology design, such as:

 Completeness (GÓMEZ-PÉREZ & BENJAMINS, 1999), which means that a

definition expressed in terms of necessary and sufficient conditions is preferred over a

partial definition (defined only through necessary or sufficient condition).

 Modularity to minimize coupling between modules (GÓMEZ-PÉREZ &

BENJAMINS, 1999). It allows more flexibility and a variety of uses, specialization of

general concept into more specific concepts, classification of concepts the similar

features to guarantee according to inheritance of such features, and standardized name

38

conventions (FENSEL, 2003). As separated modules, it is also possible to “compile

ontologies” and optimize the inferences they support (GANDON, 2010).

 The standardization of names, which proposes to use the same conventions to name

related terms, in order to ease the understanding of the ontology (CORCHO et al.,

2006).

 Ontology design, like most design problems, will require making tradeoffs among the

criteria. An apparent contradiction is between extendibility and ontological commitment. An

ontology that anticipates a range of tasks need not include vocabulary sufficient to express all

the knowledge relevant to those tasks (requiring an increased commitment to that larger

vocabulary). An extensible ontology may specify a very general theory, but include the

representational machinery to define the required specializations (GRUBER, 1995).

 NOY & MCGUINNESS (2001) conclude their work by asserting that ontology design

is a creative process and no two ontologies designed by different people would be the same.

The potential applications of the ontology and the designer’s understanding and view of the

domain will undoubtedly affect ontology design choices. The quality of the ontology can only

be assessed by using it in applications.

 Before using an ontology, we have to build it, beginning from existing applications or

from scratch. To build ontologies, several basic questions arise related to the methodologies,

languages and tools to be used in its development process (CORCHO et al., 2003):

 Which methods and methodologies can be used for building ontologies?

 Which tools support the ontology life-cycle stages?

 Which language should be used to formalize and implement an ontology?

 Therefore, in the next section, I will talk about the ontology development process by

detailing the similarities and differences between the several methodologies that exist.

2.11 – Ontology Development Methodologies

 An ontology development methodology comprises a set of established principles,

processes, practices, methods, and activities used to design, construct, evaluate, and deploy

ontologies. Several such methodologies have been reported in the literature (USCHOLD &

39

KING, 1995, GRÜNINGER & FOX, 1995, FERNÁNDEZ-LÓPEZ et al., 1997, NOY &

MCGUINNESS, 2001, GAŠEVIC et al., 2009b). As a consequence, the construction of an

ontology cannot be conducted in an improvised manner (JAZIRI & GARGOURI, 2010).

 There are several surveys about ontology development methodologies

(FERNÁNDEZ-LÓPEZ AND GÓMEZ-PÉREZ, 2002, CORCHO et al., 2003, SURE et al.,

2009, GAŠEVIC et al., 2009b). The following conclusions can be made about ontology

development methodologies:

 None of the approaches covers all the processes involved in ontology building. Most

ontology development methodologies that have been proposed to build ontologies are

focused on the development activities, especially on ontology conceptualization and

ontology implementation, and they do not pay too much attention to other important

aspects related to management, learning, merging, integration, evolution and

evaluation of ontologies;

 Some methodologies build on general software development processes and practices

and apply them to ontology development;

 There are also methodologies that exploit the idea of reusing existing ontological

knowledge in building new ontologies;

 Some of the more recently proposed methodologies are based on the idea of using

publicly available community-based knowledge to simplify and speed-up the

development of ontologies;

 Most of the approaches present some drawbacks in their uses. Some of them have not

been used by external groups and, in some cases; they have been used in a single

domain;

 Most of the approaches do not have a specific tool that gives them technological

support. Besides, none of the available tools covers all the activities necessary in

ontology building;

 There is no consensus about the best practices to adopt concerning the construction of

an ontology.

40

 According to NOY & MCGUINNESS (2001), ontology development is different from

designing classes and relations in object-oriented programming. Object-oriented programming

centers primarily around methods on classes – a programmer makes design decisions based on

the operational properties of a class, whereas an ontology designer makes these decisions

based on the structural properties of a class. As a result, a class structure and relations among

classes in an ontology are different from the structure for a similar domain in an object-

oriented program.

 NOY & MCGUINNESS (2001) state that there is not a one correct methodology for

developing ontologies. However there are some fundamentals rules in ontology design that

can help the developer to make wise design decisions. These are given as follows:

 There is no one correct way to model a domain, there are always viable alternatives.

The best solution almost always depends on the application that one has in mind and

the extensions that are anticipated;

 Ontology development is necessarily an iterative process;

 Concepts in the ontology should be close to objects (physical or logical) and

relationships in the domain of interest. These are most likely to be nouns (objects) or

verbs (relationships) in sentences that describe the domain.

 GAŠEVIC et al. (2009b) make two important observations from their brief survey of

ontology development methodologies. First, there are many common points in the various

methodologies. Step in different processes may be named differently, may also be of different

granularity, or may only partially overlap; but the processes are still very much alike. Second,

many of the principles and practices of ontology development are analogous to those of

software engineering.

 The ontology development process does not identify the order in which the activities

should be performed (FERNÁNDEZ-LÓPEZ et al., 1997). This is the role of ontology life

cycle, which identifies the set of stages through which the ontology moves during its lifetime,

describes which activities are performed during each stage and how the stages are related

(FERNÁNDEZ-LÓPEZ et al., 1997, CORCHO et al., 2006). Each ontology building

methodology may have a different cycle with different stages. Those activities and the life

41

cycle will be detailed more thoroughly in Chapter 5, where the building methodology used

will be detailed.

2.12 – Ontology Development Tools

 The standard tool set of an ontology engineer includes ontology representation

languages and graphical ontology development environments. More recently, ontology

learning tools have also started to appear, in order to partially automate the development

process and help in evolution, updating, and maintenance of ontologies. Other tools are also

required in the context of developing ontologies for deployment on the Semantic Web

(GAŠEVIC et al., 2009b).

 Ontology tools appeared, in the mid-1990s, and can be classified in the following two

groups (CORCHO et al., 2006):

 Tools whose knowledge model maps directly to an ontology language, hence

developed as ontology editors for that specific language.

 Integrated tool suites whose main characteristic is that they have an extensible

architecture, and whose knowledge model is usually independent of ontology

languages. These tools provide a core set of ontology-related services and are easily

extended with other modules to provide more functions.

2.12.1 – Ontology Representation Languages

 Ontology representation languages are knowledge representation languages.

Therefore, they should be capable of both syntactic and semantic representation of entities,

events, actions, processes, and time. However, not all of the existing knowledge

representation languages have support for all of these things. Also, each existing language

supports some, but not all, popular knowledge representation techniques. In addition, some

knowledge representation languages are designed to provide support for knowledge

communication and interchange between intelligent systems (GAŠEVIC et al., 2009a).

 There are a number of ontology representation languages around. Some of them were

developed at the beginning of the 1990s within the AI community. Others appeared in the late

1990s and later, resulting from the efforts of AI specialists and the World Wide Web

42

Consortium (W3C). Some of the best-known examples of the early ontology representation

languages are (GAŠEVIC et al., 2009b):

 KIF, which is based on first-order logic;

 Ontoligua, which is built on top of KIF but includes frame-based representation;

 Loom, based on description logics.

 Also, most of the recent languages were developed to support ontology representation

on the Semantic Web, and hence they are also called “Semantic Web languages”. Among the

widely used Web-based ontology languages, the most important are (GAŠEVIC et al.,

2009b):

 SHOE, built as an extension of HTML;

 XOL, developed by the AI center of SRI International as an XML-ization of a small

subset of primitives from the OKBC protocol called OKBC-Lite;

 RDF, developed by the W3C as a semantic-network-based language to describe Web

resources;

 RDF Schema, also developed by the W3C, is an extension of RDF with frame-based

primitives; the combination of both RDF and RDF Schema is known as RDF(S);

 OIL, which is based on description logics and includes frame-based representation

primitives;

 DAML+OIL is the latest release of the earlier DAML (DARPA Agent Markup

Language), created as the result of a joint effort of DAML and OIL developers to

combine the expressiveness of the two languages;

 OWL, or Web Ontology Language, developed under the auspices of the W3C and

evolved from DAML+OIL and RDF; OWL is currently the most popular ontology

representation language.

 For more comprehensive information and comparative studies of all of them, refer to

CORCHO et al. (2003) and GANDON (2010).

43

 CORCHO et al. (2003) assert in their studies on ontology representation languages

that in the case of needing to implement an ontology, we should decide first what our

application needs in terms of expressiveness and inference services, because not all of the

existing languages allow representing the same components and reason in the same way. The

representation and reasoning with basic information, such as concepts, taxonomies and binary

relations, is not usually enough if we want to create a heavyweight ontology and make

complex reasoning with it, and existing translations between languages are not good enough

yet to ensure that information is not lost in the process. Hence, making a good decision of

using a specific language for representing ontologies is crucial for developing an ontology-

based application.

 KNUBLAUCH et al. (2006) compare and points the similarities and differences

between Semantic Web languages and object-oriented languages. According to him, the key

benefits of Semantic Web languages compared to object-oriented languages are:

 Reuse and interoperability: their models can be shared among applications and on the

web;

 Flexibility: their models can operate in an open environment in which classes can be

defined dynamically;

 Consistency and Quality Checking across models;

 Reasoning: they possess rich expressivity supported by automated reasoning tools.

2.12.2 – Ontology Development Environments

 No matter what ontology representation language is used, there is usually a graphical

ontology editor to help the developer organize the overall conceptual structure of the

ontology; add concepts, properties, relations, and constraints; and, possibly, reconcile

syntactic, logical, and semantic inconsistencies among the elements of the ontology. In

addition to ontology editors, there are also other tools that help to manage different versions

of ontologies, convert them into other formats and languages, map and link ontologies from

heterogeneous sources, compare them, reconcile and validate them, and merge them. Yet

other tools can help acquire, organize, and visualize the domain knowledge before and during

the building of a formal ontology (GAŠEVIC et al., 2009b).

44

 Graphical ontology development environments integrate an ontology editor with other

tools and usually support multiple ontology representation languages. They are aimed at

providing support for the entire ontology development process and for the subsequent use of

the ontology (CORCHO et al., 2003). There are dozens of these environments, some

examples are:

 KAON2
4
: is an open source infrastructure for managing OWL-DL, SWRL, and F-

Logic ontologies;

 OntoStudio
5
: commercial modeling environment for creating and maintaining

ontologies;

 Ontolingua
6
: web service offered by Stanford University;

 Protégé
7
: a Java-based open source ontology browser and editor from Stanford

University. Supports RDF and OWL;

 Swoop
8
: a Java-based open source OWL ontology browser and editor from the

University of Maryland;

 Synaptica
9
: ontology, taxonomy and thesaurus management software. Commercial;

4
 http://kaon2.semanticweb.org/

5
 http://www.semafora-systems.com/en/products/ontostudio/

6
 http://www.ksl.stanford.edu/software/ontolingua/

7
 http://protege.stanford.edu/

8
 https://github.com/ronwalf/swoop

9
 http://www.synaptica.com/products/

45

Chapter 3 – Games

 In this chapter, I will talk about video games and the relevant concepts surrounding it.

First, I will analyze common characteristics of games in order to have a clear grasp of what

game is and analyze common elements that are present in games to have a clear idea of what a

game is made of. Second, the same analysis will be done for video games because they are a

subset of games and they have their own characteristics. Third, the field of game design will

be explored first since the development of a game starts with its design. Finally, I will present

the details of the video game development process. The distinct phases of the process, the

different profiles of professionals that compose the development team and the different types

of documentation generated will be presented in order to understand how video games are

made. As an addendum, games and video games are separate terms. Games refer to any kind

of game and video games refer to electronic (digital) games.

3.1 – What Are Games?

 According to THORN (2013) a formal study of video games should begin, perhaps,

with a clear definition of the term “game” or “video game”. However, he gives two reasons

why these terms should be left undefined intentionally:

 There is no clear consensus about what a game is or about all things that a game must

have in order to be a game. None of the existing definitions have been universally

accepted for the purposes of defining the limits of game design (BRATHWAITE &

SCHREIBER, 2008).

 A definition of the term “game” is largely an academic and philosophical matter that

has little bearing on game development.

 There are a lot of factors that influences the existence of the first reason. According to

SCHELL (2014) because the idea of what a game (or any term) means will vary a bit from

person to person, but mostly, we all know what a game is. ELIAS et al. (2012) claim there are

no precise definitions of complex concepts like “game”, no definitions that will include all

things that people accept as games and exclude all things that people reject.

 THORN (2013) is right about the second reason. Having a precise definition of what a

game is will not help us develop games, since each game can have extremely different

46

components and dynamics between them. However, I believe that a formal study of games

will benefit from an analysis of existing definitions. This analysis will lead us to

characteristics (or features) that all games have in common. SCHELL (2014) performed an

analysis of existing definitions and picked ten qualities out of these various definitions.

 Games are entered willfully. It is not a game if the person is forced to play the game. It

is simply not fun participate in an activity against your will.

 Games have goals. Most of the games have win and lose goals. Other games allow the

players to establish their own goals within the game world.

 Games have conflict. To achieve their goals the player must enter in conflict with

other players or the own game rules. In some games the player will try to beat himself,

one example of this is beating his own high score.

 Games have rules. This one is self-explanatory. Rules will define what players can and

cannot do within the game world in order to achieve their goals. In short, the rules

define the structure of a game. Without structured and well-defined rules, player will

not be able to achieve the intended goals.

 Games can be won and lost. Not all games have win and lose conditions. However,

these types of conditions greatly increase the player engagement on the game.

 Games are interactive. In a game, the player has an active role in changing the state of

the game. The player interacts with the game and the game interacts with the player.

The former is by choosing actions permitted by the rules of the game; the latter is by

showing the player how the chosen actions affect the state of the game world.

 Games have challenge. Conflict provides some kind of challenge to the player,

otherwise games can get boring pretty quick without it. Bad games have little

challenge or too much challenge. Good games have just the right amount. It is worth

noting that the right amount of challenge varies with the player.

 Games can create their own internal value. From COSTIKYAN’s (2002) definition,

Schell picks the term “endogenous meaning”. Endogenous is a term that comes from

biology, it means “caused by factors inside the organism”. COSTIKYAN (2002) says

that “endogenous meaning” means that things that have value inside the game have

47

value only inside the game. For example, Monopoly money only has meaning in the

context of the game of Monopoly. The money is very important when we play the

game, but, outside the game, it is completely unimportant. The more compelling a

game is for a player, the greater its “endogenous value”.

 Games engage players. Games makes players feel “mentally immersed”. Games that

achieve this are considered good games.

 Games are closed, formal systems. According to FULLERTON (2014), a system is

defined as a set of interacting elements that form an integrated whole with a common

goal or purpose. Schell adds that “formal” is just a way of saying that the system is

clearly defined, that is, it has rules and that “closed” means that there are boundaries to

the system.

 The first five characteristic comes from AVEDON & SUTTON-SMITH (1971)

definition “Game are an exercise of voluntary control systems, in which there is contest

between powers, confined by rules in order to produce a disequilibrial outcome”. The sixth,

seventh and eighth characteristics comes from COSTIKYAN (2002) definition “A game is an

interactive structure of endogenous meaning that requires players to struggle toward a goal”.

 The penultimate and last characteristics come from FULLERTON (2014) definition

“A closed, formal system that engages players in structured conflict and resolves its

uncertainty in an unequal outcome”. She claims that at the heart of every game is a set of

formal elements that, as we have seen, when set in motion, creates a dynamic experience in

which players engage. According to her, the basic elements of systems are: objects,

properties, behaviors and relationships. One could say that those are the most basic elements

of a game.

 SCHELL (2014) concludes his analysis by proposing his own definition which is “A

game is a problem-solving activity, approached with a playful attitude”. This definition comes

from the fact that a goal of a game is clearly a problem that a player has to solve. The player

has to determine the actions he can take and the obstacles he must surpass in order to achieve

his goal. In short, it is a problem-solving activity. He justifies his definition in much more

detail in his book The Art of Game Design: A Book of Lenses using the ten characteristics he

found in his analysis.

48

 An interesting game quality that SCHELL did not pick is unpredictability. ADAMS &

DORMANS (2012) claim that a game that is predictable is usually not much fun as its

outcome should not be clear from the start. They say that there are three ways to make a game

unpredictable: include elements of chance, choices made by players and complex gameplay

created by the game’s rules. The most interesting is when the rules of a game are complex.

They claim that complex systems usually have many interacting parts. The behavior of

individual parts might me easy to understand; their rules might be simple. However, the

behavior of all the parts combined can be quite surprising and difficult to foresee, the game of

chess is a classic example of this effect. They conclude that complex rule systems that offer

many player choices are difficult to design well.

 GREGORY (2014), FULLERTON (2014), ELIAS et al. (2012) and TEKINBAS &

ZIMMERMAN (2003) also talk about definitions of games. With the characteristics that most

game can have presented, in the next section, I will present the formal elements that form the

structure of a game as they are meant to be precisely defined and not offer ambiguity.

3.1.1 – What Are Games Made Of?

 AVEDON & SUTTON-SMITH (1971) pose the following question: are there certain

structural elements that are common to all games, regardless of the differences in games or

the purpose for which the games are used, or the culture in which they are used? According to

SCHELL (2014), the elements that form a game can be divided in four essential categories:

 Mechanics: These are the procedures and rules of the game. Mechanics describe the

goal of the game, how players can and cannot try to achieve it, and what happens

when they try. More linear entertainment experiences (movies, for example) do not

possess mechanics, for it is mechanics that makes a game. The designer must choose a

technology that supports the mechanics, aesthetics that emphasize them clearly to

players and a story that allows your game mechanics to make sense to players. Game

mechanics can be divided in seven categories: space, time, objects (its attributes and

states), actions, rules, skill and chance.

 Story: It is the sequence of events that unfolds in a game. It may be linear and

prescripted, or it may be branching or emergent. The designer must choose mechanics

that both strengthen that story and let it emerge.

49

 Aesthetics: This how the game looks, sounds, smells, tastes, and feels. The designer

needs to choose a technology that will allow the player to experience the aesthetics as

well to amplify and reinforce them; mechanics that make the player feel like they are

in the world that the aesthetics defined; and a story that let the aesthetics emerge at the

right pace and have the most impact.

 Technology: It refers to any materials and interactions that make the game possible.

The technology, that the designer chooses for the game, enables it do certain things

and prohibit it from doing other things. The technology is essentially the medium in

which the aesthetics take place, in which the mechanics occur, and through which the

story will be told.

 From the analysis on definitions that SCHELL performed, some elements can be

deduced: rules, goals, objects, properties of objects, relationships of objects and the allowed

behavior in the game world. It can be inferred that actions are an element of the game

structure since an object has behavior. To reach the desired goal, a player must be allowed to

perform actions that change the game state. Thus, actions are instrumental for the game

structure since they are a means for the player to reach their desired goal.

 Rules are the most fundamental elements of the game because they define the space,

the timing, the objects, the actions, the consequence of the actions, the constraints on the

actions, and the goals (SCHELL, 2014). It can be said that a game is made by its rules since

everything is defined by rules. There are many types of rules. For example, goals can be

considered a special kind of rule, since goals are achieved in order to reach the win state of

the game. Other types are rules that restrict actions (you can only move a certain number of

spaces with a piece of chess), rules that determine effects (if you capture the opponent’s king

you win the game of chess), boundaries (the size limits of soccer field) and outcomes (a

certain action can be benefic for a player but harmful for another) (FULLERTON, 2014).

 According to SCHELL (2014), every game takes place in a space, because of that a

space can be considered an essential element of the game. It is in this space that the gameplay

happens. It defines the various places that can exist in a game and how those places are

related to one another. As a game mechanic, space is a mathematical construct.

50

 Another important element of games is the interface, since it fits in the four categories

proposed by SCHELL. It is the infinitely thin membrane that separates player and game. The

goal of an interface is to make players feel in control of their experience. “Interface” can

mean many things – a game controller, a display device, a system of manipulating a virtual

character, the way the game communicates information to the player, the equipment of a

board game and many other things (SCHELL, 2014). It is through the interface that the player

will perform the actions that change the game state and it is through it that the player will

know the overall state of the game (information may be complete or not) in order to be able to

make the appropriate decisions.

 A term that is always mentioned is “gameplay”. GREGORY (2014) says that

“gameplay” is the action that takes place in the game, the rules that govern the virtual world

in which the game takes place, the abilities of the player character(s) and the other characters

and objects in the world, and the goals and objectives of the player(s). In summary,

“gameplay” is the experience of interacting with the game and each experience differs

depending of the game elements at action in the moment of the experience.

 Concluding this section, I claim that games are composed of the following essential

elements: players, objects and their relationships, actions of objects, states of objects, rules,

goals that are subtypes of rules (not all rules subtype are essential), a space in which gameplay

happens and an interface to receive the player input and to output the game state to the player.

Finally, gameplay is the time which the player spends interacting with a combination of these

elements that the game provides, this time spent by the player is an unique experience.

Therefore, time is also an essential element.

 Video games are a type of games. Therefore, they have their own characteristics and

peculiarities. In the next section, I will talk about what video games are.

3.2 – What Are Video Games?

 Before starting this section, it should be noted that the underlying properties of games

and the core challenges of game design hold true regardless of the medium in which a game

manifests (TEKINBAS & ZIMMERMAN, 2003).

 ROGERS (2013) simply says that a video game is simply a game that is available on a

video screen. There is no other definition simpler than that. However, video games are, in

51

essence, computer programs. Therefore, video games need further analysis on their

characteristics that set them apart from other types of games, as well how it is structured as it

is a software artifact.

 TEKINBAS & ZIMMERMAN (2003) identify four traits that summarize the special

qualities of digital games. These traits are also present in non-digital games, but digital games

generally embody them more robustly. Those traits are not mutually exclusive as there is

some overlap between them and they do not constitute a definitive list of traits that appear in

digital games. Game designers should take advantage of those traits when creating games in a

digital medium.

 Immediate but narrow interactivity: digital technology offer real-time game play

that shifts and reacts dynamically to player decisions, thus being immediate.

Interaction with a console or computer is generally restricted to an input device such

as a joystick or keyboard, thus it offer narrow interactivity.

 Manipulation of information: digital games can store great quantities of information

(rules, images, text, etc.) and manipulate them. One advantage that comes from this

trait is the fact that digital games can enforce rules automatically while in board games

players would have to first learn the rules of the game before playing it. Another

advantage is hiding information from the player, the player will gradually learn about

the game mechanics as he keeps playing the game.

 Automated complex systems: digital games can automate complicated procedures

facilitating the play of games that would be too complicated in a non-computerized

context. Examples would be physics systems and RPG battle systems; the latter is

possible to play with pen and paper but would take too much time because of the

amount of calculations needed.

 Networked communication: many digital games possess this trait that facilitates

communication between players. Online multiplayer digital games are a clear example

of this, they can communicate with each other through means provided by such games.

Those means could be voice chat, text chat, avatar gestures, etc.

 According to Jesper Juul, in a lecture titled “Play Time, Event Time, Themability”, a

game is actually what computer science describes as a state machine. It contains input and

52

output functions, as well as definitions of what state and what input will lead to the following

state (TEKINBAS & ZIMMERMAN, 2003). By looking at games as state machines,

researchers can determine which rules cause the game to progress from one state from

another. However, games can exist in a vast number of states making it impossible to

document them all. Finite state machines are sometimes used in practice to define the

behavior of simple artificially intelligent non-player characters (ADAMS & DORMANS,

2012).

 Also, according to GREGORY (2014) most two- and three-dimensional video games

are examples of what computer scientists would call soft real-time interactive agent-based

computer simulations. He breaks this phrase down in order to understand what it means.

 In most video games, some subset of the real world, or an imaginary world, is

modeled mathematically so that it can be manipulated by a computer. The model is an

approximation to and a simplification of reality (just like an ontology), because it is clearly

impractical to include every detail. Hence, the mathematical model is a simulation of the real

or imagined game world (GREGORY, 2014).

 An agent-based simulation is one in which a number of distinct entities known as

“agents” interact (GREGORY, 2014). Agents can be characters, vehicles, bullets and so on;

the point is that those objects interact with each other causing their states to change through

their actions.

 All interactive video games are temporal simulations, meaning that the virtual game

world model is dynamic – the state of the game changes over time as the game’s events and

story unfold. A video game must also respond to unpredictable inputs from its human

player(s) – thus interactive temporal simulations. Finally, most video games present their

stories and respond to player input in real time, making them interactive real-time

simulations. One notable exception is in the category of turn-based games like non-real-time

strategy games. But even these types of games usually provide the user with some form of

real-time graphical user interface (GREGORY, 2014).

 A “soft” real-time system is one in which missed deadlines are not catastrophic.

Hence, all video games are soft real-time systems – if the frame rate dies, the human player

generally does not. While in a hard real-time system, a missed deadline could mean severe

53

injury to or even death of a human operator. The control-rod system in a nuclear power plant

is an example of one (GREGORY, 2014).

 All video games are, in essence, software artifacts as they are obviously made of

common components. In the next section, I will present the elements that are essential in the

making of a video game.

3.2.1 – What Are Video Games Made Of?

 According to THORN (2013), a video game is made from three main pieces: the

engine, the assets and the rules. He says that rules are the “game logic” or “core design” in the

game development. Rules exist as an independent and abstract ingredient of a video game and

are neither a part of the engine or the assets. Rather, the rules act as intermediary between the

two components, telling the engine how it should govern the assets during gameplay for a

specific game.

 THORN (2013) claims that assets are all the things a developer must make on a per-

game basis. Assets are static and lifeless because, without an engine to guide them, they

would be little more than a collection of images and sounds sitting in a folder on the hard

drive. Assets include the following: graphics, sound, story, design, animations, scripting,

videos, cut scenes, interface components, musical scores and voiceover tracks.

 An engine is a framework in which the commonalities of all (or a subset) of games are

packaged so that it can be used and reused as the template for building and powering many

different games. Generalness and abstractness are the characteristic and essential features of

an engine, distinguishing the engine from most other part of games. They are primarily what

make it recyclable and powerful and allow it to apply to almost all games (THORN, 2013).

The engine also abstracts system components (file and network systems, for example) which

deals with the target hardware operational system. Therefore, by using an engine, developers

save time that would be spent in coding and debugging certain system and game components,

allowing them to focus in programming the gameplay system which increases the overall

quality of the game.

 GREGORY (2014) claims that a data-driven architecture is what differentiates a

game engine from a piece of software that is a game but not an engine since the line between

game engine and the game is rather blurry. As a simple example, there can be an engine that

54

has a physics system that the value of its gravity is equal of planet Earth’s and cannot be

modified. While in another engine you can modify the gravity value to simulate the gravity of

other planets. Therefore, he asserts that a “game engine” is a software that is extensible and

can be used as the foundations for many different games without major modification.

 However, GREGORY (2014) warns that the ideal of a general-purpose piece of

software capable of playing virtually any game content has not been achieved yet and may

never be. The reason is that most game engines are crafted and fine-tuned to run a particular

game on a particular platform or for building games in one particular genre, such as first-

person shooters. This limits the level of reusability a game engine has. Gregory explains that

specific technologies are employed by engines for some game genres. This phenomenon

occurs because designing any efficient piece of software invariably entails making trade-offs,

and those trade-offs are based on assumptions about how the software will be used and/or

about the target hardware on which it will run. Figure 2 shows all of the major runtime

components that make up a typical 3D engine; it shows how complex the structure of a video

game can be depending on its scope.

 Not all games use engines though. Some games are so simple that the developers do

not need to resort to engines. However, by looking at engines the conclusion that can be

reached is that there is always will be a part of the software of video games that will not have

any bearing with gameplay but it will allow the gameplay to happen in the target hardware.

 Video games have an essential component that is not present in the ones that I

identified in games. This component is called “event”. GREGORY (2014) asserts that video

games are inherently event-driven. An event is anything of interest that happens during

gameplay. Events can be an explosion going off, the player being sighted by an enemy or a

health pack getting picked up. Video games generally need a way to notify interested game

objects when an event occurs and arrange for those objects to respond to interesting events in

various ways, this is called handling the event. Different types of game objects will respond in

different ways to an event. The way in which a particular type of game object responds to an

event is a crucial aspect of its behavior, just as important as how the object’s state changes

over time in the absence of any external input.

55

Figure 2 – Runtime game engine architecture (GREGORY, 2014)

56

 Why events are not mentioned in the essential components of games found in the last

section? The reason may be the fact that all the handling of events in physical games, such as

board games, is done by the players. The players are the ones that enforce the rules of the

game, they are the ones that change the state of the game and make sure the state is coherent

with what they see. Another fact is that some events that need to be configured in video game

occur naturally in the real world. An example would be the collision of physical objects,

throwing a ball at someone in a video game would require some time implementing it while in

the real world you would only need a ball to execute the mechanic. Finally, events can be seen

as a subset of rules. For example, “what objects can be hit by a fireball?” shows what objects

can respond to the event a fireball hitting them, next is “what happens when a barrel is hit by

a fireball?” shows how the barrel objects responds to the event of getting hit by a fireball.

Naturally, events can be seen as a subset of the rules of a game but they are an important

concept in game programming because game objects invariably need to communicate with

one another.

 Besides the software part of a video game, there is the hardware part of it and it is

equally important as well. The hardware components of video games are the physical devices

that receive the player input (keyboards, controllers, microphones) and that provide feedback

to the player in form of some output (video, sound, rumble). The platform in which the game

runs is the most important physical component but some of them have little bearing in the

gameplay. Some platforms, most notably handhelds and mobile phones, have built-in

components such as touch-screen displays and microphones. The Nintendo DS provides two

screens, the bottom one being a touch-screen display. In this case, the platform itself can

provide forms of gameplay not available in others.

 GREGORY (2014) calls the components that have to process input from players

human interface devices (HID). Some also allow the software to provide feedback to the

human player via various kinds of outputs as well. Most of the inputs fall in the following

categories: digital and analog. Digital buttons can only be in one of two states: pressed and

not pressed. Analog inputs can take on range of values rather than the two values of a digital

input. Also there are special inputs such as chords (multiple buttons pressed together),

sequences (button pressed in sequence within a certain time limit) and gestures (sequence of

inputs from the buttons, sticks, accelerometers, etc.).

57

 Another important aspect of inputs in video games is that they can be considered

external events. Another type of external event would be online data received from sessions

from multiplayer games. The software of the game has to process the input from a human

player into the appropriate action within the game logic. Thus, we can divide events in

external events caused by entities or objects outside the game logic and internal events that

are caused by objects within the game logic.

 Assets are elements that are used in the output of video games. The final image

displayed in the screen to the player is composed of several game elements that are

represented by assets. It should be noted that there are rules that govern what elements are

displayed according to the game state as well what sound clips are played. What a player sees

in the video screen or hear through the sound speakers may not be the asset original form;

assets can be manipulated at real-time by the game according to its rules. For example, a 2D

image may be stretched or have its colors changed (pallet swaps, common in fighting games).

Therefore, it is of great help to categorize game objects according to the outputs associated to

them (an object that is displayed, an object that plays sounds) and actions that manipulated the

final output to the player (change the color of an object, turn the object invisible). Finally, the

output of video game can be considered an essential element since it is composed of objects

and can be manipulated by the developers to reach their vision of their game.

 Concluding this section, I claim that video games are composed of the following

essential elements: assets (images, videos, 3D models), events that are handled by interested

objects, inputs sent by an external entity to the game logic, outputs that are composed of one

or more objects that can be manipulated and the hardware that allows all that to happen. The

software is not included because this is a list of essential components for the game and

gameplay design which is independent of the technology used to implement it.

 In the next section, I will talk about game design. The development of any type of

game begins by its design.

3.3 – Game Design

 BETHKE (2003) claims that we have to design a game first and foremost. Game

design is the process of creating the content and rules of a game. Good game design is the

process of creating goals that a player feels motivated to reach and rules that a player must

58

follow as he makes meaningful decisions in pursuit of these goals. Good game design is

player-centric. That means that above all else, the player and her desires are truly considered

(BRATHWAITE & SCHREIBER, 2008).

 The focus of a game designer is designing game play, conceiving and designing rules

and structure that result in an experience for the player (TEKINBAS & ZIMMERMAN,

2003). Thus, the game designer creates an experience for the player. Games are merely a

means to that end because, on their own, games are just clumps of cardboard or bags of bits.

Thus, games are worthless unless people play them (SCHELL, 2014). COSTIKYAN (2002)

notes that game design is ultimately a process of iterative refinement, continuous adjustment

during testing since it is almost impossible to specify a game at the beginning of a project and

have it working perfectly.

 Game design, as a discipline, requires a focus on games in and of themselves. Because

game design is an emerging discipline, it borrows knowledge from other domains – from

mathematics and cognitive science; from semiotics and cultural studies (TEKINBAS &

ZIMMERMAN, 2003). This makes game design not an easy subject to write about.

According to SCHELL (2014), to truly understand game design is to understand an incredibly

complex web of creativity, psychology, art, technology, and business. Everything in this web

is connected to everything else. Changing one element affects all the others, and the

understanding of one element influences the understanding of all others.

 SCHELL (2014) asserts that game designers will need all the skills imaginable

because almost anything that someone can be good at can become a useful skill for a game

designer. He provides a list of them: animation, anthropology, architecture, brainstorming,

business, cinematography, communication, creative writing, economics, engineering, games,

history, management, mathematics, music, psychology, public speaking, sound design,

technical writing and visual arts. There are many more but he claims that listening is the most

important skill that a game designer can have. It is by listening that the designer will

understand the different viewpoints (development team, client, audience, game and self) that

participate in the development of a game.

 In the next section, I will talk about video game development. I will present the

process distinct phases, the structure of a typical game development team and the

59

responsibilities of each member including of the game designers and the documents produced

to support the development process.

3.4 – Video Game Development Process

 According to BETHKE (2003), a development process is the method that a developer

uses to take the game specifications and turn them into a game. However, learning a process

takes time, and most organizations are in short supply of time. They are under great pressure

to get something visible and running as quickly as possible to reassure management that the

project is well under way. Also, producing digital games is a complex and expensive process.

A developer’s goal is to produce the best-selling game within the limit of its resources

(FULLERTON, 2014). In short, video game development is a problem of time and project

management that the developer must solve (THORN 2013).

 According to FULLERTON (2014), the industry has evolved standard stages of

development to define contracts and milestones for a game project to solve this problem. Best

practices for producing games are evolving to recognize the need for flexibility and iteration

as part of the game development process. Many developers now use a mix of agile

development methods and traditional software production methods to produce their games.

The core difference between those distinct development methods is a focus on creating

working software versus documentation and managing the team so that it can respond to

discoveries in the process, rather than following a predetermined plan (FULLERTON, 2014).

 Depending on the size and scope of the game, the development process can be

different. For example, AAA games have teams with more than 200 people and a publisher

who provides the money for the project as well as handling other business tasks such as

marketing. On the other hand, indie games can have a team of 5 people, be financed by the

developers own pocket and business task handled by the own developers. It should be noted

that because of the electronic games industry competitiveness and corporative way of

working, its management and development processes are significant corporate assets and

generally inaccessible to the researcher (CALLELE et al., 2005). Thus, the content discussed

in this section may not present the state of art employed by the industry.

60

3.4.1 – Video Game Development Phases

 The game development process is composed of many sub-processes and each

developer has their own unique methodology of development that can have unique activities.

However, any game development can be roughly separated in three general phases:

preproduction, production, and postproduction.

3.4.1.1 – Preproduction

 BETHKE (2003) claims that a developer should figure out what he has to do before

actually doing anything; the game industry term for this phase of work is preproduction, or

the vision or design phase in which the developers determine the game contents and scope. He

also states that too many projects violate their preproduction phases and move straight to

production. In his opinion, preproduction is the most important stage of the project. Finally, it

should be noted that because of the iterative nature of video games, a “perfect” project scope

will never be achieved, but it is the goal of the manager to develop a solid scope that will help

guide the project to its conclusion (KANODE & HADDAD, 2009).

 Preproduction entails the conception of a game, identification of the game’s

requirements, an analysis stage to determine the implications of these requirements,

prototyping and the production of design documents detailing game, art, audio, and technical

requirements (BETHKE, 2003). By the end of preproduction, the GDD should be finished,

though it will be continuously updated during the other phases (KANODE & HADDAD,

2009).

 According to FULLERTON (2014), prototyping is the creation of a working model of

the developer idea that allows him to test its feasibility and make improvements to it. Also,

SCHELL (2014) asserts that the game improves through iteration and he introduces The Rule

of the Loop: “The more times you test and improve your design, the better your game will

be”.

 Thus, prototyping and iterations are important methods in video game development

that can be used to find the elusive “fun” element of a game. Prototyping should primarily be

done in the preproduction stage in order to define what the game is and to find the fun

element of a game. If this can be accomplished, then production will go smoother. Actions in

preproduction determine requirements and affect production (KANODE & HADDAD, 2009).

61

 Requirements engineering should take place at the end of preproduction, once the

game designers have found the type of game that is to be created. Gathering all the needed

requirements will cut down on the number of iterations needed, and mitigate the late addition

of features (feature creep). Once the preproduction phase has been completed, the project

manager would take the game design document, and formulate a project scope (KANODE &

HADDAD, 2009).

 KANODE & HADDAD (2009) conclude that a successful preproduction defines an

exciting and absorbing game. Great preproduction reduces the need to find that elusive

element of “fun” during the production stage and allows the team to implement the game

instead of experimenting it.

3.4.1.2 – Production

 Production is the longest and most expensive phase of development. The goal in this

stage is to execute on the functional vision established during preproduction (FULLERTON,

2014). Production entails the development of the code that makes the game function, the

creation of the diverse types of assets that the game may need to realize the vision of the

designers and quality assurance (QA) processes such as testing and debugging.

 This phase is the one most fraught with problems. A poor GDD affects project scope

which affects production negatively. Feature creep happens at this stage, and can cause

delays. A poorly managed production phase results in delays, missed milestones, errors, and

defects. In production, the developers often create prototypes, iterations and/or increments of

the game. Changes in prototypes or iterations of the game can cause drastic changes to the

GDD. Unmanaged changes (or poorly managed ones) can cause widespread problems

affecting functionality, scheduling, resources, and more (KANODE & HADDAD, 2009).

 In order to mitigate the numerous unknown design problems in game development,

agile software development methods were adopted recently by the industry. It is a

methodology that strives to make the development more adaptive and people-centric. This

means that rather than having developers follow a detailed specification, they will address the

priority features to set short-term goals in short periods called “sprints”. They meet daily or

weekly to evaluate their progress, set new goals, and determine if there are issues halting

progress. According to WINGET & SAMPSON (2011), this methodology reduces the

62

emphasis on pre-documentation in favor of iterative design and dynamic problem-solving

guided through frequent team and inter-team meetings.

 Testing is usually the last thing done before the game goes “gold” (handed off to the

publisher for production and distribution). The testing phase involves stressing the game

under play conditions. The testers, not only look for defects, but push the game to the limits

(game options set to maximum resolution, textures, etc.).

 As it can be seen, the production phase does include planning and prototyping, and

other activities that can be found the preproduction and testing phases. Looking at the phases

in a broad view, they do seem to fit a waterfall model, though the activities in production

break the model with the occurrence of iterations and increments (KANODE AND

HADDAD, 2009).

3.4.1.3 – Postproduction

 Postproduction involves activities that are done after the game reached “gold” status.

It entails distribution, marketing, shipping and maintenance of the game. This phase is largely

composed by business activities that are done in order to ensure that the game arrives to the

market and make a profit to the developer and the publisher, if there is one.

 The amount work done by the developer with maintenance varies with the scope of the

game. The most common example is the application of patches that corrects bugs that passed

through QA. Another one is the maintenance of online games such as World of Warcraft; not

only the developer must correct bugs but also provide new content in a timely fashion so that

the game stays fresh in order to not lose users.

3.4.2 – Video Game Development Roles

 Members of video game development teams include practitioners from such diverse

backgrounds as art, music, graphics, human factors, psychology, computer science, and

engineering. Individuals who, in other circumstances, would be unlikely to interact with each

other on a professional basis unite in their economic goal of creating a commercially

successful product (CALLELE et al., 2005).

 BETHKE (2003) warns that adding more staff requires more administrative overhead,

and there is a critical threshold of number of staff in an area on a project beyond which

63

impacts negatively on work results, even if the people on the project are competent. This is

because the increasingly complex communication required between a large numbers of people

on a project as it grows in team size and the different disciplines involved.

 Figure 3 shows the separation of the components of a video game in three categories:

content, mechanism and technology. The components are separated in sets pertaining to the

respective teams that produce them. As it can be seen, there are overlaps between the

categories and the sets indicating that some roles will require multiple skill sets to produce

satisfactory components.

Figure 3 – Decomposition of a game within a development team (LEWIS et al., 2007)

 GREGORY (2014) says that game studios are usually composed of five basic

disciplines: engineers, artists, game designers, producers, and other management and support

staff. Each discipline can be divided into various sub disciplines.

3.4.2.1 – Management and Support

 The team of people who directly construct the game is typically supported by a crucial

team of support staff. This include the studio’s executive management team, the marketing

department (or a team that works with an external marketing group), quality assurance team

that fix and resolve bugs, administrative staff and the IT department, whose job is to purchase,

64

install and configure hardware and software for the team and to provide technical support

(GREGORY, 2014).

3.4.2.2 – Producers

 The simplest definition of a producer for the development team is that he/she is the

project leader. The producer is responsible for the delivery of the game to a client or to the

market as promised. To make this delivery the producer must create a plan for that delivery,

including a schedule, budget, and resource allocation. The producer also need to manage the

development team to make sure deliverables are completed on time as well as motivating the

team and solving production-related problems (FULLERTON, 2014).

3.4.2.3 – Artists

 The artists produce all the visual and audio content in the game. There are many

specialties such as: concept artists who produce sketches and paintings that provide a vision

of what the final game should look like; 3D modelers who produce the three-dimensional

geometry for everything in the game world; texture artists who create the two-dimensional

images known as textures which are applied to the surfaces of 3D models; lighting artists who

lay out all the light sources in the game world; animators who imbue the characters and

objects in the game with motion. Also, there are sprite artists, motion capture actors, sound

designers, voice actors, writers, composers and many more. Some game teams have one or

more art directors who manage the look of the entire game and ensure consistency across the

work of all team members (GREGORY, 2014).

3.4.2.4 – Engineers

 GREGORY (2014) says that the engineers are responsible for the design and

implementation of the software that makes the game, and tools, work. Engineers are often

categorized into two basic groups: runtime programmers, who work on the engine and the

game itself, and tools programmers, who work on the offline tools that allow the rest of the

development team to work effectively. On both sides, engineers can have various specialties

such as rendering, artificial intelligence, audio, physics, gameplay programming and scripting,

etc. There are also the jack of all trades who can jump around and tackle whatever problems

might arise during development. Other responsibilities include drafting technical

65

specifications, making software prototypes, structuring data, managing communications.

Documenting code and coordinating with the QA team to fix or resolve bugs (FULLERTON,

2014).

 When the engineering team gets big, usually the most experienced engineers are

promoted to lead positions. Lead engineers still design and write code, but they also help to

manage the team’s schedule, make decisions regarding the overall technical direction of the

project, and sometimes also directly manage people from a human resources perspective

(GREGORY, 2014).

3.4.2.5 – Designers

 The job of a game designer is to design the interactive portion of the player’s

experience, typically known as gameplay (GREGORY, 2014). According to THORN (2013),

the most fundamental role of the game designer in the video game development process,

whatever his or her motivations for creating a game, is to produce the game design document

(GDD). This document must deliver a creative, clear and comprehensive vision of what the

game is about and it is supposed to work as a guide or source of orientation for a project. It

helps steer the project toward a path to success because members of the team have a common

goal or target in mind about how the game is supposed to be or feel. Other responsibilities

include brainstorm concepts, creation of prototypes, playtests and revision of prototypes,

communicating the vision for the game to the rest of the team, acting as an advocate for the

player, etc. (FULLERTON, 2014).

 ENGLAND (2014), a game designer at Insomniac Games, talks about all the different

types of designers in an effort to help clarify what a game designer does in a video game.

According to her, there are designers who dip their hands in all elements of design and

sometimes even art and programming, and then there are specialized roles like systems

designer, combat designer, level designer and economy designer.

 ENGLAND (2014) asserts that any general definition of design has flaws because the

actual responsibilities of a designer varies depending on the size of the studio, the platform,

the genre, the size of the game, the studio culture regarding roles, how specialized people are,

and even whether there is a design department at that studio. The designer on a first person

shooter has very different practical responsibilities than the designer on your next favorite

66

match-three mobile game and, in consequence, needs different skills to fulfill those

responsibilities.

 Some senior designers have management roles. Many game teams have a game

director, whose job is to oversee all aspects of the design, help manage schedules, and ensure

that the work of individual designers is consistent across the entire product (GREGORY,

2014).

3.4.3 – Video Game Development Documents

 BETHKE (2003) describes the production plan which is a suite of documents that

specify the game that is being created. The purpose of creating all of these documents is to

know what the development team is going to do. Those documents are:

 Concept/Vision/Proposal Document;

 Game Design Document;

 Art Design Document;

 Technical Design Document;

 Project Plan (set of documents).

 It should be noted that some developers can combine those documents in a bigger one

or divide them further. As an example, there are several types of documentation commonly

available to game artists. The main difference between programming and art documentation is

that art documentation is not standardized at all (CONGDON, 2008).

 I will talk about the GDD, technical design document (TDD) and project plan which is

a set of documents. I will mainly talk about the GDD to show how it influences in the creation

of those and other documents.

3.4.3.1 – Game Design Document

 THORN (2013) asserts that the central aim of the GDD is to articulate the creative

vision of the game in a concise, comprehensive, and technologically independent way to a

readership of game developers – usually the other developers on the team. Its content will be

tailored more academically to an audience of experienced developers contracted to work on

the game project and whose responsibility is to ensure that the design is realized as closely as

67

possible. Also, the GDD is typically written to be technologically independent, meaning that

it will not make directly prescriptive statements or concrete demands about how the game will

be implemented (THORN, 2013). Finally, the GDD must be thorough, but not necessarily

formal (in the sense of structure or from a mathematical perspective). In fact, one could argue

that imposing too much structure on the creative process may be highly detrimental –

constraining expression, reducing creativity, and impairing the intangibles that create an

enjoyable experience for the customer (CALLELE et al., 2005).

 The form of the GDD varies widely across genres and studios. Typically it includes a

concept statement and tagline, the genre of the game, the story behind the game, the

characters within the game, and the character dialogue. It will also include descriptions of

how the game is played, the look, feel, and sound of the game, the levels or missions, the cut

scenes, puzzles, animations, special effects, and other elements as required (CALLELE et al.,

2005). BETHKE (2003) claims that creating a game design document is so much work that it

is natural to break the job up across multiple people to get the work done more rapidly and

with higher quality. Because games used to be so much smaller in scope and complexity, it

was much simpler to document the game design, so no great amount of formalism was

required (BETHKE, 2003).

 According to SCHELL (2014), the trouble with GDDs is that they are literally out of

date the moment you write them. Design documents are an expression of the designer current

theories about what will make the game good but until the designer see those theories in

practice, he cannot know. This means that traditional design documentation loses significant

accuracy and descriptive ability as development progresses. This is reinforced by WINGET &

SAMPSON (2011) interview with a developer who says:

 “At some point the document becomes irrelevant because even if we weren’t sure how

[a game feature] was going to go it becomes faster just to play around with the actual code

itself or the editor or the artwork that is in the game and look at in the game and get a feel for

it in the game, and then sometimes new ideas come that were never in the GDD to begin

with.”

 Since the GDD communicates what the game should be to the development team.

According to BETHKE (2003), this leads to several implications:

68

 The programming staff must be able to pick up the game design document and

efficiently develop the technical requirements and technical design for the software

that is needed to be developed for the game;

 The art team led by the art director must be able to read through the game design

document and understand the look and feel as well as the scope of the art assets

involved in creating the game;

 The game designers on the team must understand what areas of the game require their

detailed hand in fleshing out such as 3D levels, dialog, and scripting;

 The audio designers must understand what sound effects, voiceovers, and music need

to be created for the game;

 The marketing team should understand what themes and messages they need to use to

build the marketing plan around;

 The producers must understand the various components of the game so they are able

to break the game down into a production plan;

 The executive management must be able to read through the game design document

and be convinced to fund the project.

3.4.3.2 – Technical Design Document

 The TDD is the blueprint for the software engineers on the development team to use in

the creation of the game. The ideal technical design document will specify to the developers

not only what needs to be created but also how it will be implemented (BETHKE, 2003). It

must synthesize the requirements of the game, develop a software design, serve as a testing

plan, and also supply the project manager with critical information such as the required

developer roles, dependencies between tasks and developers, and an estimate of how long it

will take to perform each of the tasks assigned to the developers (BETHKE, 2003).

 The TDD is formulated from the GDD; this is a troublesome process as it is hard to

transform the game designer requirement into technical requirements. CALLELE et al. (2011)

points that the GDD descriptions exhibit characteristics of a push of information that the

preproduction team deems important to the production team. They do not observe similar

69

evidence that the GDD contains the information that the production team would pull from

preproduction because production deems it important. In other words, the traditional GDD

appears to serve the producers of the document more than the consumers of the document.

3.4.3.3 – Project Plan

 According to BETHKE (2003), the key to successful game development is planning,

and you cannot create a good plan without understanding what goals or requirements your

plan must fulfill. That is why the GDD and the TDD are essential to make the project goals

more defined as you can define tasks and assign those tasks to team members. The project

manager will be able to make time estimates for the completion of tasks and the budget to

support it. In other words, the project plan can be made.

 The project plan contains a schedule that describes what will be accomplished, how

long the tasks will take, and who will perform these tasks. It also contains other information

such as milestone dates, human resources, task dependencies, legal information and a risk

management plan (BETHKE, 2003).

70

Chapter 4 – Related Work

 The objective of this thesis is to develop an ontology that supports the video game

development process by assisting in the identification of technical requirements in the game

design. Thus, I have researched studies proposing knowledge models about games, video

games, game design and video game development. Those knowledge models consist of design

guidelines, methods, theories and tools that have been developed over the past years. Some of

these were developed specifically to assist the design process, while others were developed as

analytical tools, work methods, or documentation techniques (DORMANS, 2012a).

 First, I will present studies, made by game design professionals, which propose a

vocabulary for games. Those studies are important since ontologies are shared vocabularies

and existing vocabularies in the game design domain can be leveraged for the construction of

the ontology. Second, I will present informal knowledge models for games. Those models are

described in natural language and are not used as software artifacts. Third, I will present

formal knowledge models for games. Those models are described in a machine-interpretable

language. Fourth, I present ontologies for games as they are different from other formal

models because they can be reasoned by the computer. Finally, I will present my conclusion

regarding the studies researched.

4.1 – Vocabularies for Game Design

 According to CHURCH (1999), game design is the least understood aspect of

computer game creation. This is further reinforced as there is no “unified theory of game

design”, no simple formula that shows how to make good games as well as a standardized

vocabulary for game design (SCHELL, 2014). The lack of a standardized vocabulary is

caused by not doing enough to build on past discoveries, share concepts behind successes, and

apply lessons learned in one domain or genre to another (CHURCH, 1999). CHURCH asserts

that the primary inhibitor of design evolution is the lack of a common design vocabulary and

he adds that most professional disciplines have a fairly evolved language for discussion.

 TEKINBAS AND ZIMMERMAN (2003) assert that a vocabulary for game design

lets game designers talk to each other. It lets them share ideas and knowledge, and in doing

so, expands the borders of this emerging field. Media theorist and game scholar Henry

71

Jenkins identifies four ways that building a critical discourse around games can assist not just

game designers, but the field as a whole:

 Training: A common language facilitates the education of game designers, letting

them explore the variety and depth of their medium.

 Generational Transfer: Within the field, a disciplinary vocabulary lets game designers

and developers pass on skills and knowledge, rather than solving the same problems

over and over in isolation.

 Audience-building: In finding a way to speak about them, games can be reviewed,

critiqued, and advertised to the public in more sophisticated ways.

 Buffer against criticism: There are many factions that would seek to censor and

regulate the content and contexts for gaming, particularly computer and video games.

A critical discourse gives us the vocabulary and understanding to defend against these

attacks.

 CHURCH (1999) claims that a game design vocabulary would allow designers to talk

about the underlying components of a game. Instead of just saying, "That was fun," or "I don't

know, that wasn't much fun," designers could dissect a game into its components, and attempt

to understand how these parts balance and fit together. A precise vocabulary would improve

our understanding of game creation and facilitate it. Also, he adds that a vocabulary is a

toolkit to pick apart games and take the parts which resonate with the designer to realize his

own game vision, or refine how his own games work.

 TEKINBAS & ZIMMERMAN (2003) claim that creating a vocabulary requires that

designers look at games and the game design process from the ground up, propose methods

for the analysis of games, assess what makes a game “fun”, and ask questions about what

games are and how they function. The result is a deeper understanding of game design that

can lead to genuine innovation in the practice of making games. Part of creating a vocabulary

is defining concepts, but this is no simple task, for it involves creating definitions for words

that often thread their way through multiple and contradictory contexts (TEKINBAS &

ZIMMERMAN, 2003).

72

 One of the main difficulties in establishing a game design vocabulary is that clear

statements about game design ideas, and terms referring to them, are introduced all the time

(SCHELL, 2014). For example, fighting (Street Fighter 2 from CAPCOM) and role-playing

(Final Fantasy from SQUARE-ENIX) video games have unique concepts and terms when

talking about them. For example, fighting games have terms such as a hit stun and chip

damage and RPG games have terms such as loot and buffs. It could be said that video game

genres have their own vocabularies. Another is that the goal of game designers is to provide

an experience for the human players, which is an abstract goal with no proven method to

reach and the experience of playing a game varies from player to player.

 CHURCH (1999) was the first to propose a game design vocabulary in order to

improve the game design field in his article Formal Abstract Design Tools (FADT) that

provides a framework that attempts to provide a shared designed vocabulary and a way to

build it. Church breaks down the phrase FADT as follows: "formal," implying precise

definition and the ability to explain it to someone else; "abstract," to emphasize the focus on

underlying ideas, not specific genre constructs; "design," as in, well, we're designers; and

"tools," since they'll form the common vocabulary we want to create. ADAMS & DORMANS

(2012) call FADT a design lexicon instead of a design tool because it seemed to be more

successful as an analytical tool than a design tool. They assert that this project has been

abandoned because it has never caught on.

 COSTIKYAN (2002) also attempted to provide a vocabulary for games. He attempts

to do so by analyzing various common elements found in various games such as goals,

struggle, structure (ecosystem), endogenous meaning, interactivity, entertainment. He also

analyzes games by looking at the pleasures that they provide for the players. There are eight:

sensation, fantasy, narrative, challenge, fellowship, discovery, expression and masochism.

 By reading other books about games and game design from authors such as SCHELL

(2014), TEKINBAS & ZIMMERMAN (2003), FULLERTON (2014) and ELIAS et al.

(2012), I arrive at the conclusion that there are common terms used in the game design field

but each game designer provides different meanings and different processes to analyze and

implement them in games. For example, SCHELL (2014) provides 108 lenses for a designer

to use in the process of designing a game. Those lenses are tools for examining the design of

the game as they are small sets of questions a designer should ask about his design.

73

 From this conclusion I arrive at another one: there are several vocabularies about

games and game design and they share common terms or elements. Those common elements

are surely what make the structure of the game and the designers manipulate those elements in

their own ways to make their unique games. An ontology can be built starting using the

common elements but I do not recommend using the vocabulary of a game designer as a basis

for building an ontology since there is no consensus in the game design domain.

4.2 – Informal Video Game Knowledge Models

 In the literature, many authors from academia or professional game designers have

proposed informal knowledge models. They provide the techniques, vocabulary, structures

and templates to help game designers in specifying and documenting game design details

(TANG & HANNEGHAN, 2011). However these are not formalized in a language, they lack

key concepts which make them inadequate for video game development and are not machine

interpretable. There are several studies that propose such models:

 KREIMEIER (2002) was the first to suggest a design pattern framework but he never

actually built one (ADAMS & DORMANS, 2012). BJÖRK et al. (2003) proposed

Game Design Patterns, a description of patterns of interaction relevant to gameplay, it

is complemented by a structural framework to describe games in terms of components.

Later in their book of same name (BJORK & HOLOPAINEN, 2004) described

hundreds of patterns. According to ADAMS & DORMANS (2012) this approach is

much more like a design vocabulary than a pattern language because it does not

identify common problems and offer generic solution to these problems. Nevertheless,

their book is a valuable collection of design knowledge, but it does not tell the reader

how to use that knowledge effectively to build better games.

 JÄRVINEN (2003) proposed a typology of rules to better understand rules as a

fundamental structure of games. There is also the 400 Project
10

 initiated by designers

Noah Falstein and Hal Bardwoord with the intent to collect 400 rules of game design

but only 112 rules were listed and the last one was added in 2006.

10
 http://www.finitearts.com/Pages/400page.html

74

 JUUL (2003) claimed the existence of a classic game model which is a standard model

for creating games, a model that appears to have remained constant for several

thousand years.

 HUNICK et al. (2004) proposed the Mechanics, Dynamics and Aesthetics (MDA)

framework that described a game as a collection of Mechanics to compose Dynamics

and a collection of Aesthetics characteristics of a game. According to DORMANS

(2012a), it has been quite influential and it seems to be one of the most frequently

recurrent frameworks found in university game design programs all over the world.

However, it lacks scrutiny and accuracy.

 JÄRVINEN (2007) introduced “applied ludology”, a practical hands-on analysis and

design methodology which complements theories of games as systems with

psychological theories of cognition and emotion.

 The Narrative, Entertainment, Simulation and Interaction (NESI) model proposed by

SARINHO & APOLINÁRIO (2008) in order to design the variability aspects of

computer games, simplifying the effort of game design projects.

 The most interesting study is the Game Ontology Project (GOP) proposed by ZAGAL

et al. (2005). Its primary function is to serve as a framework for exploring research questions

related to games and gameplay; it also contributes to a vocabulary for describing, analyzing

and critiquing games. The authors developed a game ontology that identifies the important

structural elements of games and the relationships between them, organizing them

hierarchically. GOP is distinct from design rule and design pattern approaches that offer

imperative advice to designers as it does not intend to describe rules for creating good games,

but rather to identify the abstract commonalities and differences in design elements across a

wide range of concrete examples. The authors have consciously chosen to focus on things that

cause, effect and relate to gameplay in order to help characterize and classify the design space

of games. BREYER et al. (2009) created a reduced ontology for downloadable casual games

of the simulation genre using GOP as a base and characteristics of folksonomies for its

organization

 GOP is not built using ontological engineering techniques and it is not formalized in

an ontology representation language which leads to several problems within GOP.

75

MALCHER et al. (2009) in their experiment that uses GOP as a basis to the development of a

method of analysis of similar objects applied to the game design process, the participants were

students that had no prior knowledge of GOP. They concluded that GOP, when used, was not

capable of modelling with precision various elements found in available games because of the

difficulty in specifying non ambiguous definitions for a concept and the enormous number of

variations in elements of games and their possible uses. The great number of concepts turned

out to be troublesome because it increases the time and the difficulty of the analysis process,

the concept memorization process and learning the practical use these concepts during the

analysis process. This is relevant because it is directly related to the effort a game designer

must take to be able to benefit from this method.

 TANG & HANNEGHAN (2011) point out that GOP as an ontology struggles to

represent the features and constraints of concepts in a machine-interpretable format because it

only describes the concepts used in a game from an end-user point of view in explanations

with example. This causes the appearance of ambiguous terms since there are similar concepts

in GOP and the potential lack of important concepts which happens in GOP. They conclude

that it has little use in producing a complete specification of computer game for the purpose of

development.

 All those problems pointed out by MALCHER et al. (2009) and TANG &

HANNEGHAN (2011) apply to the informal knowledge models presented. They are designed

to be used by game designers or people that are learning about games with the problem that

they are an incomplete representation of a game. It should be noted that they are useful for

knowledge acquisition since they establish guidelines to identify elements of games and game

design. Finally, they cannot be used effectively in the video game development process.

 DORMANS (2012a) claims that none of the attempts to provide a game vocabulary

has gained enough momentum to become something resembling a standard that spans both

industry and academia. These vocabularies require a considerable effort to learn while they

are more successful in the analysis of existing games, making them more useful for academics

than for developers. In addition, they usually provide a clear theoretical vision on the artifacts

they intend to describe.

76

 Finally, COOK (2006) asserts the following: “Academic definitions of game design

contain too many words and not enough obvious practical applications where people can

actually use the proposed terminology”.

4.3 – Formal Video Game Knowledge Models

 In the literature, authors from the academia have proposed formal knowledge models.

Despite there being no lack of game design models, there is no model that has surfaced as a

standard (DORMANS, 2012b) as they can vary in form and function as well as they cover

different aspects of games.

 Those models are usually formalized in specific languages and modelling paradigms.

An example of a language specifically developed to be a description language for 2D video

games is “PyVGDL” (SCHAUL, 2013, 2014). They can also be formalized with mathematics

(GRÜNVOGEL, 2005), however it is not a designer-friendly representation of game

concepts.

 Some authors propose using Model Driven Engineering (MDE) methodology to video

game development that use formal models (UML models or ontologies in OWL) for the

generation of code (FURTADO & SANTOS, 2006, NELSON & MATEAS, 2007, REYNO &

CUBEL, 2008, 2009a) . To support MDE in video game development, REYNO & CUBEL

(2009b) created a platform-independent model for video game gameplay specification. Also,

models can be used to improve software understanding and error checking in a component-

based software architecture (LLANSÓ et al., 2011a) as well as providing a semi-automatic

process for moving a class hierarchy to a component-based architecture (LLANSÓ et al.,

2011b).

 Other authors proposed the use of Petri nets (BROM & ABONYI, 2006, ARAÚJO &

ROQUE, 2009) to map games as state machines. According to DORMANS (2012a), it is

difficult to capture the essence of game in Petri nets. The number of game states usually is not

finite, and their complexity quickly becomes problematic if one tries to model a game in

every detail. Also, they are less accessible to game designers.

 According to DORMANS (2009), the models that are used to represent game

mechanics, such as representations in code, finite state diagrams or Petri nets, are complex

and not really accessible for designers. They are also ill-suited to represent games at a

77

sufficient level of abstraction. He created the Machinations
11

 framework to represent game

mechanics in a way that is accessible, yet retaining the structural features and dynamic

behavior of the games they represent. This framework has its own diagrams that act as a

domain specific language for a subset of game development.

 Machinations diagrams are designed to capture game mechanics. As such, they are not

only a design tool; they are also useful as an analytical tool to compare and analyze existing

games. This allows designers to observe recurrent patterns across many different games. Also,

the syntax of the language is exact as it describes unambiguously how different elements

interact. This allowed the development of a Machinations software tool, which can be used to

simulate and experiment with game systems. It should be noted that the framework focuses on

rules and mechanics and does not take into account all elements of game design (DORMANS,

2009).

 DORMANS (2009) warns that when one sets out to model anything as complex as

games, a model can never do justice to the true complexity of the reality of gameplay. He

asserts that the best models succeed in stripping down the complexity of the original by

leaving out, or abstracting away, many important details.

4.4 – Game Ontologies

 Ontologies formalized in ontology description languages such as OWL offer the

advantages of automatic processing and reasoning over its concepts and relations which

results in the discovery of implied knowledge and consistency checking. There are several

studies regarding ontologies for games:

 LING et al. (2007) proposed a use-case based fuzzy ontology constructing

methodology for constructing the ontology of an educational game, and encoded the

resulting ontology with OWL. Fuzzy ontology can be useful because there are many

cases of uncertainty in games. Unfortunately, there is not enough literature on fuzzy

ontology used in games and fuzzy ontology is not a very well developed line of

research according to the authors.

11
 http://www.jorisdormans.nl/machinations/

78

 CHAN & YUEN (2008) proposed a Digital Game Ontology which combines the

framework of Music Ontology and Game Ontology Project concepts, to produce an

OWL-based ontology which would be comprehensive enough to process a wide

variety of concepts and events of digital games from its media format, its production,

and player activities and experience. The ontology was constructed using OWL-DL.

Protégé ontology editor and Protégé API were used throughout the development

process.

 LING et al. (2008) proposed an Ontology-based Edutainment Development

Framework (OEDF) for educational game development. In this framework the

knowledge of game development and the content of textbooks are organized in an

ontology, which make it sharable and understandable by computers. The OEDF

framework consists of a hierarchy of five layers defined as: Client, Application,

Representation and Infrastructure, Service e System. One thing that should be noted is

that the framework is technology dependent. The ontology is based on description

logic and it is stored in OWL.

 MACHADO et al. (2009) demonstrate a trivial use case of ontologies in the domain of

games. The authors use OWL as their ontology language of choice, Protégé for

ontology design and the OwlDotNetApi for integration between .NET and OWL.

 LEÓN & SÁNCHEZ (2010) proposed the construction of an ontology utilizing object-

oriented standards through the use of UML and OCL. Their objective was to show that

UML was suitable to represent formal models such as ontologies. The created

ontology is based on an architecture that produces full motion adventure games for the

mobile scenario.

 ROMAN et al. (2011) proposed a general method of using RDF and OWL models to

represent the knowledge within a fantasy RPG software that helps them analyze

possible situations that can come up at any point in the game. The game ontology was

created using the Protégé system and the basic elements of the ontology were loosely

influenced by the Game Ontology Project. To implement the ontology it was used the

Jena framework that allows working with RDF, RDFS, OWL, SPARQL and includes

a rule-based inference engine.

79

 CARDENAS (2014) proposed an ontology model for representing any digital

educational game regardless of their attributes. The model was developed using the

ontology building methodology proposed by NOY & MCGUINNESS (2001).

 RAIES & KHEMAJA (2014) proposed a semantic formalism based on domain

ontology for gameplay specification that offers to game designers a precise model to

describe, analyze and communicate gameplay from early stages of development of

game-based learning systems. The authors use an ontology building methodology for

the development of the ontology.

 The most interesting study is Game Content Model: An ontology for Documenting

Serious Game Design (GCM) (TANG & HANNEGHAN, 2011). The authors studied the

existing game design models and highlighted the issues with it – incomplete representation of

a game and lack of formalism. To address those issues they borrowed concepts from existing

game design models to design a completely new model – the Game Content Model. They

propose incorporating Model-Driven Engineering (MDE) practices into game development

because models can be analyzed and translated using transformation engines and generators to

synthesize software artifacts consistent with the models automatically.

 The GCM, according to the authors, provides a more complete and formalized

definition of game design constructs than the existing game design models. It can help novice

game design or non-technical domain experts who wish to design computer games or serious

game document design specification of a game formally. This model can also be used as a

tool to study about the anatomy of a game both from design and software perspective. It can

also be extended to include specific concepts that describe components of other game genres.

This provides the flexibility for model developers to extend the ontology.

 The authors use an ontology development methodology to build their ontology. The

development of the ontology follows a bottom-up approach to ensure that each concept

introduced in the ontology can be programmatically represented and to encapsulate technical

aspects of game development from game designers. It should be noted that the authors do not

specify an ontology representation language or a modelling paradigm for the implementation

of the ontology. They only specify in their follow-up article (TANG et al., 2013) which

describes a Game Technology Model (GTM) for use in their Model Driven Serious Game

80

Development Framework. In this framework, the GCM computational-independent models

are transformed into a GTM platform-independent model. Those models are specified in

XML which is an adequate language for transformations but it does not support very well

reasoning processes.

4.5 – Conclusion

 The analysis of the literature regarding knowledge models has shown that the several

vocabularies proposed by their respective game designers helped in the development of

informal knowledge models which in turn helped in the development of formal knowledge

models such as ontologies. Each knowledge model uses other models as a basis. This

indicates an evolution in the formal representation of game knowledge, even if it is not

considered significant. This evolution happens because those vocabularies and knowledge

models share common terms and concepts that repeatedly appear.

 In summary, the main uses of game knowledge models observed in the literature are:

guide game design, game development, analysis of games, game studies, knowledge building,

development of another ontology, Model Driven Engineering (code generation).

 The analysis of the literature brought up some facts regarding game ontologies:

 Few ontologies adopt ontological engineering methodologies;

 Many ontologies fall short in the formality representation;

 A good amount of ontologies are implemented in OWL (GCM and GOP are not);

 Only GOP is generic. The other ontologies are developed with a certain genre of game

in mind;

 None of them are available on the Web;

 None of them use ontologies as a knowledge management solution for video game

development;

 None of them are effective in the development of a video game. The most they can do

is to be used in prototyping.

 Those facts show that the ontological engineering field is not explored enough in

video games research because few studies use ontological engineering in the development of

81

ontologies. However, it seems that the situation is changing as most recent studies use

ontological engineering.

 None of the ontologies or knowledge models is developed as a knowledge

management solution for game development. NIESENHAUS & LOHMANN (2009) present a

general framework architecture and implementation examples that show how knowledge

management and semantic technologies can be employed to support game development. This

article is the only study regarding knowledge management for video game development found

in the literature.

82

Chapter 5 – Building Methodology

 In this chapter I will present the building methodology of the ontology. First, I will

present the design principles that are going to be followed. Second, I will describe the phases

of the methodology and their activities. The methodology will follow the ontology design

principles described in Section 2.10 and the methodology proposed in METHONTOLOGY

(FERNÁNDEZ-LÓPEZ et al., 1997).

5.1 – METHONTOLOGY

 METHONTOLOGY is a methodology for building ontologies either from scratch,

reusing other ontologies as they are, or by the process of reengineering them. To improve its

applicability it adopted some ideas from the more mature Software Engineering discipline.

More concretely, its ontology development process is based on the activities identified in the

IEEE standard for software development (FERNÁNDEZ-LÓPEZ et al., 1997).

 The METHONTOLOGY framework includes: the identification of the ontology

development process, a life cycle based on evolving prototypes and the methodology itself,

which specifies the steps for performing each activity, the techniques used, the products of

each activity and an ontology evaluation procedure (CORCHO et al., 2006, GAŠEVIC et al.,

2009). The development process and life cycle are presented next.

5.1.1 – Ontology Development Process

 According to CORCHO et al. (2006), the activities in the ontology development

process can be classified in three categories as show in Figure 4. The activities are also

detailed below but with some differences to Figure 4.

 Management: It includes scheduling, control and quality assurance.

 Scheduling identifies the tasks to be performed, their arrangement, and the time and

resources needed for their completion. Control guarantees that scheduled tasks are completed

in the manner intended to be performed. Quality assurance assures that the quality of each

and every product output is satisfactory.

 Development-oriented (Technical): These activities are grouped into pre-

development, development and post-development activities.

83

 During pre-development, an environment study identifies the problem to be solved

with the ontology, the applications where the ontology will be integrated, etc. The feasibility

study answers questions like: “is it possible to build the ontology?”; “is it suitable to build the

ontology?” etc.

Figure 4 – Ontology Development Process (CORCHO et al.,2005)

 During development, the specification activity states why the ontology is being built,

what its intended uses are and who the end-users are, in other words, the scope of the

ontology is being defined. The conceptualization activity structures the domain knowledge as

meaningful models at the knowledge level either from scratch or by reusing existing models.

The formalization activity transforms the conceptual model into a formal or semi-computable

model. The implementation activity builds computable models in an ontology language.

 During post-development, the maintenance activity updates and corrects the ontology

if needed. Also, the ontology is (re)used by other ontologies or applications. The evolution

activity consists of managing ontology changes and their effects by creating and maintaining

different variants of the ontology, taking into account that they can be used in different

ontologies and applications.

 Support: These include a series of activities that are performed alongside

development-oriented activities, without which the ontology could not be built.

84

 The goal of the knowledge acquisition activity is to acquire knowledge from experts in

a given domain or through some kind of (semi-)automatic process, which is called ontology

learning (Javier Nogueras-Iso et al. 2010). The evaluation activity makes a technical

judgement of the ontologies, of their associated software environments, and of the

documentation. The integration activity is required when building a new ontology by reusing

other ontologies already available. The merging activity consists of obtaining a new ontology

starting from several ontologies in the same domain. The alignment activity establishes

different kinds of mappings between the involved ontologies. The documentation activity

details, clearly and exhaustively, each and every one of the completed stages and products

generated. The configuration management activity records all versions of the documentation

and of the ontology code to control the changes.

5.1.2 – Ontology Life Cycle

 The ontology development process does not identify the order in which the activities

should be performed (FERNÁNDEZ-LÓPEZ et al., 1997). This is the role of ontology life

cycle, which identifies when the activities should be carried out (CORCHO et al., 2006).

Figure 5 shows how the METHONTOLOGY life cycle is.

Figure 5 – Ontology life cycle (CORCHO et al., 2005)

85

 The ontology life cycle schedules the ontology development activities detailed

previously, although not all of them are currently considered by the METHONTOLOGY

life cycle. The life cycle is cyclic, based on evolving prototypes (FERNÁNDEZ-LÓPEZ et

al., 1997). It allows an incremental development of the ontology that enables earlier

validation and readjustment. Each cycle starts with the scheduling activity that identifies the

tasks to be performed, their arrangement, their temporal extent and the resources they need.

After that the development activities are engaged, starting with specification. Simultaneously,

the management activities, control and quality assurance, and the support activities,

knowledge acquisition, integration, evaluation, documentation and configuration

management, are launched. They take place in parallel with the development activities

(GARCÍA-GONZÁLEZ, 2006).

 According to GARCÍA-GONZÁLEZ (2006), at each cycle the current prototype

ontology moves along the development activities, from specification through

conceptualization, formalization and implementation until maintenance, although it is not

necessary to pass through all them. Eventually, the prototype might be mature enough for

evaluation purposes and a new cycle can be engaged considering the conclusions from this

evaluation. He describes the steps performed during a complete development cycle:

 Specification of the prototype ontology;

 Construction of a conceptual model from pieces provided by the knowledge

acquisition;

 Formalization of the conceptual model;

 Implementation of the formalized conceptual model. This can be automatic if the

formalization can be translated automatically to an ontology implementation language.

 Maintenance of the resulting ontology, which might lead to a new development cycle

if unsatisfied or new requirements are detected.

 The efforts put into the support activities are not uniform along the life cycle as it is

shown in Figure 5. Knowledge acquisition, integration and evaluation are greater during

ontology conceptualization. This is because most knowledge is acquired at the beginning of

the development, ontologies are integrated at the conceptual level before implementation and

86

it is better to accurately evaluate the conceptualization as earlier as possible in order to avoid

propagating errors (GARCÍA-GONZÁLEZ, 2006).

5.2 – Ontology Building Activities

 I will describe the knowledge acquisition, specification, conceptualization,

formalization, implementation and evaluation activities in more detail. There will be a chapter

dedicated to the specification, conceptualization, implementation and evaluation phases of the

ontology building process. Knowledge acquisition was performed in Chapters 3 and 4. The

maintenance phase of the ontology will not be covered in this dissertation.

5.2.1 – Knowledge Acquisition

 Data collection or knowledge acquisition is a collection-analysis cycle where the result

of a required collection is analyzed and this analysis triggers new collections. Experts, books,

handbooks, figures, tables, and even other ontologies are sources of knowledge from which

the knowledge can be elicited using techniques such as: brainstorming/brainwriting,

interviews, observations, document analysis, questionnaires, and data mining (GANDON,

2010).

 There is also a set of methods and techniques for the (semi-)automatic processing of

knowledge resources. The main aim of this automatic processing, known as Ontology

Learning, is to apply the most appropriate methods to transform unstructured (text), semi-

structured (HTML pages) and structured data sources (databases) into conceptual structures

(ontologies) (NOGUERAS-ISO et al., 2010). The intent is to allow a reduction in the time

and effort needed in the ontology development process. A typical prerequisite for enabling

(semi-)automated information extraction from Web documents is the use of natural-language-

processing and text-processing technologies (CORCHO et al., 2006, GAŠEVIC et al., 2009a).

5.2.2 – Specification

 The goal of the specification phase is to produce either an informal, semi-formal or

formal ontology specification written in natural language, using a set of intermediate

representations or using competency questions, respectively. METHONTOLOGY

(FERNÁNDEZ-LÓPEZ et al., 1997) proposes at least the following information to be

included:

87

 The purpose of the ontology, including its intended uses, scenarios of use, end-users,

etc.

 Level of formality of the implemented ontology, depending on the formality that will

be used to code the terms and their meaning.

 Scope, which includes the set of terms to be represented, its characteristics and

granularity.

 Any proposal for a new ontology or extension to an ontology must describe the

motivating scenario, and the set of intended solutions to the problems presented in the

scenario. This is essential to provide a rationale for the objects in an ontology, particularly in

cases when there are different objects in different proposals for the same ontology. By

providing a scenario, we can understand the motivation for the proposed ontology in terms of

its applications (GRÜNINGER & FOX, 1995).

 There are three characteristics of the scope of an ontology (GANDON, 2010):

 Exhaustivity: breadth of coverage of the ontology, the extent to which the set of

concepts and relations mobilized by the application scenarios are covered by the

ontology.

 Specificity: depth of coverage of the ontology, the extent to which specific concept

and relation types are precisely identified

 Granularity: level of details of the formal definitions of the notions in the ontology, the

extent to which concept and relation types are precisely defined with formal

primitives.

 One of the ways to determine the scope of the ontology is to sketch a list of questions

that a knowledge base based on the ontology should be able to answer, competency questions

(GRÜNINGER & FOX, 1995). These questions will serve as the litmus test later: Does the

ontology contain enough information to answer these types of questions? Do the answers

require a particular level of detail or representation of a particular area? These competency

questions are just a sketch and do not need to be exhaustive (NOY & MCGUINNESS, 2001).

 These are the informal competency questions, since they are not yet expressed in the

formal language of the ontology. By specifying the relationship between the informal

88

competency questions and the motivating scenario, we give an informal justification for the

new or extended ontology in terms of these questions. This also provides an initial evaluation

of the new or extended ontology; the evaluation must determine whether the proposed

extension is required or whether the competency questions can already be solved by existing

ontologies (GRÜNINGER & FOX, 1995).

 Ideally, the competency questions should be defined in a stratified manner, with

higher level questions requiring the solution of lower level questions. It is not a well-designed

ontology if all competency questions have the form of simple lookup queries; there should be

questions that use the solutions to such simple queries. Also, every proposal for a new or

extended ontology must be accompanied by a set of formal competency questions. It is only

in this way that we can evaluate the ontology and claim that it is adequate (GRÜNINGER &

FOX, 1995).

5.2.3 – Conceptualization

 The objective of this activity is to organize and structure the knowledge acquired

during knowledge acquisition using external representations that are independent of the

knowledge representation and implementation paradigms in which the ontology will be

formalized and implemented next. An informally perceived view of a domain is converted

into a semi-formal model using intermediate representations based on tabular and graph

notations. These intermediate representations (concept, attribute, relation, axiom and rule) are

valuable because they can be understood by domain experts and ontology developers.

Therefore, they bridge the gap between people's domain perception and ontology

implementation languages (GARCÍA-GONZÁLEZ, 2006).

 In order to build a consistent and complete conceptual model, the conceptualization

activity defines a set of tasks that should be executed in succession. These tasks increase, step

by step, the complexity of the intermediate representations used to build the conceptual

model. This way, it is easier to ensure a consistent and complete conceptual model (GARCÍA-

GONZÁLEZ, 2006). The conceptualization process of the VGDO will be similar to

MEHTONTOLOGY. It is composed of the following steps:

89

 Rationale behind the creation of the module and natural language description of its

properties. There may be sub-sections describing important specialized concepts of the

module;

 A diagram that shows the module taxonomy and relations is presented. In some cases

because of the module size, there will be a diagram for the taxonomy and one for the

relations of the module;

 A concept table to describe the concepts name, their parent concept, which concepts

they are disjoint with and membership conditions necessary for a concept to be

specialized;

 An attributes table to describe instance and class attributes of the concept. Class

attributes have the same value for all instances of a concept, while instance attributes

have different values for each instance of the concept. It should be noted that in the

case of this ontology, the attributes described in this table are not related to the

Attribute element. Also, all instances of the concepts of the ontology have a name and

description attributes, those are self-explanatory;

 A relations table that describes the binary relations of the elements of the module with

elements of itself and other modules. Relations are determined by their name and the

source and target concepts. For each relation, its cardinality, inverse relations and

mathematical properties (symmetric, transitive, functional, etc.), are specified if

possible;

 An axiom or rules table of the module is presented. They are used for constraint

checking and for inferring values for attributes and concepts.

5.2.4 – Formalization and Implementation

 The goal of the formalization activity is to transform the conceptual model into a

formal or semi-computable model. According to CORCHO et al. (2003), when formalizing an

ontology, it is important to find a formalism which provides adequate primitives to capture the

aspects of the ontology. Knowledge representation languages can be used for ontology

formalization. An overview of knowledge representation languages is presented by CORCHO

et al. (2003). Examples of such languages include Classical Propositional Logic; First-Order

90

Logic; Semantic Networks; Conceptual Graphs; Frames; and Description Logics

(BRACHMAN & LEVESQUE, 2004).

 The goal of the implementation activity is to build computable models using ontology

implementation languages. If this formal language is standardized and if there are platforms

complying with the standard, then at least a minimum set of operation is certified and the

computational commitment exists (GANDON, 2010). There are ontology development tools

that automatically implement the conceptual model into several ontology languages using

translators. Therefore, formalization is not a mandatory activity (GARCÍA-GONZÁLEZ,

2006) because it is automatically done in the implementation phase.

5.2.5 – Evaluation

 According to GARCÍA-GONZÁLEZ (2006), the evaluation activity judges the

developed ontologies, software and documentation against a frame of reference. Ontologies

should be evaluated before they are used or reused. There are two kinds of evaluation, the

technical one, which is carried out by developers, and user’s evaluation.

 Ontology evaluation includes the following activities (GÓMEZ-PÉREZ et al., 1995):

 Ontology verification refers to building the ontology correctly, that is, ensuring that its

definitions implement correctly the requirements or function correctly in the real

world.

 Ontology validation refers to whether the ontology definitions really model the real

world for which the ontology was created.

 Ontology assessment is focused on judging the ontology from the user's point of view.

Different types of users and applications require different means of assessing an

ontology.

 The criteria for ontology evaluation are (GARCÍA-GONZÁLEZ, 2006):

 Consistency, which checks if all individual definitions (axioms) are consistent and if

no contradictory knowledge can be inferred from other definitions (axioms). Some

consistency problems are: circular definitions, common classes or instances in disjoint

decompositions and partitions, external instances in exhaustive decompositions and

partitions and semantic errors.

91

 Completeness. All that is supposed to be in the ontology is explicitly stated in it, or it

can be inferred. Some common completeness errors are: incomplete concept

classification, disjoint knowledge omission and exhaustive knowledge omission.

 Conciseness. An ontology is concise if it does not include unnecessary definitions,

explicit redundancies between definitions do not exist and redundancies cannot be

inferred. Some redundancies are: redundant subclass of or instance of relations and

identical formal definitions of classes or instances.

 Another form to evaluate the ontology is to check if it can answer the competency

questions defined in the specification phase. The axioms in the ontology must be necessary

and sufficient to express the competency questions and to characterize their solutions; without

the axioms we cannot express the question or its solution, and with the axioms we can express

the question and its solutions. Further, any solution to a competency question must be entailed

by or consistent with the axioms in the ontology alone. If the proposed axioms are insufficient

to represent the formal competency questions and characterize the solutions to the questions,

then additional objects or axioms must be added to the ontology until it is sufficient

(GRÜNINGER & FOX, 1995).

92

Chapter 6 – Specification

 According to GRÜNINGER & FOX (1995), any proposal for a new ontology or

extension to an ontology must describe the motivating scenario, and the set of intended

solutions to the problems presented in the scenario. This is essential to provide rationale for

the objects in an ontology, particularly in cases when there are different objects in different

proposals for it. By providing a scenario, we can understand the motivation for the proposed

ontology in terms of its applications.

 In this chapter I will present the specification of the Video Game Development

Ontology (VGDO). First, the motivating scenario and the purpose of the ontology will be

presented, as they were in Chapter 1. Second, I will describe its intended uses and users.

Third, I will detail its characteristics. Fourth, I will determine its formality. Fifth, I will

present the sources of knowledge used in the construction of the ontology. Finally, I will

present the ontology scope and its main elements.

6.1 – Purpose

 There are several problems that exist in video game development. For example,

PETRILLO et al.’s (2008) survey shows that all the main problems of traditional software

industry are also found in the games industry. There is a gap of communication between the

members of the development team because it is composed of professionals of different

domains of knowledge. This diversity of knowledge and the resulting communication gap

reflects negatively on the production of documentation and the requirements identification

process because of the lack of standards and common vocabulary in the development team.

 The ontology has two purposes: the first is to bridge the gap of communication

between the programming and design teams by providing a common vocabulary. The second

is to assist in the transition between preproduction and production phases of the game

development process by assisting in the identification of implied knowledge (which would be

all kinds of requirements) in GDDs. By achieving those purposes, the ontology makes the

gathering of requirements more accurate and reliable and, in consequence, mitigates several

problems in the game development process.

93

 To achieve those purposes the ontology describes the video game in development or

parts of it in a set of accurate and unambiguous terms, those terms can be decomposed in

atomic terms that serve as the base of the ontology. This is necessary because using a

common vocabulary can be bad for the communication if its terms are inaccurate and not

intuitive for the intended audience. A confusing and poorly thought vocabulary is of little use.

 It also can be used as a knowledge repository by the development team to keep track

of design changes and make queries to clarify concepts and the relationships between them.

Because of the formalism that the ontology relies on, automatic reasoning on them can be

performed to identify implicit knowledge and requirements. This can help designers and other

team members to find flaws in the game design, necessary assets, patterns, etc.

6.2 – Intended Users

 The designers design the gameplay of the game as well as its other aspects and the

programmers implement the finished designs and integrate all assets with the code to bring to

life the experience intended by the designer. There are other teams that participate in the

development process but the game is born from its design; from the design the necessary

requirements for the production of the game are identified; assets (art, music) are produced

from the requirements; finally, all of those assets are integrated with the game logic that is

implemented into the software. Thus, the intended users of the ontology are the design and

programming teams since all other teams heavily depend on the design of the game and the

programming team is tasked with the implementation of the design as well as identifying

technical requirements that affect the other teams by stating what is and what is not possible

to be done with the available technology. Finally, it is vital that both teams communicate

clearly for the production of a quality product.

6.3 – Characteristics

 The ontology must satisfy the criteria for appropriate knowledge management

solutions for video game development, which were proposed by NIESENHAUS &

LOHMANN (2009) and described in Section 1.1.7.

94

6.4 – Formality

 Formality is important for two reasons: first, the ontology has to be machine-readable.

Second, the ontology must be unambiguous, with a precise (mathematical) meaning. Such

formality helps programmers in the identification of requirements and allows reasoning of the

ontology to reveal implicit knowledge and inconsistencies in the design of the game.

 The ontology will be rigorously formal as described in Section 2.8 because the

ontology will need to enforce constraints such as rules of games that include time limits,

space limits, entities that can only interact with certain types of entities, conditions for actions

to be performed, etc.

 In order to achieve this level of formality, the ontology will be formalized and

implemented in OWL 2 using the Protégé ontology editor. OWL 2 is popular, widely used by

many people, supported by many applications and it has substantial documentation (tutorials,

examples, etc.). It was chosen because of my unfamiliarity with ontology representation

languages and the lack of time to learn and compare other ontology languages. Therefore,

OWL 2 is the safest choice because if technical difficulties arise during the ontology

implementation there will be plenty of resources to consult.

 The Protégé editor was chosen because it is open source, has substantial

documentation and has already been through a number of versions and modifications. Protégé

supports several ontology representation languages, including OWL and RDF(S). Some forms

of reasoning over ontologies developed with Protégé are also facilitated; for example, since

OWL is based on description logics, inferences such as satisfiability and subsumption tests

are automatically enabled. Protégé’s plug-in-based extensible architecture allows integration

with a number of other tools, applications, knowledge bases, and storage formats (GAŠEVIC

et al., 2009b).

6.5 – Knowledge Sources

 Knowledge sources are documents or persons which knowledge about the domain is

elicited. There are two groups of knowledge sources that were analyzed in Chapters 3 and 4.

 The first group of sources of knowledge was academic papers, online articles, books

and blogs about games, video game development, video game programming and game design.

The majority of authors is of experienced professionals in the game industry or had some

95

experience designing games. The reader is referred to the bibliography of this dissertation to

check the references I used to develop the ontology.

 The second group of sources of knowledge was game ontologies. The most notable

ontologies are the Game Ontology Project (GOP) proposed by ZAGAL et al. (2005) and the

Game Content Model: An ontology for Documenting Serious Game Design (GCM) proposed

by TANG & HANNEGHAN (2011).

 Those groups were limited to the games, video games, video game development, video

game programming and game design domains in order to obtain a consistent vocabulary that

can be easily adopted by video game development teams.

6.6 – Scope

 According to Section 6.3, the ontology is supposed to be generic and adaptable. This

means that the ontology must be able to describe all or part of the elements that compose a

video game regardless of genre and technology. It also must give the developer the freedom to

abstract or detail a concept as he sees fit. Another characteristic is that the ontology is

lightweight as described in Section 2.8 and combined with the fact that the intended users are

designers and programmers of the development team; it means that the terms of the ontology

must be easily understood by the intended users.

 The tendency is that both programmers and designers relate to the top terms of the

ontology because it is meant as a vocabulary to be used by both of them. As the terms become

more specific they can either approach the game designer or the programmer domain. For

example, the terms from the game designer domain are by nature more ambiguous and

inaccurate but they will become the opposite because they will extend the top elements of the

ontology which are meant to be accurate and unambiguous. The intention is to not use terms

specific to programmers and game designers in the construction of this ontology because it is

meant to be technology independent and to not describe game designer techniques that are

used to balance the game and build an experience for the player. However, the ontology can

be extended to include terms more specific to programmers and game designers if the user

necessitates. For example, the attributes of a game object can be more detailed as to include

datatypes and operations that can be used to modify them. This would be something

extremely useful to programmers.

96

 Although I claim that the ontology is to be technology independent, some technology-

related terms might appear such as input hardware. This fact is supported by CRAWFORD’s

(1984) claim that the game designer who designs computer games must thoroughly

understand the medium with which he works as the computer offers special possibilities and

imposes special constraints (such as limited input) on the designer. It helps in the

development process if the designer is aware of the limitations of the available technology.

 The ontology is going to be composed by elements that were chosen by me after

reading the available literature on game design, video game development and game

ontologies. The ontology will be separated in two connected parts: internal and external. Each

of those parts will be composed of modules. Internal modules represent the elements located

exclusively within the digital game world (rules, objects, actions, etc.) and the external

modules represent the elements outside of the game world and the ones responsible for the

communication between the internal and external objects.

 Each module will be treated as a smaller ontology as their purpose, scope, elements,

relations and competency questions are detailed. Also, every element of the ontology has title

(or name) and description properties. Both are self-explanatory but I add that the description

is important because the developer can describe the element in natural language in case he

cannot or has difficulty to describe the concept with the ontology terms.

 The internal modules are based on the essential elements that games are composed of,

which I identified in Section 3.1.1. The Game Object (GO) module will be the root module of

this part of the ontology and more specific modules will be born from those. Each module in

isolation can be used to describe basic elements within the game world. Moreover, the

modules have established relationships to other modules; it is useful to be able to break down

the game in distinct parts and observe how these parts interact with each other.

Modularization will also facilitate the ontology evaluation, maintenance and extension. The

internal modules are:

 Game Object: Describes the objects that are part of the game, the relationships

between them, their action, their attributes, the events they handle and their possible

states;

97

 Attribute: A GO can have several attributes such as numbers and strings. This module

describes the types of attributes and their range of values;

 Event: it brings information not available internally for a GO (in other words,

information about other GO or external objects). The GO takes an Action according to

its state and the information received from the Event. This module describes the

possible types of Events, the states that trigger their creation, their attributes and the

actions that they may cause to happen;

 Action: it changes the state (attributes) of the game and is associated to GOs. The

Action changes the GO state, possibly triggering new Events. This module describes

how Actions may be structured, the conditions necessary for its execution and the

changes they make once executed;

 State: it represents the current state of affairs of an object, be it in the game world or

the real world. A State can be defined by the values of the attributes of a GO. States

can have sub-states and lead to other states depending on the changes in the attributes

of the present objects. This module describes the different types of states, the attributes

values that define them and the objects that they belong;

 Space: Gameplay happens in some kind of space. It describes the different types of

spaces that can exist in a video game;

 Time: Gameplay happens in a frame of time. It describes the different types of time

that can exist in a video game.

 The external modules are based on the essential elements that video games are

composed of, which I identified in Section 3.2.1. The External Object (EO) module will be

the root module of this part of the ontology. All external modules extend in some way the

internal modules of the ontology with the exception of the EO module. While a game can be

described with the basic modules, they are too generic to be used by video game developers as

they lack important terms related to video games. With the external modules the development

team will be able to describe a video game with more precision:

 External Object: It consists of objects outside the game world that are necessary for

the video game to provide the intended experience. They consist of hardware, software

98

(including other video game) and players that trade input and output between them.

EOs trade inputs and outputs with GOs. It can be extended to Hardware, Software and

Player modules;

 Software: Describes the software that the video game receives input from and sends

output to. Most of the times, those software include operating systems, clients

applications (Steam for example), servers, etc.

 Video Game: Extension of Software. It describes general information about the video

game in development such as name, developer, genre and platform. A game is

composed of modules; be it one or many. A game can also have other games inside or

be a collection of games, so each contained game is a module itself. The modules are

composed of several GOs;

 Player: Describes the possible interactions the player can have with the game and the

objects manipulated by the player;

 Hardware: The input and output cannot exist without an associated hardware (a

controller will hold some buttons and it has the actual state of the inputs). Describe the

hardware objects responsible of sending input to the games and displaying the output

of the game logic;

 Input: Inputs are sent by an EO to the video game. They are treated as external events.

It can be divided in further modules;

 Output: The game sends output to the player. The state of the game and its changes are

outputted to a hardware which will transform it in a form discernible to the player. It

can be divided in further modules;

 Video Output: Extension of Output. This extension will be detailed as it is the defining

feature of a video game;

 Assets: They are artifacts that are used in the output of video games. They usually are

images, video, music and other types of files that are integrated into the game code.

 As it can be seen, there are no rules and goals modules even though they were

identified as essential elements in games. According to SCHELL (2014), rules are the most

fundamental elements of the game because they define the space, the timing, the objects, the

99

actions, the consequence of the actions, the constraints on the actions, and the goals. As it can

be seen, rules encompass a lot of distinct concepts that were separated in the above modules

and through them we can ask about game rules such as an action that is allowed in a

determined game state or the duration of a certain game state.

 Goals are created by game designer to guide the player behavior towards the

completion of the game; obviously this information is of no use to programmers. Therefore,

goals would be a module that would be located on the game designer and player knowledge

domain, what the ontology needs are modules that are located in both the game designer and

programmers knowledge domain. However, non-player characters (NPC) in some games are

programmed with artificial intelligence (AI); the actions of such characters are guided by

formal rules or goals. Moreover, NPC can share the same goals of human players. For

example, in most fighting games both players (human and non-human) have as objective

depleting the opponent`s life to zero in order to win a round. Other concern is whether some

NPCs can be considered to have an AI or goals because of the simple behavior, take for

example the Goombas of Super Mario Bros. which only move side to side but they are

“smart” enough to not fall from the platform they are on. As it can be seen, the discussion of

goals is a complex topic but it is worth considering as a more advanced module once the

initial modules are developed and tested.

 The terms utilized in the ontology are to be shared by the knowledge domain of game

designers and programmers and easily understood in their respective domains. Obviously,

more specific terms that are far from those knowledge domains can be created. With the base

of the ontology being composed of accurate and unambiguous terms, more specific terms can

be represented appropriately for programmers and game designers. It is valid to reiterate that

this ontology is for the description of a video game or parts (or aspects) of it in order to assist

the development process; it is not adequate for the representation of game designer

techniques, representation of physical games, game studies, player behavior, etc.

 I created a list of competency questions to better determine the scope of the ontology.

These questions will also serve as a tool to evaluate the ontology. They are located in

Appendix C because it is a very extensive list.

100

 To conclude, GRÜNVOGEL (2005) asserts that, in general, there is no model of a

game capable of representing every aspect thereof, since it is a model and has to leave out

certain aspects of the game. SCHELL (2014) states that is up to the developer to decide which

objects have certain attributes and certain states. There are often multiple ways to represent

the same thing. In a game of poker, a player’s hand can be defined as an area of the game

space that has five cards objects in it, or defined as an object that has five different card

attributes. As with everything in game design, the right way to think about something is

whichever is the most useful at the moment (SCHELL, 2014).

 The same applies to ontologies too, as they describe part of the knowledge domain. It

is impossible for ontologies to describe the totality of the knowledge domain or to accurately

describe certain concepts, even though some aim for it. The reason for that is that knowledge

is always being created and added to a knowledge domain, thus the ontology will always be

incomplete because, for example, it may not describe certain properties of an object since they

are not of use to the intended users of the ontology. It is crucial that it is understood that an

ontology is by no means the only way to describe a knowledge domain as there are different

viewpoints that the domain can be seen from and, in consequence, there might be missing

important knowledge from the domain.

101

Chapter 7 – Conceptualization of Internal Modules

 The objective of this chapter is to organize and structure the knowledge acquired

during the specification. As it has been presented in the previous chapter, the video game

development domain is a very complex one and conceptualizing it is a very challenging task.

The process of conceptualization will follow the one presented in Section 5.2.3. As stated in

Section 6.6 (scope of the ontology), each of the main elements will be treated as a separate

module. For each module, the conceptualization will be done following the same steps.

 In this chapter, the internal modules of the Video Game Development Ontology

(VGDO) will be conceptualized and detailed. The external modules of the ontology will be

conceptualized in the next chapter. The conceptualization process will be the same for the

external modules. The concepts, attributes, relations and axioms tables of the modules are

presented in Appendix B.

7.1 – Game Object Module

 This is the root module of the internal part of the ontology. It is from this module that

other internal modules will be born. There are five foundations that help determine a game

object’s most essential properties and relations. Because of this, all internal modules are

related to each other.

 The first foundation is SCHELL’s (2014) and GREGORY’s (2014) definitions of

game objects (GO). SCHELL (2014) claims that a game space will surely have objects on it.

Anything that the player sees or manipulates (characters, menu) in a game are GOs.

GREGORY (2014) is more specific by stating that a GO refers to virtually any dynamic

element (an element that changes its state over time) within a game world. Static elements are

the inverse since they include pretty much anything that does not move or interact with

gameplay in an active way. However, he states that the term GO is by no means standard

within the industry. GO are commonly referred to as entities, actors, agents, etc.

 GREGORY (2014) states that a GO is essentially a collection of attributes (the current

state of the object) and behaviors (how the state changes over time and in response to events).

They are classified by type and different types of objects have different attributes schemas

and different behaviors. All instances of a particular type share the same attribute schema and

the same set of behaviors, but the values of the attributes differ from instance to instance.

102

 The second foundation is CHANDRASEKARAN et al.’s (1999) claim that although

differences exist within ontologies, general agreement exists between ontologies on many

issues. Those properties are:

 There are objects in the world;

 Objects have properties or attributes that can take values;

 Objects can exist in various relations with each other;

 Properties and relations can change over time;

 There are events that occur at different time instants;

 There are processes in which objects participate and that occur over time;

 The world and its objects can be in different states;

 Events can cause other events or states as effects;

 Objects can have parts.

 The third foundation is GREGORY’s (2014) claim that games are inherently event-

driven. According to him, an event is anything of interest that happens during gameplay.

Different types of GOs will respond in different ways to an event. Finally, he says that most

objects in a game do not need to respond to every possible event. Most types of GOs have a

relatively small set of events in which they are “interested”.

 The fourth foundation is that GOs perform actions to change the game state. While

SCHELL (2014) and BJÖRK & HOLOPAINEN (2003) state that players can only change the

game state by performing actions, they only consider actions as something that only players

do. However in a video game the actions of a player are limited by the interface he is using,

many actions that would be done by the player such as moving a piece of chess or calculating

the damage of an attack in an RPG are done by the underlying software. Also, there are non-

player characters (NPC) with their own AI that tries to replicate a human opponent, so their

actions need to be designed.

 The fifth foundation is that GOs have distinct states determined by the current values

of their actual attributes. According to Jesper Juul, in a lecture titled “Play Time, Event Time,

Themability”, a game is actually what computer science describes as a state machine.

103

However, games can exist in a vast number of states making it impossible to document them

all. The same applies to GOs; they can have an unlimited number of states.

 Therefore, the purpose of this module is to describe the GOs by detailing the relations

between different objects, the attributes of an object, the states that a game object has, the

events that it reacts to and the actions it performs to change the object or the game state. This

module is solely composed of the GO element and has relations with all internal modules.

Figure 6 presents a diagram with a simplification of this module which has the following

properties:

 A GO can contain other GO elements. If the GO can contain more than one instance of

a type of GO, the GO will have a Collection of the type of GO. A common case in an

RPG inventory where items with different properties and effects are stored in the same

space. See Axiom 1 at Appendix B.

 A GO is composed of other GOs. A “composed of” relation is different from a

“contain” relation because in the former the GO must have an instance of one while in

the latter it is not necessary. For example, a car must have wheels to be considered one

while having fuel is not necessary for it to be considered. However, the car engine

needs fuel in order to make the car move. The car can contain fuel and different

amounts of fuel determine the car behavior.

 A GO handles and sends Events. An example is a life bar decreasing when a character

takes damage in an action game. The Event here is the change on the Life attribute of

the character and the subsequent Action is the modification of the life bar to reflect the

change.

 A GO performs Actions. The GO reacts to an Event by performing none or many

Actions. Continuing from the Event example, the Action here is the modification of

life bar length to indicate to the player how much damage was done.

 A GO has one or many States that reflect the current values of its attributes.

 A GO can have one to many reactions to an Event; each reaction may be only possible

in certain States of the GO.

104

 A GO has Attributes. Examples are an avatar position in a 2D space or the amount of

life a character has in a fighting game.

 There are types of Game Object. A type can be defined by either the attributes or the

events or the actions or a combination of the three. An example of Game Object type

would be an object that can move in a 2D space, an instance of this would be Mario in

Super Mario Bros.

Figure 6 – Game Object Module

7.2 – Attribute Module

 According to SCHELL (2014), attributes are categories of information about an

object. He gives the example of a racing game where a car might have maximum speed and

current speed as attributes. Each attribute has a current state. The state of the “maximum

speed” attribute might be 150 mph, while the state of the “current speed” attribute might be 75

mph if that is how fast the car is going. Maximum speed is not a state that will change much,

unless perhaps the player upgrades the engine of the car. Current speed, on the other hand,

changes constantly.

 The reason for a module for attributes is because one single attribute can influence the

behavior of several components of video games. A good example is life or health points.

There are multiple examples: in the Legend of Zelda series when the player is low on health a

beeping sound keeps playing until he recovers health to a certain level. In the case of Wind

Waker, Link will look tired and the beeping sound will play. Also, health points are

represented as hearts to the player. When health is lost, the hearts become empty. And

obviously, when Link health reaches zero it is game over.

105

 Therefore, the purpose of this module is to describe Attributes by detailing their types,

constraints, actions that change them and events triggered by them. First, I will describe the

five types of Attribute elements:

 An Atomic Attribute is simply composed of the value and datatype it possesses. It

includes numbers, strings and boolean attributes.

 A Composite Attribute can only be composed by Atomic or Composite Attribute

elements. A Composite Attribute does not have a value property but it can have

custom properties that can be derived from the values of the Attributes it possesses.

For example, the Position attribute in a 2D space is composed of the X and Y

coordinates that are numbers. As for a custom property, a Vector has a size property

which is calculated using the values of the X and Y coordinates. See Axiom 2a.

 Collection: It includes structures used for storing a quantity of GOs or Attributes such

as maps and array lists. Typical operations are insertion, removal, copying and

modification of a particular item in a collection. A more complex operation would be

the ordering of the items following certain criteria.

 File: Assets of a game are files. Files have particular operations which transform them

in a format such that the game logic can understand them. Typical operations are

opening, reading and closing files. More specific types of files such as music and

image have their own unique operations.

 Figure 7 presents a diagram with a simplification of this module which has the

following properties:

 An Attribute is present in one or many GOs. For example, objects that move in 2D

spaces all have a Position attribute that contains the object coordinates. But an

instance of an Attribute belongs to only one instance of a GO.

 An Attribute can have a range of permitted values. In RPGs there are some examples

such as an upper limit to the maximum health points (HP) a character can have or a

maximum number of characters the name of the player’s character can have.

 An Attribute value is changed by an Action. Depending on the type of the Attribute, it

can be changed in a number of ways. For example, numeric Attributes can be changed

106

by adding it to or subtracting it from another number. Addition and subtraction can be

categorized as Action elements.

 An Attribute can only be changed by Actions of the same GO. See Axiom 2.

 An Attribute value or range of values determines the State of the GO. For example, in

an RPG when the character magic points (MP) reach a certain value, he will not be

able to use spells or skills because the MP is too low to pay the cost. Here, we have

two states called “Character cannot use magic” and “Character can use magic” which

are defined by the MP value.

 It is implied that an Attribute value or a combination of values of different Attributes

can trigger an Event because States trigger Events. For example, when the player’s life

reaches zero points in an action game, generally it triggers the Game Over event.

However, in certain games, if the player possesses a certain GO, instead of receiving a

Game Over screen, the character’s life is replenished but the GO is lost in the process.

In this example, the life attribute is part of the trigger of the event together with the

GO. See Axiom 3.

Figure 7 – Attribute Module

 An abstract representation of a type of attribute can be modelled with the Attribute

module. However, the values, constraints, actions and event triggers are unique to an attribute

type. For example, the addition operation of a number cannot be performed in a piece of text

or in a custom attribute type.

107

 It should be noted that Composite Attributes can be present in important parts of the

game. For example, the Vector attribute is a Composite Attribute that has attributes such as

length and direction that are calculated through operations. It also has its own addition and

subtraction operations. An example of heavy use of vectors is 3D gaming; all game objects

present in a 3D space have at least one vector. In the next section, I will describe the most

basic attribute types that are present in Atomic Attributes.

7.2.1 – Atomic Attribute Types

 The most basic attribute types found in video games are:

 Number: It includes all type of numbers such as integer, decimals and their respective

restrictions. Some of the operations that can be performed on numbers are addition,

division, subtraction and logarithm.

 String: It includes all types of strings, their formats and their respective restrictions. It

has a length attribute which in calculated by the number of characters a string has.

Some of the operations that can be performed on strings are append a string to the end

of one, return a substring from a string, split the string in other string, etc.

 Boolean: It has only true or false as the possible values. All its operations are logic

operators of course. There are other types of logic such as first-order logic with a

whole exclusive set of logic operators.

 Enumeration: It consists of a set of named elements of the enumerator attribute. An

enumeration has values that are different from each other, and that can be compared

and assigned. For example, the three actions in Rock-Paper-Scissors may be three

enumerators named Rock, Paper and Scissors belonging to an enumeration attribute

named “player action”.

 Concluding this module, to expand on a certain type attribute is the same to develop a

new ontology or module to describe this type. The reason for this, as demonstrated, is that

attribute types have their own operations and their own particular rules.

7.3 – Event Module

 Events are discrete points in the gameplay where the game state changes (BJÖRK &

HOLOPAINEN, 2003). Most game engines have an event system, which permits various

108

engine subsystems to register interest in particular kinds of events and to respond to those

events when they occur. A game’s event system is usually very similar to the event/messaging

system underlying virtually all graphical user interfaces (GREGORY, 2014).

 According to GREGORY (2014), an event is comprised of two components: its type

(player input, collision, etc.) and its arguments. The arguments provide specifics about the

event (Which button was pressed? What objects collided?). Some game engines name events

as messages or commands. These names emphasize the idea that informing objects about an

event is essentially equivalent to sending a message or command to those objects.

 GREGORY (2014) says that most objects in a game do not need to respond to every

possible event. Most type of game objects have a relatively small set of events in which they

are “interested”. This can lead to inefficiencies when multicasting or broadcasting events,

because there will be a need to iterate over a group of objects and call each one’s event

handler, even if the object is not interested in that particular kind of event.

 THORN (2013) claims that the relationship between time and objects can be stated as

follows: “When X happens, and then does Y”. The first part of the statement is referred to an

Event. The second part of the statement is referred as an Action. The event is a notification or

moment in time that is raised when an important circumstance arises in the game world

(player presses a button to jump). The action is invoked as a response to the event when it

occurs to bring about a relevant and specified change in the game world at that time (the

character jumps).

 Events bring information not available internally to a GO, causing the GO to perform

an Action according to its state and the information received from the Event. The Action

changes the GO state, possibly triggering new Events. Therefore, the purpose of this module

is to describe Events by detailing their types, information that they bring, the GOs that react to

them and the States that trigger them. Figure 8 presents a diagram with a simplification of this

module which has the following properties:

 An Event carries information in the form of Attributes, GOs or a combination of both.

For example, a touch on a touchscreen generates an Event that informs the coordinates

of the touch to the video game. A collision event informs the GOs that collided.

109

 There are cases that a GO does not respond to an Event. For example, in a fighting

game the player’s character may become stunned and will not respond to any input it

would normally react to. This means that there is a set of States in which a GO reacts

to an event and one set in which the GO does not react to the event.

 There are two categories of Events: internal and external. External Events are events

caused by actions external to the game such as player inputs. Those inputs reflect the

state of the external object that sent those inputs. Therefore, External Events are

triggered by the State of an External Object. Those events can occur at any time in the

game. It is up to the game logic to handle those types of events. See Axiom 4.

 Internal Events are events caused by a change of the game state. When a particular

GO reaches a determined State, it triggers an Internal Event. Therefore, Internal

Events are always triggered from a GO. For example, when a character loses all his

life in an action game, it triggers the Game Over event which makes the player lose

some progress and forces him to replay the level again. See Axiom 5.

 The same Event can be handled by more than one instance of a GO. An example is the

Collision event, which happens when two bounded geometries intersect in a space.

The two GOs that own the geometries handle the same Event. Another example is the

Double Mario power-up in Super Mario 3D World developed by Nintendo where the

player controls multiple characters but all of them move according to the same input

(if the jump button is pressed, all characters jump at the same time).

 A GO performs an Action or sequence of Actions as a reaction to an Event. However,

the Action performed by the GO depends on its State and the Event information. A

common example is fighting games. Different characters have different attacks with

different properties that are called by the same button press or sequence. Therefore,

multiple Actions can be linked to the same Event but for each Action associated to an

Event, there are conditions that must be fulfilled. Those conditions can be synthetized

in a State of a GO.

 To conclude this module, a GO changes its own State through Actions while it

changes the State of other GOs by sending Events (messages) to other GOs.

110

Figure 8 – Event Module

7.4 – Action Module

 According to BJÖRK & HOLOPAINEN (2003), players can only change the game

state by performing actions. Actions available to the player typically change according to the

current game state and mode of play. In this ontology, GOs have Actions that are called by

Events. Internal Events are triggered by the changes made by Actions; this creates a chain

reaction where Internal Events call Actions which triggers new Internal Events. Furthermore,

the scope of what an Action changes can vary, some change only a single Attribute, others

change several Attributes. This means that an Action can be divided in smaller ones. It can

help developers understand better how an Action operates.

 Therefore, the first purpose of this module is to describe the conditions necessary for

Actions. The second purpose is to describe which Attributes the Action may change. Third, the

module will help identify what Events an Action may trigger by specifying the possible new

States that may be outcomes of the Action. Finally, this module allows developers to make

their actions abstract if they are not sure of its inner working but sure of the end result. Figure

9 presents a diagram with a simplification of this module which has the following properties:

 An Action may change one or multiple Attributes. For example, in the Pokémon series

there are attacks that besides causing damage also cause status effects. The Poison

Sting attack has a certain chance of poisoning the opponent. Here, the attack changes

the health points (HP) but may change the status attribute.

 Therefore, an Action changes the Attribute of the performer GO, which can result in a

number of possible new States that may trigger new Internal Events or new Actions

111

from the performer GO. For example, the jump action in Super Mario Bros. changes

Mario state from idle to jumping. It can also change the Output of the game (change

the image being displayed on the TV screen). The set of new States can be called the

possible outcomes of the Action.

 An Action will only happen in a certain State of the game. For example, a move action

will only be performed if the character is not colliding with a wall which makes

impossible to change its location. This State works like a condition or constraint.

 An Action can have Parameters which are an extension of Attribute. While an Event

holds information that the GO processes to determine the Action has to take,

Parameters of an Action determine how much and what it changes. An Action can

have as Parameters the Attributes of the Event that called it. For example, the

movement action needs the direction of the analog stick to determine the direction that

the character moves.

 An Action can have possible previous and next actions if the Previous Action outcome

State is the same as the Next Action condition State. This way the developer can see

the chain reaction that an Action may cause. For example, in Sonic the Hedgehog the

move action is composed of two sequential actions: accelerate and update position.

First, the accelerate action updates the speed attribute of Sonic. Finally, with the speed

attribute updated, Sonic’s position attribute is updated. See Axioms 6 and 7.

 It is impossible that the condition State is the same as the outcome State. This property

exists to avoid modeling endless actions (infinite cycle). See Axiom 8.

Figure 9 – Action Module

 To conclude this module, Actions can be seen as a process that an object undergoes in

order to handle an Event it receives. This is similar to CHANDRASEKARAN et al.’s (1999)

112

claim that “There are processes in which objects participate and that occur over time”. Those

processes occur because of events and from those processes new events appear, supporting

another claim that “Events can cause other events or states as effects”.

7.5 – State Module

 According to BJÖRK & HOLOPAINEN (2003), games are typically structured in

different sections, phases or turns where the interface, available actions and information for

the player change dramatically. The authors call them different modes of play, which can be

seen as constructs to define boundaries between activities within the larger activity of playing

a particular game. Typical examples of switching modes of play are the transition from a map

view to an inventory screen in a computer role-playing game or turn taking in Chess. States

can be used to define how many modes of play a game has by abstracting or adding details.

For example, chess can be said to have two modes or states (the player turn or the opponent

turn) (BJÖRK & HOLOPAINEN, 2003).

 According to SCHELL (2014), it is often useful to construct a state diagram for each

attribute to make sure the developer understands which states are connected to which and

what triggers state changes. In terms of game programming, implementing the state of an

attribute as a “state machine” can be a very useful way to keep all this complexity tidy and

easy to debug. GREGORY (2014) says that the state of a game object can be defined as the

values of all its attributes.

 To demonstrate how states can abstract a rather complex set of interactions, I present

Figure 10 which is a flowchart detailing the Great Sword weapon move set in Monster Hunter

4: Ultimate developed by CAPCOM. It was devised by Hiro Rõjin
12

 with the intent of helping

other Monster Hunter players better understand how the weapon works. Therefore, it may

have inaccuracies.

 In the flowchart, the states represent action done by pressing an input and all

transitions represent a player input. It can be a single button press or a combination of them.

For example, the player can press X or A after the Aerial Overhead to perform the Super

Swipe or press X and A at the same time after the Side Slash to perform the Rising Slash.

12
 http://www.capcom-unity.com/monster_hunter/go/thread/view/146585/30422233/updated-move-charts

113

Figure 10 – Monster Hunter 4 Ultimate, Great Sword Move Chart

 The flowchart leaves many details such as if no input is pressed after an action the

character goes to the Idle state automatically or that some character actions take some time to

perform. Of course, this is because the intent of the flowchart is to present the move set and

that the target audience is aware of some details that can be left out. For example, when

performing the Side Slash there will be a frame of time in which the character does not accept

any input, after this frame of time there will be one in which it accepts player input and if

there is no input from the player, the character will go to Idle state. As it can be seen, the Side

Slash can be further divided in more states.

 This brings us to an interesting part of the flowchart which is the states inside bigger

ones. There are three bigger states that contain smaller states: Ready to Dodge, Pick a Move

and Overheads.

 Ready to Dodge and Overheads: If the player presses B after any character action

inside this state, the character will perform a Front Roll. This state can also be called a

group of states since they share the same resulting states from the same player input.

The same applies to Overheads, if the player press A after any character action inside

this state, the character will perform a Side Slash.

114

 Pick a Move: The states Idle and Sword Slap respond to a number of inputs

identically, meaning that for an identical input done in a state, the next state will be

identical to both. For example, if the player presses A in either of the two states, the

character will perform a Side Slash.

 This flowchart shows how states can be extremely useful tools for modelling parts of

games with simplicity. Thus, this ontology supports the use of states in the description of a

video game or parts of it. Therefore, the purpose of this module is to describe States and their

transitions, which States are part of a bigger one, how States can change over time and the

attribute values that define a State. Figure 11 presents a diagram with a simplification of this

module which has the following properties:

 A State represents a GO state in a frame of time. In the flowchart, the Side Slash state

represents the frame of time that the character is performing the move; the frame of

time is the duration of the animation.

 States represent range of values of an Attribute. States can be created without

Attributes values, as sometimes it might be more simple just to create a State that

represent a complex combination of Attribute values or if the developer has no idea

what values a particular State may have. In the flowchart, the Idle state probably has

an attribute value that makes the character be in that state. However, it is not the job of

the designer but that of the programmer to implement the attributes and the values.

That is why it is fine for a State to not have attribute values defined in the beginning.

 A State can be part of many States. Therefore, a State can be divided in smaller States

if it is determined by many Attributes or the determining Attribute allows range of

values. See Axioms 9 and 10.

 If the State that an Attribute determines is part of another State then the Attribute also

determines it. See Axiom 11.

 A GO State is a State of a GO instance. An External State is a State of an External

Object instance. See Axioms 12 and 13.

 A State can have a set of Next States. This set is composed of the outcome States of

Actions that have the State as a condition State. See Axiom 14.

115

 A State can have a set of Previous States. This set is composed of the condition States

of Actions that have the State as an outcome State. See Axiom 15.

 A State can be equivalent to another State. For example, the State “Health < 4” is

equivalent to the State “Low Health”.

 State extensions can have properties. For example, States determined by Number

attributes can have a lot of properties such as “less than”, “more than”, “equal to”, etc.

With this, the developer can define with precision more complex States.

 A State should be composed of at least 2 States. See Axiom 15a.

Figure 11 – State Module

 To conclude this module, States are tools that allow developers to model and analyze

modules of the game with ease. The abstraction is really useful to designers and other team

members as that allows them to focus on only the relevant interactions of portions of

gameplay. Also, States are useful to model non-playable characters (NPC) with AI.

7.6 – Space Module

 According to SCHELL (2014), every game takes place in some kind of space. This

space is the “magic circle” of gameplay. It defines the various places that can exist in a game

and how those places are related to one other. He states that we need to strip away all visuals,

all aesthetics, and simply look at the abstract construction of a game’s space. Generally, game

spaces are either discrete or continuous; have some number of dimensions and have bounded

areas that may or may not be connected.

116

 Also, GREGORY (2014) states that most video games take place in a two- or three-

dimensional virtual game world that is comprised of numerous discrete elements. When a

game takes place in a very large virtual world, it is typically divided into discrete playable

regions, which we will call world chunks. Chunks are also known as levels, maps, stages or

areas. World chunks are also a convenient mechanism for controlling the overall flow of the

game.

 This module extends the Game Object (GO) Module, so Spaces can also respond to

events and perform actions. Therefore, the purpose of this module is to describe the different

kinds of space that might exist in the game, how those spaces are shaped and how they are

connected to each other. Figure 12 presents a diagram with a simplification of this module

hierarchy and Figure 13 presents a diagram with a simplification of this module relations.

This module has the following properties:

 Number of dimensions. A Space can have from none to three dimensions. Therefore,

there are four types: 0D, 1D, 2D and 3D Spaces.

 A Space must contain a GO at some point in time. There is no point in having a game

space if it is not populated by some kind of object. There is no gameplay in an empty

space.

 A Space can be connected to other Spaces through Connections. Connections are GO

extensions. The squares of a chess board can have eight connections for example.

Another example are the stages of Sonic the Hedgehog developed by Sega, each stage

is connected to the previous and next stage, each stage containing its own personalized

space (in this game case a 2D continuous space). Any kind of Space can be connected

to another meaning a 0D Space can be connected to a 2D Space. As showcased above,

a stage is a 0D Discrete Space that is connected to a 2D Continuous Space. An

example is a stage select menu, the options are the 0D Discrete Spaces that when

selected lead to the actual playable stage.

 A Space can have nested Spaces (spaces within spaces). A nested Space is different

from a connected Space. A nested Space is part of bigger Space as it shares the same

dimension and operates under the same rules of the bigger Space. For example, any

117

character of a 2D platform is in most cases are simply a 2D collision box inside a

greater 2D Space.

 A Space can have a boundary. A boundary determines the size and shape of a Space.

A GO is in a Space once it is within the Space boundaries. Therefore, there are two

types of Spaces: bounded and unbounded. For each dimension, the composition of

boundaries is different such as 0D Spaces are bounded by their connections with other

Spaces and 2D spaces are bounded by a set of interconnected points. An example of

Unbounded Space would be simple an infinite 2D Space with the origin coordinate set

(x and y are zero). An example of Bounded Space would be a geometrical object like a

triangle or cube.

 Unbounded spaces must contain Bounded spaces. Gameplay can happen in an infinite

space but human players can only control and recognize entities with limited shapes.

Figure 12 – Space Module Hierarchy

 This element has the following extensions: Discrete Space and Continuous Space. The

main difference is that the position of a GO in a Discrete Space must point to a 0D Space, in

other words it is absolute. While in a Continuous Space, the position attribute simply points to

a coordinate in the space and in that space there can be an infinite number of points. In other

words, the number of possible values of the position attribute is limited in a Discrete Space

while in a Continuous Space is infinite.

7.6.1 – Discrete Space

 Discrete Spaces are a set of simple 0D Spaces that can be organized as a dimensional

space and, obviously, can be composed of other Discrete Space. 0D Spaces must be

118

connected to each other to be recognized as a Space. I will refer to the individual 0D Spaces

as Nodes because this type of space can be seen as a graph. A Discrete Space can have none

to many dimensions depending on how their nodes are organized. See Axioms 16 and 17.

Figure 13 – Space Module Relations

 0D Discrete Spaces are organized in a way that does not resemble a dimensional space

or are hard to classify as a dimensional space. Most common examples are trees and graph.

Menu can be organized as a tree of options. These types of space can have boundaries. For

example, in a tree the developer can determine the minimum and maximum value of the width

and depth.

 1D Discrete Spaces resemble a line or an array of objects. There are games such as

Monopoly where the board can be treated as a line. The maximum number of connections is

two, one for the previous Node and one for the next Node. A boundary can be easily set with a

start Node and a finish Node.

 2D Discrete Spaces resemble a Continuous 2D Space or a matrix of objects. Most

common examples are board games such as chess and turn-based strategy RPGs such as Final

Fantasy Tactics. Boundaries can come be set up in two methods: there is set of Nodes with

specific properties that are different from the other sets or the Connections of certain Nodes

have special properties.

 An example for the first method can be found in Advance Wars and for the second

method can be found in Fire Emblem Awakening, both developed by Intelligent Systems. Both

119

games are turn-based board games with square tiles. In Advance Wars each square represents

a different kind of terrain such as sea and grasslands and there are units that can only traverse

some type of squares. Just by making a stage with a set of grassland squares surrounded by

sea squares is a way of setting a boundary since infantry units cannot traverse sea squares,

blocking them. In Fire Emblem Awakening, there can be squares separated by a wall but the

wall does not occupy a square. Certain units cannot move to the other square or attack units

located in it because of the wall. The reason for this is that the Connection between the two

squares has a special property or is of a different type.

 The same reasoning of 2D Discrete Spaces can be applied to 3D Discrete Spaces, the

only difference between them is that the number of Connections rises significantly and what it

is trying to resemble. There are other Discrete Spaces that are hard to classify such as

hexagonal boards which are composed of hexagons and can have a maximum number of six

connections.

 In Discrete Spaces, the movement action result can be influenced by attributes such as

speed and acceleration or number of spaces an object can move. Examples include the

constant movement of the player character in Pokémon Red, accelerated movement in Tetris,

as the time passes the velocity in which the blocks fall gradually increases and pre-determined

range of movement of chess pieces. Collision detection is influenced by the Connection of the

Discrete Spaces or the shape of the Bounded Space, a collision is detected if part of one space

is inside of another or if the Connection prevents the movement. Examples are board games

such as chess (only one piece can occupy a square and if a piece) and strategy games such as

Final Fantasy Tactics where if many characters are in the trajectory of a gun attack (it is a

straight line), only the closest will be hit.

7.6.2 – Continuous Space

 Continuous Spaces must have a number of dimensions different from zero and it is

composed by an infinite number of points. Those types of space are used to enable real-time

gameplay and enable more sophisticated mechanics such as real-time physics and collisions to

enable games that closely resemble the real world (simulations). GOs that are within a

Continuous Space have a position attribute and are represented in that Space with a Bounded

Continuous Space. A point is the smallest Bounded Continuous Space possible.

120

 A 1D Continuous Space is only used for gameplay mechanics. Most prominent

examples are Pong and Breakout where the player moves a paddle in just one axis (in Pong

the paddle moves up or down, in Breakout the paddle moves left or right). 1D Bounded

Spaces are straight lines with the direction in the X axis or Y axis. Of course, there are curves

or inclined straight lines but the points they occupy are vary in two dimensions. It would be a

different case, if a GO would move within the curved line, as it would only move left or right

along the line trajectory. This would be a case of 1D gameplay.

 2D and 3D Continuous Spaces are used to, besides designing gameplay mechanics,

display the game space for the player to be able to understand what is happening in the game.

There are games that have 2D gameplay mechanics and are presented through 2D Assets

(Super Mario World); have 2D gameplay mechanics and are presented through a 3D Assets

(Trine and Klonoa), some of these games are called 2.5D games because of this mix; have 3D

gameplay mechanics and are presented through a 3D Assets (Super Mario 64); have 3D

gameplay mechanics and are presented through a 2D Assets (Streets of Rage and Castle

Crashers), most classic beat’em ups fit in this category as characters can move in freely in a

space and jump.

 2D and 3D Bounded Continuous Spaces are geometric shapes. Many two-dimensional

geometric shapes can be defined by a set of points or vertices and lines connecting the points

in a closed chain, as well as the resulting interior points. Such shapes are called polygons and

include triangles, squares, and pentagons. Other shapes may be bounded by curves such as the

circle or the ellipse. Many three-dimensional geometric shapes can be defined by a set of

vertices, lines connecting the vertices, and two-dimensional faces enclosed by those lines, as

well as the resulting interior points. Such shapes are called polyhedrons and include cubes as

well as pyramids such as tetrahedrons. Other three-dimensional shapes may be bounded by

curved surfaces, such as the ellipsoid and the sphere.

 In Continuous Spaces, the movement action result is influenced by attributes such as

speed and acceleration. Examples include the constant movement of the player character in

The Legend of Zelda and accelerated movement in racing games. Collision detection is

influenced by the shape of the two Bounded Spaces, a collision is detected if part of one space

is inside of another. Examples include fighting games which feature different hitboxes for

each character attack.

121

7.6.3 – Spatial Attributes, Actions, States and Events

 There are four extensions derived of the creation of the Space module:

 Spatial Attribute: Those are Attributes that define the Space properties. Those

properties include position, size, speed, acceleration, etc. See Axiom 17a.

 Spatial States: States determined by Spatial Attributes. In most cases, Spatial States

are determined by comparing two Spaces positions and their shapes overlap. Those

States can be a collision, distance between two Spaces, the connection between

Discrete Spaces and the relative position of an External Object. See Axiom 18.

 Spatial Action: Actions that modify Spatial Attributes. An example is to change the

position (movement) or shape (size or border) of the Space. How they work depends

on the dimension of the space and if it is discrete or continuous. See Axiom 19.

 Spatial Event: Events that are triggered by Spatial States. In most cases, those Events

are collisions between two Bounded Spaces or the position of External Objects

(position of an analog stick). See Axiom 20.

7.7 – Time Module

 Video games are real-time, dynamic, interactive computer simulations. As such, time

plays an incredibly important role in any electronic game. One of the changes in the states of

objects that occur over time are animations; without a conception of time, no animation would

be possible (THORN, 2013). According to GREGORY (2014), there are many different kinds

of time to deal with in a game engine: real time, game time, the local timeline of an

animation, the actual CPU cycles spent within a particular function, and the list goes on.

 According to SCHELL (2014), video games also give players the chance to do

something that cannot be done in the real world: control time. This can happen in a number of

ways: time can be stopped completely, as when a “time-out” is called in a sporting match or

when the “pause” button is pushed on a video game. Time can be accelerated in games like

Brave Fencer Musashi developed by Squaresoft where the player can fast-forward time by

making the main character sleep. Time can be rewinded in many ways on video games. For

example, every time the player dies in a video game and return to a previous checkpoint is

like going back to a point in time. Pushmo developed by Intelligent Systems features a

122

mechanic where the player can rewind a certain amount of time to undo a mistake like a

wrong jump. In this video game, the player can rewind time like a video but with a limit.

 This module’s root element is Time and it extends the Attribute Module, so Time can

be manipulated by actions and trigger events. Therefore, the purpose of this module is to

describe the different kinds of time that might exist in the game, how time can be measured,

how it can be manipulated and how it affects other GOs. Figure 14 presents a diagram with a

simplification of this module hierarchy and Figure 15 presents a diagram with a simplification

of this module relations. This module has the following properties:

 Time is an extension of a Number attribute. A game can have its time measured by

seconds or number of days. Also, it can be changed using the same type of operations.

For example, in Time Crisis when the player beats all enemies the time is extended.

 A Time attribute can be equivalent to a certain amount of other Time attribute. For

example, one minute is equivalent to sixty seconds.

 Actions that take a certain amount of Time to conclude are called Timed Actions. For

example, the Side Slash action from the character of Monster Hunter takes some time

to conclude (in this case, the duration of the Action is equal to the duration of the

animation).

 A Timed State is a State determined by a Time attribute. It simply means that the State

has a fixed duration and it will change without input from the player. For example, in

Super Mario World when Mario touches a star, he becomes invincible. This state has

certain duration and when the time elapsed is equal of the duration Mario reverts to

the vulnerable state. See Axiom 21.

 A Timed Action has a Timed State since it has a Time attribute to measure its duration.

See Axiom 22.

 Events that are triggered by Timed States are Timed Events. For example, in Sonic the

Hedgehog, there is a time limit for Sonic to remain underwater. If the time is below 5

seconds the background music changes to a menacing tune and a countdown appears

indicating the time left. If it reaches zero, the player loses a life. See Axiom 23.

123

 According to GREGORY (2014), because video games are dynamic, time-based

simulations, a GO State describes its configuration at one specific instant of time.

Thus, a group of States can represent a frame of time. For example, in the Legend of

Zelda: Wind Waker a day is divided in two phases: daytime and night. When there is a

State that represents the daytime portion of the game, it represents the frame of time

between start of daytime phase and end of daytime phase which have timestamps

associated to them.

 A Timed State can be divided further in time slices. With this, the developer can model

events that happen through the duration of an Action for example.

Figure 14 – Time Module Hierarchy

Figure 15 – Time Module Relations

 In the following sections I will discuss the following pair of extensions: Discrete Time

and Continuous Time. Also, I will talk a bit more about time manipulation.

124

7.7.1 – Discrete and Continuous Time

 SCHELL (2014) asserts that time can also be discrete or continuous like space. The

unit of discrete time in a game: is called “turn”. Generally, in turn-based games, time matters

little. Each turn counts as a discrete unit of time, and the time between turns, as far as the

game is concerned, does not exist. Chess games, for example, are generally recorded as a

series of moves, with no record of the amount of time that each move took, because real clock

time is irrelevant to game mechanics. Schell adds that there are many games that are not turn

based, but instead operate in continuous time. Most action video games are this way, as are

most sports. And some games use a mix of systems. Tournament chess is turn-based but has a

continuous clock to place time limits on each player.

 There are Discrete and Continuous Time units which are similar with the exception of

the equivalence relationship between them. When there is equivalence, for example, of one

turn being equal to forty seconds, it means that the duration of a turn in the game is of forty

seconds. It is the same by saying that a turn of tournament chess has duration of forty seconds.

 The main difference between Discrete and Continuous Time is that the former

advances in accordance to the game rules while the latter advances in real-time fashion, in

other words it is updated as fast as the computer processor allows. Therefore, every GO that

operates in Continuous Time has a Time Flow which is a Number attribute. It is default value

is one which means that the Time attribute advances just like the real-world time (one second

in the game is one second in the real-world).

 Therefore, manipulation of Continuous Time is different from Discrete Time because

of the Time Flow. In real time video games, actions such as movement operate under a certain

speed, so if the Time Flow is doubled the speed is doubled (two seconds in the game is one

second in the real-world). However, there are cases where the developer only needs to slow or

accelerated one GO (two seconds for the GO is one second in the game). Dead Space

developed by Visceral Games provides a great example of slow and accelerated GOs. Once

the player reaches a point in the game he obtains the Stasis Module
13

. It is a device capable of

producing a temporary time dilation, making objects move at an extremely slow rate for a

period of time. With this power, the player can make enemies move in slow motion. Later in

13
 http://deadspace.wikia.com/wiki/Stasis_Module

125

the game, the player encounter enemies called Twitchers
14

 which are accelerated enemies as

they move at high speeds compared to the rest of them. The use of the Stasis Module is

necessary to bring the Twitchers to normal speed.

 The Time Flow is related to a Continuous Time attribute, so Timed Action and Timed

Events that use the related time for their operations will have their duration changed. Also,

every action that manipulates Video and Audio Output operates in Continuous Time because

those types of outputs are sent at real time to the player.

7.7.2 – Rewinding Time

 Rewinding the time of a video game can be a complex process depending of the kind

of the game. To effectively rewind time in video games, the previous states of the game must

be stored and accessed in order. It makes sense since a State represents an instant of time (by

having stored the timestamp of the State) and the Next State is the next instant of time. By

chaining together the states, a timeline of the game can be constructed where the player can

explore and return to the point he desires. Action games can feature time rewind mechanics

but they have a limit of how much they can rewind because of their complex States. Many

games implement time rewind by recording the player actions and GO actions instead of the

game states because in the majority of cases the previous states can be simply reached by

undoing or reversing actions.

14
 http://deadspace.wikia.com/wiki/Twitchers

126

Chapter 8 – Conceptualization of External Modules

 The objective of this chapter is to organize and structure the knowledge acquired

during the specification. In this chapter, the external modules of the Video Game

Development Ontology will be conceptualized. The conceptualization process is the same as

in Chapter 7.

8.1 – External Object Module

 This is the root module of the external part of the ontology. It is from this module that

other external modules will be born. Some of the Game Objects (GO) must communicate with

objects from the real world to deliver the intended experience to the player. The designers

need to know the External Objects (EO) that are part of the video game experience; those

objects include the hardware that the game runs on, the software that the video game

communicates with and the human players that interact with the game. With this module, all

the components that are not part of the game world are described and their interactions with

the game world are detailed.

 Therefore, the purpose of this module is to describe the EOs by detailing the relations

between different objects, the states that an external object has, the inputs it sends to GOs and

the outputs it receives from GOs. This module is solely composed of the EO element and has

relations with all external modules. Figure 16 presents a diagram with a simplification of this

module hierarchy and Figure 17 presents a diagram with a simplification of this module

relations. This module has the following properties:

Figure 16 – External Object Module Hierarchy

 An EO has States. The designer does not need to know the intricacies of an EO but

only the potential States of the EO that might affect the game world. This also implies

that an EO can have Attributes. While the game cannot have access to the EO, it is

useful to assign Attributes to relevant information about the EO for the gameplay.

127

 An EO sends Input to a GO and receives Output from the GO. In turn, the GO receives

the Input from the EO and sends Output to the EO.

Figure 17 – External Object Module Relations

8.2 – Hardware Module

 Video games are software programs that run on electronic hardware such as

computers, tablets, consoles, handhelds, smartphones, etc. Also some of them need

specialized hardware to enable the interaction of players with the game and vice versa. There

are many types of such hardware:

 Input: controller, keyboards, touchscreens, cameras, etc.

 Output: TVs, headphones, LCD displays, surround sound systems, etc.

 Input and Output: act as both input and output such as Internet connections (cable or

wireless) used for multiplayer games where data travels back and forth between

players.

 Also, there is hardware which features a lot of hardware components in a single

package. Handheld consoles are such example. The Nintendo 3DS, for example, features an

analog disc, ten digital buttons, one directional pad, two screens with one being a touchscreen,

two cameras, microphone, speakers, Wi-Fi connection and much more.

 This module’s root element is Hardware. Hardware are physical objects while

Software are abstract objects (not located in the real world) such as video game and

operational systems. Therefore, the purpose of this module is to describe the different kinds of

hardware that are necessary to play certain video games, the software that runs on the

hardware, the physical inputs a hardware can send to the video game and the physical outputs

128

a hardware can receive from the video game. Figure 18 presents a diagram with a

simplification of this module which has the following properties:

 A Hardware can be composed of other Hardware or be part of one. The Nintendo 3DS

is an example of that.

 A Hardware can run many Software. A Video Game is a Software obviously. Software

is an important element since some Output from the Video Game cannot be handled

directly by the Hardware.

 A Hardware only sends Physical Input to a GO. A button press from a controller

makes a character perform an action (jump, punch, kick, etc.). See Axiom 24.

 A Hardware only receives Physical Output of a GO. The image players see on the

display screen is provided by the Video Game software. See Axiom 25.

Figure 18 – Hardware Module

8.3 – Software Module

 In many cases, a Video Game must communicate with other Software that runs on the

same Hardware. Common examples are operating systems (Windows), client applications

(Steam), servers (multiplayer games), etc.

 This module’s root element is Software. Therefore, the purpose of this module is to

describe the different kinds of software that communicates with the videogame, the hardware

it runs on, the non-physical inputs a software can send to the video game and the non-physical

outputs a hardware can receive from the video game. Figure 19 presents a diagram with a

simplification of this module which has the following properties:

 A Software only sends Non-physical Input to a GO. For example, in an online

multiplayer game the actions of other players are Non-physical Inputs. See Axiom 26.

129

 A Software only receives Non-physical Output of a GO. For example, in an online

multiplayer game every actions the player makes is sent as a Non-physical Output to

the server. See Axiom 27.

 A Software can be divided in smaller modules. Therefore, a Software can be composed

of other Software that are its modules or be a module of another Software.

Figure 19 – Software Module

8.4 – Player Module

 Human players are the necessary component to bring the game to life. They are the

origin of the inputs that a video game receives. It is important to describe the player in the

ontology as it is important to know which GOs the player can control, the inputs available and

the output he receives. The importance doubles when describing multiplayer games as the

GOs will have different players controlling them and each player will have its own output.

 This module’s root element is Player. Therefore, the purpose of this module is to

describe the inputs that the player make, the GOs that a player controls, the actions that the

player can do with the controlled GO and the output that the player receives (what he feels,

sees and hears). Figure 20 presents a diagram with a simplification of this module which has

the following properties:

 A Player sends Input and receives Output through interaction with a Hardware. See

Axiom 28.

 A Player sends Player Input. Players can send Inputs through interaction with

different Hardware. Player Inputs are associated to a Player and they change a Player

Object which can be only controlled by one Player at an instant of time (the same

Player Object can be controlled by another Player or AI). See Axiom 29.

 GOs that handle Player Inputs are Player Objects. Thus, the Player controls Player

Objects and the Actions of those GOs that are caused by Player Inputs are Player

Actions. See Axioms 30 and 31.

130

 A Player receives Player Output. Player Output includes camera views (a game can

have different types of camera, allowing different views of the game world), views for

different players (split-screen in Mario Kart is an example of a single output that is

divided in two parts, one for each player) or a single view for both players (fighting

games such as Street Fighter). This Output is transmitted from monitors or speakers,

for example. See Axiom 32.

 A Display Space (will be detailed in Section 8.7) that sends Player Output is a Player

View. In short, they represent what the player sees in an instant of the game. Examples

are menu screens, cameras, top-down view from some RPGs, side view from the side-

scrollers, mini-maps from the HUDs (heads-up displays). See Axiom 33.

Figure 20 – Player Module

8.5 – Input Module

 Players change the game state through inputs performed in hardware such as

controllers, keyboards, mouse, etc. Besides button presses, inputs can come in many forms

such as cameras which provides images for the game, microphones which provide sound for

the game, touchscreens where the player can interact with objects present in such screen and

many more. It is the job of the game logic to process the data provided by those inputs and

inform the appropriate GOs to perform the appropriate actions considering the input

information and the game state.

 This module’s root element is Input and it is an extension of External Event, so GOs

react to those Inputs and perform the appropriate Actions. Therefore, the purpose of this

module is to describe the different kinds of inputs, the values they can take and the inputs that

131

a piece of hardware contains. Figure 21 presents a diagram with a simplification of this

module which has the following properties:

Figure 21 – Input Module

 As an Input is an extension of Event, it contains Attributes. For example, GREGORY

(2014) states that digital buttons can only be in one of two states: pressed and not

pressed (zero or one values). Analog inputs can take on range of values rather than the

two values of a digital input.

 An Input can be composed of other Inputs. This means that it is triggered by multiple

External States at the same time. It is especially useful to detect special inputs such as

chords (multiple buttons pressed together).

 Special inputs such as sequences (button pressed in sequence within a certain time

limit) and gestures (sequence of inputs from the buttons, sticks, accelerometers, etc.)

are dealt within the game logic as a sequence of Events (sequences are a sequence of

Timed Events).

 In the following sections I will discuss the following two categories of Inputs: non-

physical and physical.

132

8.5.1 – Non-physical Input

 Non-physical Inputs are provided by the operating system or electronic signals from

the hardware that the video game is running on. Therefore, those Inputs are sent by Software

running in the Hardware. See Axiom 34. Examples of this are:

 The achievements system of the Steam platform that notifies the player about

obtaining an achievement during gameplay;

 Online multiplayer has other players inputs provided by an Internet connection;

 Usage of the Nintendo 3DS system clock in the game logic by Animal Crossing: New

Leaf developed by Nintendo to allow time in the game pass in sync with the time in

the real world, so events like the time of opening and closing of shops in the game are

tied with time in the real world. Of course, if the player manipulates the Nintendo 3DS

clock, he can visit in the morning shops that would be only open in the night.

 Some video games allow the players to use music from their computer. An example is

Beat Hazard developed by Cold Beam Games where the levels have their content

generated depending on the music the player has chosen. In other words, there can be

File Inputs provided by the operating system.

8.5.2 – Physical Input

 Physical Inputs are provided by the interaction of a human player with an input device

such as controllers or keyboards. See Axiom 35. There are three categories of Physical Input:

 Sound: They are solely comprised by microphones. Example of game that uses one is

Phoenix Wright: Ace Attorney where the player can make the main character shout

objection by shouting at the Nintendo DS microphone.

 Image: They are solely comprised by cameras. Example of game that uses it is

Pushmo which the player can use the Nintendo 3DS camera to scan QR codes in order

to obtain other player created levels.

 Touch: The majority of ways used to interact with video games are touch-based.

Controllers, keyboards, mouse, touchscreens are examples.

133

 According to GREGORY (2014), most of the physical inputs fall in the following

categories: digital and analog. Here, he is referring to touch based input such as buttons and

sticks. Digital buttons can only be in one of two states: pressed and not pressed. Analog inputs

can take on range of values rather than the two values of a digital input and are often used to

represent the degree to which a button is pressed. Types of Touch Input are:

 Digital Buttons: click of a mouse, pressing the key of a keyboard, pushing the A

button of the Nintendo 3DS.

 Analog Buttons: some of the buttons of the DualShock 2 are analog. An example is

Metal Gear Solid 2 developed by Konami on the PlayStation 2. It uses pressure-

sensitive button data in aim mode to tell the difference between releasing the X button

quickly (which fires the weapon) and releasing it slowly (which aborts the shot)

(GREGORY, 2014).

 Analog Axes: analog inputs used to represent the two-dimensional position of a

joystick (which is represented using to analog inputs, one of the x-axis and one for the

y-axis. Thus, they are called axes (GREGORY, 2014). Analog axes can be divided in

two categories: absolute and relative.

 Absolute Analog Axes: The position of an analog button, trigger, joystick or thumb

stick is absolute meaning that there is a clear understanding of where zero lies

(GREGORY, 2014). Example is the Dualshock 2 analog sticks.

 Relative Analog Axes: For theses axes, there is no clear location at which the input

value should be zero Instead, a zero input indicates that the position of the input has

not changed, while nonzero values represent how much the position has changed.

Examples include mice, mouse wheels and track balls (GREGORY, 2014).

 Touchscreen: The input value is the point where the player touched the screen.

Examples include smartphones, the Nintendo DS and 3DS lower screens.

8.6 – Output Module

 As players change the game state through inputs, they must receive immediate

feedback of their actions. When they press a button, they should see their character swinging a

sword at an enemy, hear the sound of when the sword hits the enemy and feel the rumble of

134

the impact made by the sword. The game logic prepares the appropriate output data that

reflects what is happening in the game world and sends to the hardware. With the output

provided to the player he will be able to interact properly with the video game.

 This module’s root element is Output and it is an extension of the State element

because part of the state of the game is outputted in an appropriate format for an External

Object. The Output Action changes the Output (the Attributes that determine it) that is sent to

the target Hardware.

 Therefore, the purpose of this module is to describe the different kinds of outputs, the

actions that change those outputs and the hardware which those outputs are sent to. Figure 22

presents a diagram with a simplification of this module which has the following properties:

Figure 22 – Output Module

 An Output being a State means that certain information of a GO will be made

available to External Objects. For example, Video Output concerns with how a GO is

displayed to the Player. Also, an Output is a State that has no effect on the game logic,

so it has no next State and it cannot be a condition of an Action. See Axiom 36.

 Because an Output is a State, it is determined by Attributes. However, those have no

effect on the game logic. In general, they are matrixes composed of RGB cells (video

output) or audio streams dedicated to background music or sound effects. Therefore,

there is no need to detail the Attributes that determine an Output.

 Actions that have an Output as an outcome are Output Actions. Output Actions have

no next actions because of the fact that an Output has no next State. Some examples

are drawing actions and playing audio. See Axiom 37.

135

 Attributes that are parameters of an Output Action are called Output Attributes. Simple

examples are color and position, because when their values are changed the player will

perceive them immediately through the Output. It should be noted that Actions that

change Output Attributes are not Output Actions but they are considered to affect the

Output. See Axioms 38 and 39.

 Because an Output is a State, it can be composed of other Outputs.

 A GO sends an Output of it has an Output Action. See Axiom 40.

8.6.1 – Non-physical Output

 Non-physical Outputs are sent to the operating system or the hardware that the video

game is running on. They are not discernable for the human player. Therefore, those outputs

are sent to the Software running in the Hardware. See Axiom 41. Examples of this are:

 The achievements system of the Steam platform is notified by the game when the

conditions to unlock an achievement are fulfilled;

 Online multiplayer has the player sending outputs (which become inputs to other

players) through an Internet connection;

8.6.2 – Physical Output

 Physical Outputs are discernable to the human player. Physical Output can only be

received by Hardware. See Axiom 42. They come on three categories:

 Mechanical Output: players can feel by touch what happens in the game. The most

common occurrence is the use of rumble. The Dualshock controller of the Playstation

is notorious for its rumble feature.

 Audio Output: players can hear what happens in the game. Features music, sound

effects, voice recordings, etc.

 Video Output: players can see what happens in the game. Features 2D images, 3D

models, textures, videos, special effects, etc.

 The Output Actions for each category of Output are different from each other as they

change different kinds of outputs. In the next section, I will describe Audio Output Actions.

Video Output Actions will be described in Section 8.7.

136

8.6.3 – Audio Output Actions

 These type actions include playing, slowing, fast-forwarding i.e. manipulation of

audio files. Of course, audio manipulation is actually more complex than simply playing some

audio files at any time and at the same time as others but it is not on the scope of this ontology

to detail it. Examples:

 Change the volume of the audio output or of the audio file (different files operate at

different volumes);

 Loop a certain audio file. A lot of games loop background music to maintain a certain

feel to the scenario;

 Stop a certain audio file of playing in the output (other sounds can be played).

8.7 – Video Output Module

 The Video Output is the most important form of conveying to the player what is

happening in the game. It can be simple as drawing simples 2D shapes in games like Tetris or

be an extremely complex task such as rendering large 3D worlds and animate the characters

within it in games like Grand Theft Auto. Also, what the player sees in the screen must

faithfully reflect the game logic that is hidden from the player.

 This module’s root element is Video Output and it is an extension of the Output

element. The Video Output Action is an Action has as an outcome the Video Output that is

sent to the target Video Hardware. See Axiom 43.

 Therefore, the purpose of this module is to describe the different kinds of video

outputs, the actions that change those outputs, the hardware which those outputs are sent to

and the logic behind the construction of such output. Figure 23 presents a diagram with a

simplification of this module which has the following properties:

137

Figure 23 – Video Output Module

 Display Spaces are Spaces that send Video Output. They are what the Player sees.

They can represent the entire game space (Tetris and Pac-Man are examples) or part

of it (most 3D games and 2D platformers such as Sonic are examples). See Axiom 44.

 A Game Object is a Display Object if it sends Video Output. See Axiom 45.

 Display Spaces contains Display Objects. Such type of Space has to be populated with

objects that can be seen by the Player. There can be objects that are not displayed at

all but are part of the gameplay (checkpoints are invisible but are a vital part of the

game and occupy the game space).

 Display Objects may have Visual Assets. Those include 3D models, 2D images, etc.

 Visual Attributes are Attributes that are parameters of Video Output Actions. For

example, the size attribute of a Game Object will change the rendered 3D Model. See

Axiom 46.

 Visual Assets are associated to one or more States. When Mario is in a jumping state

the sprite presented to the player is of Mario jumping, when Mario is in a crouched

state the sprite presented is of Mario crouching.

 Space plays a great role in the visual presentation of the game. For example, changing

the size or the position of an object can cause it to change how it is presented to the player (a

bigger character or the character disappearing from the player sight because of it is behind a

wall). However, a Spatial State is not a part of a Video Output. Spatial States will be

commonly seen as conditions for Video Output Actions.

138

 Actions involving the visual presentation of the game are more complex as there are

important characteristics surrounding Video Output and its Actions.

 The first is that the Video Output that a Video Hardware receives is a 2D image (I will

not consider 3D or Virtual Reality displays that have different formats).

 The second is that the display screen sometimes cannot display the entire game space.

Therefore, Video Output Actions can only be performed by GOs within the Display Space.

Display Spaces are determined by cameras, be it 2D (it would be simply a 2D Bounded

Space) and 3D. Cameras can be manipulated as they can have their position changed and the

image generated by them can be manipulated. In 3D Spaces, cameras become more complex

as the new dimension introduces concepts such as depth, angles, zoom and much more. 3D

cameras can be a module of their own as there are different types of cameras such as ones that

the player can control at will, ones that move through a predetermined path, ones that remain

in a fixed angle and height (real time strategy games such as Warcraft 3) and much more.

 The third is that the Video Output is a 2D Image that can be separated in parts. For

example, in many games there is an interface telling how much life the character has or a map

indicating where the player is in the game world. Those interfaces generally are put in front of

the displayed game world, this is much more apparent in FPS (First Person Shooters) game

where the HUD (Heads-up display where important information such as health and

ammunition is displayed) never changes angle and is always seen in the same position the

entire game. This means that the resulting Video Output can be divided in layers (Display

Spaces) where the image from the camera is drawn first and the image which only contains

interface elements is put above the first image (thus being called layers). For each above

layer, any pixel is transparent if it has no value determined. 2D games can also have their

video output constructed like this as there are interface, foreground, background, characters

and many other layers. This helps in separating the GOs in groups that are responsible for a

layer of the output. Finally, this means that a Video Output can be composed of several

Display Spaces.

 Examples of Video Output Actions:

 Render a Visual or Textual Asset. For text to be rendered, a Font is necessary;

 Render a geometric shape. It could be 2D like a triangle or 3D like a pyramid.

139

8.8 – Asset Module

 As it was stated in Section 3.2.1, assets are elements that are used in the output of

video games. They differ from normal file attributes as they are associated to the GOs that

compose the logic of the game. Finally, assets are created by artists or professionals such as

writers, illustrators, musicians, etc.

 This module’s root element is Asset. Therefore, the purpose of this module is to

describe the different kinds of Assets, the Output Actions that they may participate and the

GOs associated to them. Figure 24 presents a diagram with a simplification of this module

which has the following properties:

Figure 24 – Asset Module

 Assets are associated to a File type because the game software needs to open and read

them in order to extract the relevant data to manipulate.

 Assets are associated to one or more GOs. For example, in fighting games when two

players choose the same character, one player has their character model or sprite have

different colors. This is called a pallet swap. This happens too in RPGs where stronger

enemies appear as pallet swaps of weak enemies.

 Assets are associated to one or more States of a GO.

 Assets are used in an Output Action because they are intended to be displayed in some

form to the player. Therefore, the States which they are associated with are conditions

for an Output Action (the action performed to display them). See Axiom 47.

 Assets can be divided in three categories:

140

 Textual: created by writers, scriptwriters, etc. Includes scripts for non-player character

dialogues, item descriptions, option labels, etc.

 Audio: created by musicians, vocalists, etc. Includes music, voice clips, sound effects,

etc. They can represent sound of abstract entities (dragons, ghosts, etc.) or real entities

(gunfire, a person scream, rain drops, etc.).

 Visual: created by illustrators, 3D modelers, etc. Includes 2D images, 3D models,

textures, 2D and 3D animation data, special effects, etc. They can represent part or the

totality of abstract concepts such as dragons, flying turtles; and real concepts such as a

tree or airplanes.

 The following relationships will be left out of the ontology because of the scope of the

ontology but it can be included later in an extension:

 Assets are created by one or many persons. Assets clearly have authors that must be

credited for their work on it.

 Assets represent a concept. For example, in a video game there can be assets that

represent Mickey Mouse which is a property of Disney.

 Both relationships exist because of concerns with copyright and authorship issues

since some games use licensed assets such as songs. It is important to identify those issues in

the requirement gathering phase of the development. However, it is not on the scope of this

ontology to detail the authorship of an Asset.

8.9 – Video Game Module

 This module’s root element is Video Game and it extends the Software element. Its

relationship with the Hardware module was already detailed. Therefore, the purpose of this

module is to help the developers organize the elements of the Video Game in modules and

provide general information about it. By organizing the game in modules, it will be possible

to create templates of Video Games which make reuse possible. Those templates of video

games will feature recurring modules. In turn, those modules will feature recurring GOs. A

simple example would be of a racing game; it will always feature a race module which feature

track objects that contains a starting line and a finish line. Figure 24 presents a diagram with a

simplification of this module which has the following properties:

141

Figure 25 – Video Game Module

 Developer: The organization or person that develops the game.

 Genre: The genres that the video game is part of. Example: racing, action games.

 Since it is a Software, a Video Game can be run in a number of Hardware. In this

relationship the developer can include the potential or actual hardware that is

necessary to play the game.

 A Video Game is composed of Game Objects.

 Because a Video Game is an extension of a Software, it can also be divided in

modules. It allows developers to separate the distinct functionalities of the game and

the different instances of gameplay the game possesses. A video game can be so

simple that it might only need one module but the majority video games are pretty

complex. A simple example of Game Module elements would be a module dedicated

to the Main Menu of the game which handles things like starting a new game and

continue a game from a saved state. It can be divided further into the Main Menu

module in New Game module and Load Game module.

 A Video Game can be composed of other Video Game elements because it is a

Software. Some video games can be a collection of games or contain mini-games

which would be games inside the game itself and that can be accessed during

gameplay. In this case, those elements would be treated as Game Module elements. An

example of game like this would be the Professor Layton series; it is a series of game

that has two distinct parts: a visual novel part in which the story unfolds and the player

interact with characters and the puzzle part which consists in solving puzzles to

advance the story and earn points. The puzzles can range from mathematical

problems, logic problems, block pushing puzzles, etc.; each one with its own set of

rules and assets. As it can be seen, each puzzle can be a game on its own.

142

 Examples of extensions are expansions of video games such as StarCraft: Brood War.

This expansion has the same structure and assets contained in the original StarCraft

while adding new units for each faction of the game, updating rules in order to balance

the game and providing new single player missions.

 The developer property is useful because it is very common that developers outsource

certain parts of their games to specialized third parties in order to accelerate development of

the game. The most common forms of outsourcing are asset production such as 3D models

and porting of video games to other platforms (making a game that is originally developed for

a console playable in a PC for example). There are cases that portion of the gameplay content

of the game is outsourced. A good example is Deus Ex: Human Revolution developed by

Eidos Montreal, where its boss battles were outsourced to G.R.I.P Entertainment a third-party

developer (WALKER, 2011).

 The developer can model a Video Game element with a huge degree of freedom and

impose restrictions to more specific modules if necessary (impose a module which can only

have Menu elements for example). This fact supports the objective of not restricting the

creativity of the developers. And even if there are modules with duplicate functionalities or

isolated modules, the ontology reasoning power can be used to detect those inconsistencies.

 To conclude, the Video Game module allows the development team to separate the

game in parts in order to distribute and quantify the work to be done. It also allows templates

to be built and reused in the development of other games.

143

Chapter 9 – Implementation

 As explained in Section 5.2.5, the goal of the implementation activity is to build

computable models using ontology implementation languages. The conceptual models

detailed in Chapters 7 and 8 are abstract models. In order to get a formal and explicit

formalization of this conceptualization, it is necessary to implement the corresponding

ontology. The ontology of this work will be formalized and implemented in the OWL 2

language using the Protégé editor. It is recommended that readers not familiar with OWL

refer to Appendix A.

 In this chapter I will present the implementation process to build the ontology. First, I

will present an overview of the implementation process. Second, I will present the individual

steps that compose a phase of the implementation process. Finally, I will detail each of the

individual phases of the implementation process.

9.1 – Implementation Process Overview

 According to the conceptual models detailed in Chapters 7 and 8, the ontology is

separated in modules. In addition, the VGDO should follow the Maximum Monotonic

Extendibility principle (GRUBER, 1995), which means that the addition of new modules

should not modify the already implemented modules. To ensure that the VGDO follow this

principle, the ontology implementation process will be divided in phases. Each phase will

have the following rules:

 Tightly coupled modules must be implemented in the same phase because a change in

one module will affect the other;

 Coupling between modules of different phases must be minimal. In the VGDO, cases

of minimal coupling would be extensions of classes and the connection between the

internal and external parts of the VGDO (connected through the Input and Output

classes). That way, changes in subsequent phases will not affect already implemented

modules of previous phases. There are no guarantees that it will happen in practice,

but the chance of it happening is low because subsequent phases are built using the

already established and verified definitions of previous phases. Also, there will be no

need to verify modules of previous phases again because they are not changed.

144

 It is possible that during a phase, the conceptualization of the implemented modules

must be revised because of inconsistences. It can happen, even though the

conceptualization was revised several times before reaching the implementation phase.

The scope of the revision is restricted to the modules of the phase and it ends when all

inconsistencies are corrected in the verification activity.

 The result of the conclusion of a phase is an ontology. Thus, the result of each

subsequent phase is an extension of the previous ontology.

 To support the implementation process, the tables produced in the conceptualization

phase are used as reference for the implementation because they are semi-formal description

of the ontology (OWL 2 terms are utilized to fill the tables information). Those tables are

located in Appendix B.

9.2 – Implementation Phase Steps

 A phase of the ontology implementation process is composed of the following steps:

 Addition of the classes and sub-classes;

 Addition of data properties (binary relation between concept and datatype);

 Addition of object properties (binary relation between two concepts);

 Define class (their value is constant) and instance attributes (their value is different);

 Define relations cardinalities, inverse relations and mathematical properties;

 Add axioms and rules. In OWL most axioms are implemented by specifying disjoint

classes or relations, establishing sub-classes and relations restrictions between classes.

For example, the Hardware and Software classes are disjoint with each other;

therefore an instance of Hardware cannot be an instance of Software. Taking it

further, I add that Hardware is equivalent to an External Object that receives Physical

Input or Output while Software is equivalent to an External Object that receives Non-

Physical Input or Output. If I add that a particular instance of Hardware called X

receives a Non-physical Input, a inconsistency will rise. Since an instance of

Hardware is also an instance of External Object and since X receives a Non-physical

Input, the reasoner will infer that it is an instance of the Software class, however I

145

already established X as an instance of Hardware. Thus, as both Hardware and

Software are disjoint with each other, it is impossible that X is an instance of both

classes;

 Evaluate the ontology;

 Merge ontologies into a new one.

 The evaluation process is detailed in Chapter 10. If the evaluation of the resulting

ontology is satisfactory, the implementation process goes to a new phase.

9.3 – Implementation Process Phases

 Those are the following phases of the ontology implementation process:

 First phase consists in the implementation of the following internal modules: Game

Object, Attribute, Action, Event and State. No extensions will be implemented.

 Second phase consists in the implementation of the following external modules:

External Object, Input and Output. No extensions will be implemented. The internal

and external modules are connected through the Input and Output modules.

 Third phase consists in implementing the extensions of the already implemented

internal modules. Time and Space modules are not added because of their complexity.

 Fourth phase consists in implementing the Time module.

 Fifth phase consists in implementing the Space module.

 Sixth phase consists in implementing the Hardware and Software modules, the

physical and non-physical extensions of the Output module, all the Input module

extensions and the Video Game module.

 Seventh phase consists in implementing the rest of Output module extensions.

 Eighth phase consists in implementing the Asset module.

 Final phase consists in implementing the Player module.

146

Chapter 10 – Evaluation

 According to GARCÍA-GONZÁLEZ (2006), the evaluation activity judges the

developed ontologies, software and documentation against a frame of reference. Ontologies

should be evaluated before they are used or reused. There are two kinds of evaluation, the

technical one, which is carried out by developers, and user’s evaluation. In this thesis, only

technical evaluation will be performed on the Video Game Development Ontology (VGDO).

 In this chapter I will present the evaluation process of the ontology. First, I will

present an overview of the evaluation process. Second, I will report the results of the

verification activity. Finally, I will detail and report the results of the validation activity.

10.1 – Evaluation Process Overview

 The evaluation process of the VGDO is composed of two evaluation activities:

verification and validation. Verification refers to building the ontology correctly, that is,

ensuring that its definitions implement correctly the requirements or function correctly in the

real world. Validation refers to whether the ontology definitions really model the real world

for which the ontology was created (GÓMEZ-PÉREZ et al., 1995). The adopted criteria for

ontology evaluation are described in Section 5.2.5.

 Verification of the ontology is done alongside the implementation process. As it was

explained in Chapter 9, in the end of each phase of the implementation, the ontology is

evaluated and once it satisfies the evaluation criteria, the phase is concluded and a new phase

began anew. Once the implementation is done, a final review of the classes, relations and

axioms is done by comparing them to their definitions in the conceptualization. In this

evaluation activity, the evaluation criteria are observed in order to perform the necessary

corrections and improvements to the ontology. The verification activity is important because

the ontology produced is a generic one, i.e., it must serve for a great number of applications,

so problems with the ontology must be identified and corrected early in the ontology lifetime.

 Validation of the ontology is done when the implementation process concluded. The

ontology is guaranteed to have a considerable degree of consistency and conciseness because

of the verification activity performed during the implementation. In the validation activity, I

will model a gameplay segment of a video game using the VGDO. Like the verification

activity, the evaluation criteria are observed in order to perform the necessary corrections and

147

improvements necessary for the successful modelling of the gameplay segment. Finally,

competency questions defined in the specification phase are asked and the ontology must

provide accurate answers. Corrections may be done in case the ontology is unable to answer

those questions.

10.2 – Ontology Verification Findings

 In this section, I will discuss the problems and changes made in each phase of the

implementation. It is recommended that the reader use Appendix B as complement for this

section.

 First Phase

 Relations that represent all object properties of a class (topActionObjectProperty, for

example) were created with the intent to organize the relations because there were many to

test. This created the problem that they were inferred by the reasoners when they were not

needed to. No changes were made because the benefits of organization outweighed the

redundant inferences.

 Axiom 2 (An Attribute can only be changed by Actions that belong to the same Game

Object) could not be implemented because in OWL 2 instances cannot be differentiated. For

example, we have Action A1 performed by Game Object G1, Action A2 performed by Game

Object G2 and Attribute AT1 owned by G1. According to Axiom 2, A2 cannot change AT1

but OWL 2 does not have any formalism to make restriction on individual instances making it

impossible to enforce the axiom.

 I tried to solve this problem by creating the canChangeAttribute relation. It represents

the Attributes that an Action can change. It is a chain property by combining the

isPerformedBy, the rolification
15

 of the Game Object class and the hasGOAttribute relations.

It works by finding the instance of the GO (G1) that performs the Action instance (A1) and

from that GO instance, the Attribute instances (AT1) that the Action can change are found.

However, assigning changesAttributes as a sub-property of it does not work because the

reasoner infers that canChangeAttribute has the same pair as changesAttribute, it does not

15
 http://stackoverflow.com/questions/16989042/owl-2-rolification

148

restrict the changesAttribute property. Fortunately, the canChangeAttribute successfully

infers the valid Attributes that an Action can change.

 hasStatePart cannot have cardinality restrictions because it is a non-simple property (it

is transitive). This is restriction was imposed by the reasoner. Therefore, it is impossible to

implement Axiom 15a.

 No problems were identified in the second phase of the implementation.

 Third phase

 Data properties such as datatype and initialValue were not implemented because they

are in most part implementation details for when the developers define an actual video game.

 Axiom 1 (A GO that contains more than two instances of another GO implies that it

has a Collection of the contained GO) could not be implemented. OWL 2 does not have

formalisms that enable the reasoners to infer automatically that an instance has a relation to an

anonymous instance. In this case, the reasoner would have to create an anonymous instance of

Collection with a relation collectionOf with an anonymous instance of the GO.

 Created class SimpleAttribute that represents the union of a CompositeAttribute and

AtomicAttribute instances to enforce axiom 2a (A Composite Attribute can be only composed

by Atomic or Composite Attributes). The reason is that, initially, the compositePart relation

had as domain CompositeAttribute and as range the “CompositeAttribute AND

AtomicAttribute” classes but the range did not represent accurately the union of those classes.

Therefore, the SimpleAttribute class was created and set as range of the compositePart

relation.

 Reasoner infers relationship compositePart again even when the relationship is

already asserted. This happens in other relations of other phases too.

 Fourth phase

 The hasEquivalence relation was dropped because it can be modeled using the State

relation equivalentState to model equivalence between Time. For example, the State “1

minute elapsed” is equivalent to the State “60 seconds elapsed”.

 Created hasActionState and isStateOfAction relations to model the state of an ongoing

Action. This was done in order to model the duration of an Action.

149

 Fifth phase

 Class names cannot begin with numbers in OWL 2, therefore I named the classes 0D,

1D, 2D and 3D Spaces as: _0DSpace, _1DSpace, _2DSpace and _3DSpace.

 Axioms 16 (A Discrete Space is composed of 0D Spaces) and 17 (A 0D Space must

be connected to another 0D Space) were dropped. Axioms 16 and17 were not implemented

because of the open-world assumption, the lack of relations to an instance of a class (absence

of information) will not work as restrictions. So an Discrete Space without any 0D Spaces or

a 0D Space not connected to another 0D Space will not raise inconsistences after the

reasoning process.

 Space Connection class dropped. It is easier to create subproperties of the relation

isConnectedTo to describe more specialized connections between Spaces.

 The class SpatialAttribute was created (Axiom 17a) to represent all attributes that

determine and change the space of a game. This was done to better define the Spatial State

and Spatial Action classes. Examples are: position, speed, acceleration, shape, etc.

 Sixth phase

 Inconsistencies that appeared in the ontology were caused by the conceptualization of

the Video Game module. Therefore, the conceptualization of this module was revised.

 Dropped Module class. Instead, added the relations hasModule and isModuleOf to the

Software class. Dropped the same relations from the Video Game class.

 Seventh phase

 Inconsistencies that appeared in the ontology were caused by the conceptualization of

the Output and Video Output modules. Therefore, the conceptualization of those modules was

revised. The resulting changes of this revision were: axioms 37, 38, 43, 44, 45 and 46

changed; added axioms 36, 39 and 40.

 Added affectsOutput and outputAffectedByAction relations to represent Actions that

affect the Output of a game.

 Dropped relation featuredIn from Asset class and its inverse featuresAsset from Output

class

150

 Eighth phase

 Because of the revision of the conceptualization, the Asset class is not an extension of

any class. Before, it was an extension of the File class.

 Axiom 47 (If a State outputs an Asset it implies that the State is a condition of an

Output Action) dropped because of the same reason for dropping Axiom 1.

 Included relations outputtedIn and outputsAsset, they represent the States that the

Asset is sent as an Output.

 Included relation fileType, represent the types of File that the Asset is available.

 Last phase

 Axioms 28 and 30 enforced with the creation of the relation playerSendsInput and

inputSentByPlayer. Those relations represent the Inputs the Player sends through his

interaction with the Hardware.

 Axioms 28 and 33 enforced with the creation of the relation playerReceivesOutput and

outputReceivedByPlayer. Those relations represent the outputs the Player receives through his

interaction with the Hardware.

 In the final review, the classes, relations and axioms were revised by comparing them

to their definitions in the conceptualization. Also, annotations describing the definitions of the

classes and relations of the ontology were added through Protégé. The following problems

were identified and changes were made:

 A new axiom was added: an Attribute cannot be possessed by an External Object and

a Game Object simultaneously. Enforced by creating the classes GOAttribute and

EOAttribute, making them disjoint, making those classes the ranges of

hasGOAttribute and hasEOAtrribute respectively.

 The relation isPartOfOutput was implemented incorrectly. The relation hasOutputPart

was created with the Output class as both domain and range as well as relation

isPartOfOutput assigned as its inverse.

 In the definition of the Event class, it is stated that “An Event carries information in

the form of Attributes, GOs or a combination of both”. However, the relation

151

hasEventAttribute has only as range the Attribute class. For now, I consider it

sufficient because an Attribute is possessed by a Game Object and this fact can be

inferred. However, this may change depending on the ontology validation activity.

 The ontology verification concluded together with the implementation process. The

following conclusions regarding the resulting ontology are:

 The VGDO is consistent so far. Tests were done in all phases to verify all added

classes, relations and axioms to check for inferred contradictory knowledge and other

consistency problems. By the end of the verification activity no consistency problems

were detected. Developing the ontology in Protégé facilitated the process because it

detected automatically some consistency problems.

 The VGDO completeness cannot be assessed. This fact is caused by its nature as it is a

generic ontology with the purpose to be able to model any kind of video game. Also, it

is impossible for an ontology to be complete because new knowledge will be always

added to it. It is through the validation activity that the completeness of the VGDO

will be assessed as its ability to model video games will be tested. The VGDO will be

considered “complete enough” if it can successfully model a video game, i.e., if it has

the necessary class, relations and axioms to do so. The VGDO will be truly complete

when it can be used to model any type of video game.

 The VGDO is somewhat concise. Tests were done to remove all unnecessary

definitions and explicit redundancies between definitions. However, some

redundancies can be inferred by the reasoner. For example, the reasoner infers the

relation hasGOAttribute even if the same relation was asserted directly in the Space

class; there was no need to infer something that was known. It has to be investigated if

the problem is in the ontology implementation or in the reasoner.

 Cardinality restrictions were dropped because of several problems trying to implement

them in non-simple relations (they have properties such as transitivity). However,

functional relations were successfully implemented.

152

10.3 – Ontology Validation

 In this section, I will present the ontology validation activity, discuss the results and

the changes made to the ontology in order to fix problems found. For this activity, I will use

the VGDO to model a gameplay segment of the first stage of Super Mario Bros. developed by

Nintendo for the Nintendo Entertainment System (NES) pictured in Figure 26.

 The validation activity is divided in five parts:

 Identify the game elements and assign them to their corresponding classes;

 Add important terms found in the identification activity to the VGDO;

 Model the gameplay segment using VGDO through Protégé;

 Compare the result provided by the reasoner and compare them to the competency

questions;

 Conclusions of the ontology validation activity.

Figure 26 – First stage of Super Mario Bros.

10.3.1 – Identification of Game Elements

 This activity will function just like a requirements identification or reverse-

engineering process. The observed game elements from the first stage of Super Mario Bros.

will be identified from the most external to the most internal:

 Players and Hardware necessary to interact with the game;

153

 The Output the Player receives such as Audio Output and Video Output (Display

Space for the player to see and Display Objects featured in it and Audio);

 Assets used in the Game Objects and the States that are sent to the Output;

 Player Objects and the Inputs used to control them;

 Describe the Space logic of the game (the part of gameplay that involves space);

 Describe the Time logic of the game (the part of gameplay that involves time);

 Describe the specific logic (the part of gameplay that does not involve space or time);

 Define the Game Objects by identifying their States, Attributes and specific rules;

 The game logic is the most complex part of a video game, so it is divided in space,

time and specific (game exclusive) logic. It should be noted that not all elements of that

gameplay segment will be identified to keep this validation activity feasible.

10.3.1.1 – Players and Hardware

 Super Mario Bros. is played by only one human player. The Player needs a Video

Hardware to see what is happening in the game, an Audio Hardware to hear what happens in

the game and Input Hardware such as a joystick to send Inputs to the game. Obviously, the

Player needs a Hardware that can run the Video Game but I will omit this detail in this

validation activity.

10.3.1.2 – Output and Player View

 The Video Output of the gameplay segment is composed of three layers:

 The background layer which consists of the stage background art;

 The foreground layer which consists of the interacting game objects such as Mario,

Ground, Goombas, etc.

 The interface layer which consists of the score of the player, coin counter, world name

and timer.

 The background layer is rendered first, followed by the foreground layer and the

interface layer is rendered last. The Audio Output is composed with two audio streams:

154

 Background music (BGM) stream that plays all the time during the stage;

 Sound effects (SFX) stream that play short sound clips such as Mario jumping.

 Unlike the layers of a Video Output, streams of an Audio Output can play at the same

time. There is only one Player View which is a Display Space that shows a portion of the

stage and moves according to Mario position.

10.3.1.3 – Assets

 Table 2 presents some of the identified Visual Assets, the States that they appear and

whether they are animated or not. Table 3 presents some of the identified Audio Assets and

the States that they are played.

 I probably may not have identified all possible assets but this is more than enough.

Also, those tables will help in identifying the internal events and inputs that Game Objects

handle.

10.3.1.4 – Player Objects and Inputs

 The only Player Object is Mario. Table 4 presents the pressed Inputs that it receives,

the subsequent Actions, its conditions and outcomes.

10.3.1.5 – Space Logic

 The space logic is basically about collisions between Spaces. Table 5 describes the

collisions featured in the game.

10.3.1.6 – Time Logic

 The time logic in Super Mario Bros. is simple. At the beginning of each stage you

begin with the timer at 400 seconds and it starts counting down. When it reaches 100 seconds,

a warning sound clip plays and the tempo of the background music begins. When the timer

reaches 0, Mario loses a life.

10.3.1.7 – Specific Logic

 Specific logic is the game logic that does not involve space or time operations between

Game Objects. Table 6 describes the rest of the internal events of the game.

155

Table 2 – Identified Visual Assets

Visual Asset State Animated

Mario idle Mario is on the ground and no inputs made No

Mario walking Mario is on the ground and horizontal input made Yes

Mario jumping Mario is on the air or (Mario is on the ground and jump button

input is pressed)

No

Mario running Mario is on the ground and running button is pressed No

Mario crouching Mario is on the ground and down input is pressed No

Mario gets a power-up Mario collides with a power-up Yes

Mario loses a power-up Mario has power-up and does not collide on top of Goomba Yes

Mario loses a life Mario has no power-up and does not collide on top of Goomba Yes

Goomba moving Goomba is not dead Yes

Stomped Goomba Mario collides on top of Goomba No

Goomba flying Goomba collides with moving block Yes

Coin Coin exists on the stage Yes

Power-up Power-up exists on the stage No

Mystery block Block is a mystery block Yes

Ground (floor and walls) Depends on the type of ground No

Background Depends on the stage No

Score of the player Depends on the score of the player No

Coin counter Depends on the number of coins of the player Yes

World Name Depends on the stage name No

Timer Depends on the time elapsed in the stage No

156

Table 3 – Identified Audio Assets

Audio Asset State

Normal stage BGM Depends on the stage

Mario jumping Mario is on the ground and jump button input is pressed

Mario stomping Goomba Mario collides on top of Goomba

Goomba being hit by a moving block Goomba collides with moving block

Mario losing a life Mario has no power-up and does not collide on top of Goomba

Mario hits a mystery block when jumping Colliding with mysterious block and Mario collides below

those blocks while jumping

Mario getting a power-up Mario collides with a power-up

Mario losing a power-up Mario has power-up and does not collide on top of Goomba

Mario getting a coin Mario collides with a coin

Stage timer reaching 100 seconds -

Urgent stage BGM Timer is under 100 seconds

Mario reaches the end of stage Mario collides with flagpole

Mario jumping Mario is on the ground and jump button input is pressed

Table 4 – Player Inputs

Input Action Condition Outcome

Horizontal direction Mario walks Mario is on the ground and

not colliding with a wall

Horizontal speed is not

equal to zero

Horizontal direction Mario changes

direction on the air

Mario is on the air and not

colliding with a wall

Horizontal speed is not

equal to zero

Down direction Mario crouches Mario is on the ground Mario crouched state

Horizontal direction

and running button

Mario runs Mario is on the ground and

not colliding with a wall

Mario running state and

horizontal speed not null

Jump button Mario jumps Mario is on the ground Mario jumping state and

vertical speed not null

157

Table 5 – Space Logic

Collision Handler Collides With Action Condition

Mario vulnerable borders Goomba Loses power-up Mario has power-up

Mario vulnerable borders Goomba Mario loses life Mario has no power-up

Mario bottom border Goomba Gets points and bounces -

Mario bottom border Nothing Gravity -

Mario bottom border Ground and Blocks Null vertical velocity -

Mario lateral borders Ground and Blocks Null horizontal velocity -

Mario top border Ground and Blocks Null vertical velocity Mario is jumping

Mario space Coin Increase coin count by 1 -

Mario space Power-up Gets power-up -

Mystery block Mario top border Moves. Creates a power-

up on the stage

Mario is jumping

Goomba Mario bottom border Gets on stomped state -

Goomba Blocks Flies Block is moving

Power-up and Coin Mario Disappears -

Table 6 – Specific logic

Event Sender Handler Action

Create power-up Mystery Block Stage Create and display

power-up object at the

top of the block

10.3.1.8 – Game Objects

 The identified game objects are: Stage, Mario, Ground, Goomba, Coin, Mystery

Block, Unbreakable Block, Brick Block, Power-up and Flagpole. All of them have positions

and spaces. Most of its States have been described in the previous tables.

 Mario is the most complex game object. It has Attributes and internal rules:

158

 Speed to measure how much fast it is moving.

 Number of Coins. If it reaches 100 coins, Mario gains a like and the number of coins

is reset to zero.

 Point score. It is displayed in the interface.

 Power-up state to determine if Mario has a power-up and which power-up it is.

 Gravity force to determine how fast Mario falls.

 Goombas simply have a constant speed attribute that determines which direction they

are walking and a point value. Mystery Blocks can contain a number of coins or contain a

single power-up. Power-up has an Attribute that point which type of power-up it is. The rest

of the objects have no other notable Attributes or internal rules.

 With this, I concluded identifying the game elements to describe a gameplay segment

of Stage 1 of Super Mario Bros.

10.3.2 – Ontology Extensions

 It was necessary to expand the ontology in order to model the gameplay segment in

OWL 2 because some of the terms used in the identification activity are not present in the

VGDO. The new class, axioms and relations were tested and verified.

 The classes Audio Hardware, Video Hardware and Mechanical Hardware were added

to the ontology in order to separate which Hardware received each kind of Output and sent

each kind of Input. All of them are sub-classes of Hardware and are not disjoint of each other

because hardware like handheld consoles exists. Those are composed of buttons, speakers and

screens.

 The relations inferiorImageLayer and superiorImageLayer were added to the

ontology. Video Output can be separated in layers that are drawn in top of each other. In

Section 10.3.1.2 the Video Output layers of Super Mario Bros. are detailed.

 The class Collision was added to the ontology in order to model several types of

collisions. Relations collisionHappensInSpace and sendsCollisionEvent were created to

determine the Space that contains the two colliding Spaces because it is the Game Object that

159

sends the Collision event to them. Relations handlesCollision and collisionHandledBy were

created to determine the Space that handles the Collision and takes an Action in response.

 Relations isCollidable and collidingSpace were created to determine the space that

causes the collision. Before creating those, the relations hasEventGO and isGOofEvent were

created to determine Game Objects that function as a parameter for an Event. The relations

isCollidable and collidingSpace are sub-relations of hasEventGO and isGOofEvent.

 The new axiom “two Spaces can only collide if they are contained in the same Space”

could not be implemented because of OWL 2 expressivity limitations.

 The classes Visual State and Audio State were added to the ontology in order to

describe GO States that will feature some kind of Audio or Video Output. They are disjoint of

Output class. Visual States are States that are associated to a Visual Asset or are conditions to

Video Output Action. Audio States are States that are associated to an Audio Asset or are

conditions to Audio Output Action. As a consequence, the class Audio Output Action was

added to complete the Audio State class.

 There was no need to modify any of the VGDO ontology with the exception of having

to add disjoint siblings classes to the Output class. This fact reinforces the VGDO

extendibility. With that, all the necessary class, axioms and relations to model the gameplay

segment were added to the ontology.

10.3.3 – Modelling the Gameplay Segment

 Part of the gameplay segment was implemented in OWL 2 as part of the validation

activity. However, it generated a great number of individuals to implement in OWL 2 because

the Protégé interface is unsuitable for a great number of individuals as them and their relations

will cause the reasoner to take a long time to conclude the reasoning process. Therefore, the

following Game Objects were cut along with their interactions: power-ups, coins, blocks,

flagpole, coin counter and world name.

 By modelling the gameplay segment using the VGDO, flaws in the design can be

found because if the VGDO cannot describe the game element then it means either it has a

design error or it is lacking an axiom or terms. Also, the results provided by the reasoner from

reasoning the implemented slice of the gameplay segment were compared with the

160

competency questions in Appendix C to check for any irregularities such as facts that should

have been inferred but were not.

10.3.4 – Problems in the Modelling Activity

 In this section, I will describe the problems that were identified in the modelling

activity as well as the solutions for those.

 There was no way to model Input composed by other Inputs. This problem was

corrected by creating the class Simultaneous Input and the relations isComposedOfInput and

composesInput. The class represents Physical Input that is composed of multiple Physical

Inputs sent simultaneously. The relations represent Inputs that compose Simultaneous Inputs.

 The reasoner was not inferring that a Game Object sends Outputs contained in a

bigger Output. The problem was corrected by adding a chain property that lets the reasoner

infer that if a Game Object sends Output, it also sends Output that is part of it.

 The reasoner was not inferring that a Game Object is a Display Object if it has a

Visual State. The problem was corrected by adding the axiom to the Display Object class.

 Speed, Shape and Acceleration classes were created, they are extensions of the Spatial

Attribute class. They were created to be able to model Mario velocity, the shape of the space

Mario occupies and the gravity acceleration.

 The reasoner was not inferring that a Game Object is controlled by a Player when it

receives the Player Input. The problem was corrected by adding a chain property in the

relation controlsGO that lets the reasoner infer it.

 The reasoner was not inferring the intended Player of the Player View. The problem

was corrected by adding relations playerHasView and isViewOfPlayer.

 The reasoner was not inferring that if a Space is part of another, it means it is a

Bounded Space. The problem was corrected by adding the axiom to the Bounded Space class.

 There were problems modelling collisions between Mario and Goomba. The problem

is the fact that there are two sets of collision: the lateral borders of Mario and the bottom

border of Mario space. When the lateral borders collide with the Goomba, Mario loses a life.

When the bottom border collides, the Goomba is stomped. I have to separate the Goomba

collision event in two because it must be known which part of Mario space is colliding.

161

Therefore, it is impossible to model a Collision event that is handled by many sub-spaces of a

bigger space and for each sub-space a different action is performed.

 The sendsOutput relation was causing the reasoner to infer that a Game Object that

sent Output was a Game Object that performed an Action that had an outcome. This caused

inconsistency in the ontology because the chain property meant that any State could be an

Output which was not true because there are States that are disjoint of the Output class. The

problem was correct by modifying the chain property: a Game Object that sent Output was a

Game Object that performed an Action that had an Output as an outcome. To this end, the

relations generatesOutput and outputGeneratedByAction were created.

10.3.5 – Ontology Validation Conclusion

 The main challenge in the validation activity was the limitations imposed by the

Protégé editor. The modelling activity was considerable set back because the scope of

gameplay segment was reduced. The Protégé editor is not suitable for the development of

complex ontologies that need large knowledge bases to be tested. A more suitable application

must be used if more large-scale knowledge bases are needed and to better test the VGDO

modelling capacity.

 Even though the scope of the modelling activity was reduced, the activity was

instrumental to extend and find problems in the ontology. By modelling different types of

game, the ontology surely will become more complete and consistent.

 It is easy to conclude that the VGDO is far from complete because of the number of

terms added to it during the validation activity. However, what is important is the VGDO

capacity to be extended without compromising its existing class and relations. The

extendibility of the VGDO was easily validated as many of the added terms were easily

integrated into existing classes as the result

 After the validation activity, the VGDO is more consistent and cohesive because of

the many inconsistencies that were found and corrected. This reinforces the importance of an

evaluation activity in the production of a reliable ontology.

 Finally, the VGDO helped in the identification of the game elements as they were

categorized in classes of the ontology. This shows that the VGDO can assist in the

requirements identification process.

162

Chapter 11 – Conclusion

 In this chapter, the final considerations regarding the dissertation, comparison to other

works, its limitations, its contributions and potential future works.

11.1 – Final Considerations

 This thesis proposed the creation of the Video Game Development Ontology (VGDO),

a generic ontology describing the video game domain, with the objective of providing a

common vocabulary and assisting in the transition between preproduction and production

phases of the game development process by helping the identification of technical

requirements (which would be implied knowledge) in the game design (GDDs, concept art).

Thus, it makes the gathering of requirements more accurate and reliable and, in consequence,

mitigates several problems found in the game development process.

 In order to create the VGDO, knowledge about the video game domain was necessary,

thus a knowledge acquisition activity was performed. Research was done to pinpoint the most

essential elements found in games and video games by analyzing the available literature on

game design and video game development; followed by the analysis of existing knowledge

representations, especially ontologies, of games and video games.

 To build the ontology correctly, the METHONTOLOGY ontology building

methodology was chosen. Thus, the ontology construction was done in four main phases:

specification, conceptualization, implementation and evaluation. In the specification phase, an

overview of the VGDO explaining the motivation, intended users, scopes and other relevant

information was provided. In the conceptualization phase, the knowledge acquired is

organized and structured in modules. In the implementation phase, an implementation process

was outlined and the ontology was implemented in OWL 2 following this process.

 Finally, the evaluation phase consisted of two distinct activities: verification and

validation. In both of these activities, the implemented ontology was evaluated according to

established criteria and changes were made to fix errors and improve the ontology. The

validation activity was of vital importance as it evaluated the VGDO capacity of modeling

gameplay of video game and its extendibility.

163

11.2 – Comparison to Other Game Ontologies

 In this section, I will compare the VGDO in relation to GCM (Game Content Model)

and GOP (Game Ontology Project) because they are the most generic game ontologies

available. The other ontologies cover specific parts of the domain of video games.

 GOP does not follow an ontology construction methodology. GCM follows NOY &

MCGUINNESS (2001) methodology. VGDO follows METHONTOLOGY (FERNÁNDEZ-

LÓPEZ et al., 1997)..

 GOP primary function is to serve as a framework for exploring research questions

related to games and gameplay; it also contributes to a vocabulary for describing, analyzing

and critiquing games (ZAGAL et al., 2005). GCM is used to document the design

specification of a computer game and will be the model for building other game models

(TANG & HANNEGHAN, 2011). VGDO was created with the purpose to facilitate the

transition of pre-production to production by being used to assist in the identification of

requirements.

 GOP scope covers important structural elements of games, the top level of the

ontology consists of five elements: interface, rules, goals, entities, and entity manipulation

(ZAGAL et al., 2005). GCM scope covers the game concepts used in documentation of role-

playing and simulation game genres because the authors believe they are more suitable for use

in the context of education and training compared to other game genres (TANG &

HANNEGHAN, 2011). VGDO scope covers the most basic elements that compose a video

game.

 GOP is not formalized in any ontology representation language, it was only a

taxonomy of concepts. GCM is formalized in XML but details of its implementation are

absent (axioms, for example), so it is hard to evaluate its structure. VGDO is formalized in

OWL 2 and details of its implementation, such as axioms, are available.

 GOP documentation was previously available on the internet (wiki) but was

abandoned because of lack of use. GCM has no resources available online besides its paper. I

made the VGDO implementation in OWL 2 available online. Download link:

https://www.dropbox.com/s/jfm9qoftl6cfahi/video_game_development_ontology.7z?dl=0

Password to open the compressed archive: VGDO_COPPE_glauco.

https://www.dropbox.com/s/jfm9qoftl6cfahi/video_game_development_ontology.7z?dl=0

164

11.3 – Limitations

 In this section, I discuss the several limitations that were found throughout the

development of the thesis.

 The first was the lack of a common vocabulary used by video game developers and

game designers. This indicated a lack of consensus in the video game domain which made

acquiring accurate knowledge even more difficult because it is a multidisciplinary domain,

i.e., a really complex domain.

 Second, none of the video game ontologies were reused in the construction of the

VGDO, which made its construction difficult. The reason is because several ontologies were

too specific and the ontologies that were generic were not implemented in OWL.

 Another problem that rises from the lack of reuse is that the VGDO violates one of

SMITH (2006) principles: re-using available resources. While the available game ontologies

were inadequate for reuse, the Space and Time modules could be built reusing available upper

level ontologies. However, I avoided reusing such ontologies because of the following

reasons:

 Those ontologies may use a vocabulary far removed from the video game

development domain. There is a risk that their terms and definitions will cause

confusion in the video game development team making part of the VGDO hard to use;

 Integrating those ontologies would cost time because they would need to be analyzed,

the relevant terms and axioms would be selected (pruning) and that portion would be

formalized in the appropriate ontology language (they may be formalized in another).

In short, a careful study must be made in order to reuse correctly an existing ontology

and there was not enough time to do so.

 Third, the VGDO had to have its design revised and some of its axioms were not

implemented and validated because of OWL 2 limited expressivity. This happened because of

my lack of experience with OWL 2 as I elaborated axioms without knowledge of OWL 2

limitations. Also, some axioms were not implemented because of reasoner limitations. As an

example, the Visual State class is a State that has a Visual Asset associated to it. The user can

create an individual of the Visual State class without associating a Visual Asset to it. However,

the reasoner does not point out any inconsistency in the assertion.

165

 Fourth, there was only enough time to perform a technical evaluation on the VGDO

making a user evaluation impossible to be done. A user evaluation would require significant

time and preparation because it requires gathering adequate participants, preparing interviews,

having a period of time for the users to test the ontology, organize the data provided by the

users, draw conclusions from the data and make the necessary adjustments for the ontology.

As a consequence it makes the VGDO a not consensual ontology which reduces the reliability

and usefulness of the VGDO because the intended audience did not get to use it to evaluate if

it brings any benefits. It does not accurately represent a consensus about the video game

domain even though the knowledge is originated from the video game domain literature.

 Fifth, the technical evaluation may not be enough because the video game domain is

immense with different kinds of games. The gameplay modelled in the validation activity of

the evaluation process is just a tiny part of this domain. Therefore, it is necessary to model

other kinds of games.

 Finally, there were no modelling tools suitable for modelling a gameplay segment with

VGDO because of the high number of elements identified. Protégé had several limitations that

made modelling such large number difficult. For example, its interface is incapable of

separating individuals by class meaning that individuals of the State class could be mixed

with ones of the Game Object class which caused confusion. Another example, is the lack of

visual modelling tools (it has a graphics tool but it only generates graphs from the created

ontology and knowledge base).

11.4 – Contributions

 This thesis provides the following contributions: knowledge about video game

development; a common vocabulary to be used in the video game development process;

improvement of the requirements identification activity; support for analysis and reverse-

engineering of video games; a generic ontology that can model video games or parts of them

and validation of the hypothesis.

 To create the VGDO, a knowledge acquisition activity was done in order to obtain

knowledge about the video game domain. Chapter 3 presents knowledge obtained about video

games while Chapters 6, 7 and 8 organize and structure of the knowledge obtained. The

166

reader benefits from those chapters as he learns the complexity of video game development

and of a video game structure.

 The vocabulary provided by the VGDO allows developers to share information about

artifacts that are being developed, created and used in the video game development process.

The vocabulary can also help in the standardization of video game documentation by using

VGDO. Documentation that uses VGDO terms will surely improve the requirements

identification activity in the development process. The vocabulary can also be used to assist in

the analysis of existing video games.

 The ontology validation activity helped display both the VGDO ability to model a

gameplay segment and the VGDO ability to improve the requirements identification activity.

Requirements were easily identified from the picture of a gameplay moment of Super Mario

Bros., as things from the picture were easily decomposed as what the game objects were, their

assets, their actions, etc. It can be also be seen as a tool for reverse-engineering because a

developer can simply watch a video game and decompose the gameplay segments using

VGDO terms.

 The validation of the hypothesis that it is possible to identify knowledge, from other

domains present in the game development process, which is hidden implicitly in the game

designer knowledge (can be in the form of images, videos, documents) using an ontology was

possible because of the validation activity. During the validation activity, game elements were

successfully identified using VGDO terms when analyzing the gameplay of a game. They

were classified in groups (Sections 10.3.1.1 to 10.3.1.7) and tables were made in order to

organize the knowledge found (each column was represented by instances of a class of the

ontology). It could be said that Section 10.3.1 was a short Game Design Document but with

information such as hardware, assets, attributes and their values, game object behavior. In

short, it had game designer knowledge as well as knowledge from other domains of the

development team such as programming and art.

11.5 – Future Work

 In this section, I discuss the potential improvements of the VGDO and future works

that use it, some that can be solutions of the limitations already described.

167

 One of the main limitations that held back the development of VGDO was OWL 2

limited expressivity. A solution would be to add Semantic Web Rule Language
16

 (SWRL)

rules to the VGDO. SWRL rules can express rules and restrictions otherwise impossible in

OWL 2.

 The VGDO can be extended in several directions because of its generic nature. For

example, the Hardware module can be extended to describe existing hardware helping

developers to choose adequate hardware and find the necessary information for the

development process. Another example is creating an occupation module, which links a

development occupation with the creation of a specific Asset. This knowledge can be used to

estimate the necessary manpower for the development of a video game.

 There are three interesting future works for the VGDO: user evaluation, automatic

code generation and an application that uses it, especially one for modelling video games. The

user evaluation of the VGDO is important for its validation, as it was already explained an

ontology must be consensual, .i.e., the users of the domain must agree on the knowledge

representation. By receiving user feedback, the ontology can be improved in ways not

possible in a technical evaluation.

 Automatic code generation is useful for prototyping games. The Game Content Model

(TANG & HANNEGHAN, 2011) is an example of ontology used for that purpose. Using the

ontology as a model and following the Model Driven Architecture methodology it is possible

to create video game prototypes composed of software artifacts generated from ontology

elements. The VGDO ability of modelling video games would also be further evaluated and

improved.

 The validation activity demonstrated that the VGDO by itself is unsuitable for use

outside the requirement identification activity of the video game development process because

there are not adequate tools to use it for modelling. Thus, for the developers it is a better

investment to use available tools (many that allow fast prototyping) and learn their

technologies instead of spending time learning OWL 2 and its intricacies. Developers will

most likely want to use an application that hides those intricacies, streamlines the ontology

16
 http://www.w3.org/Submission/SWRL/

168

modelling process and benefits from the reasoning abilities of the ontology by pointing out

modelling errors and inconsistencies in the design of the video game. Another type of useful

application is a knowledge repository of the ontology that can be browsed and modified with

ease, just like a wiki.

169

Bibliographic References

ADAMS, E., DORMANS, J., 2012, Game Mechanics: Advanced Game Design. 1 ed,

Berkeley, CA, USA, New Riders.

AHMED, E., July 2008, “Use of Ontologies in Software Engineering”. 17th International

Conference on Software Engineering and Data Engineering (SEDE-2008), Los Angeles,

California, USA.

ARAÚJO, M., ROQUE, L., September 2009, “Modeling Games with Petri Nets.” In: DiGRA

’09 - Proceedings of the 2009 DiGRA International Conference: Breaking New Ground:

Innovation in Games, Play, Practice and Theory. Brunel University.

AßMANN, U., ZSCHALER, S., WAGNER, G., 2006, “Ontologies, Meta-Models, and the

Model-Driven Paradigm”. In: CALERO, C., RUIZ, F., PIATTINI, M. (eds), Ontologies for

Software Engineering and Software Technology, Chapter 9, Springer Berlin Heidelberg.

AVEDON, E. M., SUTTON-SMITH, B., 1971, The Study of Games.

BERNERS-LEE, T., 2000, Weaving the Web: The Original Design and Ultimate Destiny of

the World Wide Web. 1 ed, San Francisco, HarperBusiness.

BERNERS-LEE, T., HENDLER, J., LASSILA, O., 2001, “The Semantic Web”. Scientific

American, v. 284, n. 5, pp. 34–43.

BETHKE, E., 2003, Game Development and Production. Plano, Texas, Wordware Publishing

Inc.

BJÖRK, S., LUNDGREN, S., HOLOPAINEN, J., November 2003, “Game Design Patterns”.

In: Proceedings of Level Up: Digital Games Research Conference 2003.

BLOW, J., 2004, “Game Development: Harder Than You Think”. ACM Queue, v. 1, n. 10,

pp. 28–37.

BORST, W. N., 1997, Construction of Engineering Ontologies for Knowledge Sharing and

Reuse. Ph.D. Thesis, Enschede, Universiteit Twente.

BRACHMAN, R., LEVESQUE, H., 2004, Knowledge Representation and Reasoning. San

Francisco, CA, USA, Morgan Kaufmann Publishers Inc.

BRATHWAITE, B., SCHREIBER, I., 2008, Challenges for Game Designers. 1 ed. Boston,

MA, USA, Charles River Media.

BREYER, F., MOURA, L., CAVALCANTI, G., et al., October 2009, “Pesquisa de Jogos

Similares Como Fonte de Conhecimento Para Construção de Uma Ontologia de Jogos de

Simulação Casuais”. In: VIII Brazilian Symposium on Computer Games and Digital

Entertainment, Rio de Janeiro, RJ, Brazil.

BROM, C., and ABONYI A., April 2006, “Petri-Nets for Game Plot”. AISB'06: Adaptation in

Artificial and Biological Systems, University of Bristol, Bristol, England.

CALLELE, D., NEUFELD, E., Schneider, K., August 2005, “Requirements Engineering and

the Creative Process in the Video Game Industry”. In: 13th IEEE International Conference on

Requirements Engineering, 2005. Proceedings, pp. 240–250, Paris, France.

170

———, August 2011, “A Report on Select Research Opportunities in Requirements

Engineering for Videogame Development”. In: 2011 Fourth International Workshop on

Multimedia and Enjoyable Requirements Engineering - Beyond Mere Descriptions and with

More Fun and Games (MERE), pp. 26–33, Trento, Italy.

CARDENAS, Y. G,. 2014, Modelo de Ontologia Para Representação de Jogos Digitais de

Disseminação Do Conhecimento. M.Sc Dissertation, Universidade Federal de Santa Catarina.

CHAN, J.T.C., YUEN, W.Y.F., November 2008, “Digital Game Ontology: Semantic Web

Approach on Enhancing Game Studies”. In: 9th International Conference on Computer-Aided

Industrial Design and Conceptual Design. 2008. CAID/CD 2008, pp. 425–429, Kunming,

China.

CHANDRASEKARAN, B., JOSEPHSON, J.R., BENJAMINS, V.R., 1999, “What Are

Ontologies, and Why Do We Need Them?”. IEEE Intelligent Systems and Their

Applications, v. 14, n. 1, pp. 20–26.

CHURCH, D. 1999, Formal Abstract Design Tools. Available at:

<http://www.gamasutra.com/view/feature/3357/formal_abstract_design_tools.php>.

Accessed: 2015-11-05 14:22:54

CONGDON, S., 2008, Bridging the Gap: Interdisciplinary Documentation for Video Game

Design. B.A. Thesis, Algoma University.

COOK, D., 2006, Lost Garden: GameInnovation.org. Available at:

<http://www.lostgarden.com/2006/04/gameinnovationorg.html>. Accessed: 2015-06-25

19:44:15

CORCHO, O., FERNÁNDEZ-LÓPEZ M., GÓMEZ-PÉREZ A., 2003, “Methodologies,

Tools and Languages for Building Ontologies: Where Is Their Meeting Point?”. Data &

Knowledge Engineering, v. 46, n. 1, pp. 41–64.

———, 2006, “Ontological Engineering: Principles, Methods, Tools and Languages”. In:

CALERO, C., RUIZ, F., PIATTINI, M. (eds), Ontologies for Software Engineering and

Software Technology, Chapter 1, Springer Berlin Heidelberg.

CORCHO, O., FERNÁNDEZ-LÓPEZ, M., GÓMEZ-PÉREZ, A., et al., 2005, “Building

Legal Ontologies with METHONTOLOGY and WebODE”. In: Law and the Semantic Web,

v. 3369 , pp. 142–57. Lecture Notes in Computer Science, Springer Berlin Heidelberg.

COSTIKYAN, G., June 2002, “I Have No Words & I Must Design: Toward a Critical

Vocabulary for Games”. In: Computer Games and Digital Cultures Conference Proceedings,

Tampere, Finland.

CRAWFORD, C., 1984, The Art of Computer Game Design. Berkeley, CA, USA,

Osborne/McGraw-Hill.

DORMANS, J., 2009, Machinations Elemental Feedback Structures for Game Design.

Available at: <http://www.jorisdormans.nl/article.php?ref=machinations>. Accessed: 2015-

06-25 14:15:17

———, 2012a, Engineering Emergence: Applied Theory for Game Design. Ph.D. Thesis,

Amsterdam University of Applied Sciences.

171

———, 2012b, “The Effectiveness and Efficiency of Model Driven Game Design”. In:

Entertainment Computing - ICEC 2012, v. 7522, pp. 542–48., Lecture Notes in Computer

Science,Springer Berlin Heidelberg.

ELIAS, G. S., GARFIELD, R., GUTSCHERA, K. R., et al., 2012, Characteristics of Games.

Cambridge, MA, The MIT Press.

ENGLAND, L., 2014, Types of Designers. Available at:

<http://www.lizengland.com/blog/2014/06/types-of-designers/>. Acessed: 2015-05-25

17:51:29

ESA, 2015, “Industry Facts”. Available at: <http://www.theesa.com/about-esa/industry-

facts/>. Accessed: 2015-05-04 22:33:49

FENSEL, D., 2003, Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. 2 ed, Secaucus, NJ, USA, Springer-Verlag New York Inc.

FERNÁNDEZ-LÓPEZ, M., GÓMEZ-PÉREZ, A., 2002, “Overview and Analysis of

Methodologies for Building Ontologies”. The Knowlege Engineering Review, v. 17, n. 2, pp.

129–156.

FERNÁNDEZ-LÓPEZ, M., GÓMEZ-PÉREZ, A., Juristo, N., March 1997,

“METHONTOLOGY: From Ontological Art Towards Ontological Engineering”. In:

Proceedings of the Ontological Engineering AAAI-97 Spring Symposium Series, Palo Alto,

California.

FLODD, K., 2003, Game Unified Process. Available at:

<http://www.gamedev.net/page/resources/_/technical/general-programming/game-unified-

process-r1940>. Acessed: 2015-05-24 20:42:52

FLYNT, J. P., SALEM, O., 2004, Software Engineering for Game Developers. 1 ed., Boston,

MA, Course Technology PTR.

FULLERTON, T., 2014, Game Design Workshop: A Playcentric Approach to Creating

Innovative Games. 3 ed., Boca Raton, A K Peters/CRC Press.

FURTADO, A. W. B., SANTOS, A. L. M.,October 2006, “Using Domain-Specific Modeling

towards Computer Games Development Industrialization”. In: Proceedings of the 6th

OOPSLA Workshop on Domain-Specific Modeling (DSM’06), University of Jyväskylä,

Finland.

GANDON, F. L., 2010, “Ontologies in Computer Science: These New ‘Software

Components’ of Our Information Systems”. In: GARGOURI, F., JAZIRI, W. (eds), Ontology

Theory, Management and Design: Advanced Tools and Models, Chapter 1, Hershey, PA,

USA, IGI Global.

GARCÍA-GONZÁLEZ, R., 2006, A Semantic Web Approach to Digital Rights Management.

Ph.D. Thesis, Barcelona, Universitat Pompeu Fabra, Departament de Tecnologia.

GAŠEVIĆ, D., KAVIANI, N., MILANOVIĆ, M., 2009, “Ontologies and Software

Engineering”. In: Handbook on Ontologies, pp. 593–615, International Handbooks on

Information Systems, Springer Berlin Heidelberg.

172

GAŠEVIC, D., DJURIC, D., DEVEDŽIC, V., 2009a, “Knowledge Representation”. In:

Model Driven Engineering and Ontology Development, 2 ed, Chapter 1, Springer Berlin

Heidelberg.

———, 2009b, “Ontologies”. In: Model Driven Engineering and Ontology Development, 2

ed, Chapter 2, Springer Berlin Heidelberg.

———, 2009c, “The Semantic Web”. In: Model Driven Engineering and Ontology

Development, 2 ed, Chapter 3, Springer Berlin Heidelberg.

GÓMEZ-PÉREZ, A., BENJAMINS R., August 1999, “Overview of Knowledge Sharing and

Reuse Components: Ontologies and Problem-Solving Methods”. In: Proceedings of the 16th

International Joint Conference on Artificial Intelligence (IJCAI’99) Workshop KRR5:

Ontologies and Problem-Solving Methods: Lesson Learned and Future Trends, v. 18.

Stockholm, Sweden.

GÓMEZ-PÉREZ, A., FERNANDEZ, M., VICENTE, A. de, August 1996, “Towards a

Method to Conceptualize Domain Ontologies”. In: Proceedings Workshop: Ontological

Engineering, pp. 41–51, Budapest, Romania.

GÓMEZ-PÉREZ, A., JURISTO, N., PAZOS, J., 1995, “Evaluation and Assessment of the

Knowledge Sharing Technology”. In: Towards Very Large Knowledge Bases, pp. 289–296,

The Netherlands, IOS Press.

GREGORY, J., 2014, Game Engine Architecture. 2 ed, Boca Raton, A K Peters/CRC Press.

GRUBER, T. R., 1993, “A Translation Approach to Portable Ontology Specifications”.

Knowledge Acquisition, v. 5, n. 2, pp. 199–220.

———, 1995, “Toward Principles for the Design of Ontologies Used for Knowledge

Sharing”. International Journal of Human-Computer Studies, v. 43, n. 5-6, pp. 907–928.

GRÜNINGER, M., FOX, M. S., April 1995. “Methodology for the Design and Evaluation of

Ontologies”. In: IJCAI'95, Workshop on Basic Ontological Issues in Knowledge Sharing.

GRÜNVOGEL, S., 2005, “Formal Models and Game Design”. Game Studies the

International Journal of Computer Game Research, v. 5, n. 1.

GUARINO, N., 1998, “Formal Ontology and Information Systems”. In: Proceedings of

Formal Ontology in Information System, pp. 3–15, IOS Press.

GUIZZARDI, G., 2005, Ontological Foundations for Structural Conceptual Models. Ph.D.

Thesis, Enschede, CTIT, Centre for Telematics and Information Technology.

GUIZZARDI, G., FALBO, R. A., FILHO, P., et al., 2002, “Using Objects and Patterns to

Implement Domain Ontologies”. Journal of the Brazilian Computer Society, v. 8, n. 1, pp.

43–56.

HALLBERG, N., JUNGERT, E., PILEMALM, S., 2014, “Ontology for Systems

Development”. International Journal of Software Engineering and Knowledge Engineering,

v. 24, n. 3, pp. 329–345.

HAPPEL, H., SEEDORF, S., November 2006, “Applications of Ontologies in Software

Engineering”. International Workshop on Semantic Web Enabled Software Engineering

173

(SWESE'06), held at the 5th International Semantic Web Conference (ISWC 2006), Athens,

GA, USA.

HUNICKE, R., LEBLANC, M., ZUBEK, R., July 2004, “MDA: A Formal Approach to

Game Design and Game Research”. In: Proceeding of the AAAI-04 Workshop on Challenges

in Game AI, San Jose, California.

JÄRVINEN, A., November 2003, “Making and Breaking Games: A Typology of Rules”. In:

DiGRA ’03 - Proceedings of the 2003 DiGRA International Conference: Level Up, Utrecht,

The Netherlands.

———, September 2007, “Introducing Applied Ludology: Hands-on Methods for Game

Studies”. In: Proceedings of DiGRA 2007 Conference, Tokyo, Japan.

JAZIRI, W.,GARGOURI, F., 2010, “Ontology Theory, Management and Design: An

Overview and Future Directions”. In: GARGOURI, F., JAZIRI, W. (eds), Ontology Theory,

Management and Design: Advanced Tools and Models, Chapter 11, Hershey, PA, USA, IGI

Global.

JUUL, J., November 2003, “The Game, the Player, the World: Looking for a Heart of

Gameness”. In: DiGRA ’03 - Proceedings of the 2003 DiGRA International Conference:

Level Up, Utrecht, The Netherlands.

KANODE, C.M., HADDAD, H.M., April 2009, “Software Engineering Challenges in Game

Development”. In: Proceedings of the 2009 Sixth International Conference on Information

Technology: New Generations, ITNG ’09, pp. 260–265, Las Vegas, Nevada, USA.

KASURINEN, J., MAGLYAS, A., SMOLANDER, K., 2014, “Is Requirements Engineering

Useless in Game Development?”. In: Requirements Engineering: Foundation for Software

Quality, v. 8396, pp. 1–16, Lecture Notes in Computer Science, Springer International

Publishing.

KNUBLAUCH, H., OBERLE, D., TETLOW, P., et al., 2006, A Semantic Web Primer for

Object-Oriented Software Developers. Available at: <http://www.w3.org/TR/sw-oosd-

primer/>. Acessed: 2015-05-03 15:06:56.

KREIMEIER, B., 2002, The Case For Game Design Patterns. Available at:

<http://www.gamasutra.com/view/feature/132649/the_case_for_game_design_patterns.php>.

Acessed: 2015-06-24 00:17:21.

LEÓN , A.C. Z., SÁNCHEZ, L. A., November 2010, “An Ontology for Mobile Video

Games”. In: MICAI '10 Proceedings of the 2010 Ninth Mexican International Conference on

Artificial Intelligence, pp. 154–159, Pachuca, Mexico.

LEWIS, J. P., MCGUIRE, M.,FOX, P., 2007, “Mapping the Mental Space of Game Genres”.

In: Proceedings of the 2007 ACM SIGGRAPH Symposium on Video Games, pp. 103–108,

Sandbox ’07, New York, NY, USA, ACM.

LING, Y., HUAMAO, G., WANG, X., December 2008, “An Ontology-Based Development

Framework for Edutainments”. In: ISBIM '08 Proceedings of the 2008 International Seminar

on Business and Information Management, v. 1, pp. 343–346, Wuhan, China.

LING, Y., HUA-MAO, G., WANG, X., et al., August 2007, “A Fuzzy Ontology and Its

Application to Computer Games”. In: FSKD '07 Proceedings of the Fourth International

174

Conference on Fuzzy Systems and Knowledge Discovery, v 4, pp 442–46, Haikou, Hainan,

China.

LLANSÓ, D., GÓMEZ-MARTÍN, M. A., Gómez-Martín, P. P., et al., 2011a, “Explicit

Domain Modelling in Video Games”. In: Proceedings of the 6th International Conference on

Foundations of Digital Games, pp. 99–106, FDG ’11, New York, NY, USA, ACM.

———, 2011b, “Knowledge Guided Development of Videogames”. Artificial Intelligence in

the Game Design Process, Papers from the 2011 AIIDE Workshop, Stanford, California

MACHADO, A. F. V., AMARAL, F. N., CLUA, E., 2009, A Trivial Study Case of the

Application of Ontologies in Electronic Games.

MALCHER, F., NEVES, A., FALCÃO, L., October 2009, “Aplicação Do Game Ontology

Project No Processo de Análise de Similares Para Design de Jogos.” VIII Brazilian

Symposium on Computer Games and Digital Entertainment, Rio de Janeiro, RJ, Brazil.

MIZOGUCHI, R., 2001, “Ontological Engineering: Foundation of the Next Generation

Knowledge Processing”. In: Web Intelligence: Research and Development, v. 2198, pp. 44–

57, Lecture Notes in Computer Science, Springer Berlin Heidelberg.

NECHES, R., FIKES, R., FININ, T., et al., 1991, “Enabling Technology for Knowledge

Sharing”. AI Magazine, v. 12, n. 3, pp. 36–56.

NELSON, M., MATEAS, M., 2007, “Towards Automated Game Design”. In: AI*IA 2007:

Artificial Intelligence and Human-Oriented Computing, v. 4733, pp. 626–637, Lecture Notes

in Computer Science, Springer Berlin Heidelberg.

NIESENHAUS, J., LOHMANN, S., 2009, “Marrying Game Development with Knowledge

Management: Challenges and Potentials”. In: Networked Knowledge - Networked Media, v.

221, pp. 321–36, Studies in Computational Intelligence, Springer Berlin Heidelberg.

NINTENDO, 2015, Iwata Asks : Xenoblade Chronicles X : Creating a Whole Planet.

Available at: <http://iwataasks.nintendo.com/interviews/#/wiiu/xenoblade-chronicles-x/0/0>.

Acessed: 2015-06-14 15:15:47

NOGUERAS-ISO, J., LACASTA, J., TELLER, J., et al., 2010, “Ontology Learning from

Thesauri: An Experience in the Urban Domain”. In: GARGOURI, F., JAZIRI, W. (eds),

Ontology Theory, Management and Design: Advanced Tools and Models, Chapter 11,

Hershey, PA, USA, IGI Global.

NOY, N. F., MCGUINNESS , D. L., 2001, Ontology Development 101: A Guide to Creating

Your First Ontology. Technical Report SMI-2001-0880, Stanford Knowledge Systems

Laboratory.

PETRILLO, F., PIMENTA, M., TRINDADE, F., et a., 2008, “Houston, We Have a

Problem...: A Survey of Actual Problems in Computer Games Development”. In: Proceedings

of the 2008 ACM Symposium on Applied Computing, pp. 707–711, SAC ’08, New York, NY,

USA, ACM.

RAIES, K., KHEMAJA, M., 2014, “Towards Gameplay Ontology for Game Based Learning

System Design Process Monitoring”. In: Proceedings of the Second International Conference

on Technological Ecosystems for Enhancing Multiculturality, pp. 255–260, TEEM ’14, New

York, NY, USA, ACM.

175

REYNO, E. M., CUBEL, J. Á. C., 2008, “Model-Driven Game Development: 2d Platform

Game Prototyping”. In: Proceedings of the GAME ON Conference, 2008, pp. 5-7.

———, 2009a, “Automatic Prototyping in Model-Driven Game Development”. Computers in

Entertainment (CIE) - SPECIAL ISSUE: Media Arts and Games (Part II),v. 7, n. 2, article 29.

———, 2009b, “A Platform-Independent Model for Videogame Gameplay Specification”. In:

DiGRA ’09 - Proceedings of the 2009 DiGRA International Conference: Breaking New

Ground: Innovation in Games, Play, Practice and Theory, Brunel University, West London,

UK.

ROGERS, S., 2013, Level Up: Um Guia Para o Design de Grandes Jogos, 1 ed, Edgard

Blucher.

ROMAN, M., SANDU, I., BURAGA, S., 2011, “OWL-Based Modeling of RPG Games”.

Studia Universitatis Babes-Bolyai, Informatica, v. 56, n. 3.

RUIZ, F., HILERA, J. R., 2006, “Using Ontologies in Software Engineering and

Technology”. In: CALERO, C., RUIZ, F., PIATTINI, M. (eds), Ontologies for Software

Engineering and Software Technology, Chapter 1, Springer Berlin Heidelberg.

SALAZAR, M.G., MITRE, H.A., OLALDE, C.L., et al., July 2012, “Proposal of Game

Design Document from Software Engineering Requirements Perspective”. In: CGAMES '12

Proceedings of the 2012 17th International Conference on Computer Games: AI, Animation,

Mobile, Interactive Multimedia, Educational & Serious Games (CGAMES), pp. 81–85,

Louisville, KY, USA.

SARINHO, V., APOLINÁRIO, A., November 2008, “A Feature Model Proposal for

Computer Games Design.” In: Proceedings of the VII Brazilian Symposium on Computer

Games and Digital Entertainment, pp. 54–63, Belo Horizonte, MG, Brazil.

SCHAUL, T., 2013. “A Video Game Description Language for Model-Based or Interactive

Learning”. In: Proceedings of the IEEE Conference on Computational Intelligence in Games,

Niagara Falls, IEEE Press.

———, 2014, “An Extensible Description Language for Video Games”. IEEE Transactions

on Computational Intelligence and AI in Games, v. 6, n. 4, pp. 325–331.

SCHELL, J., 2014, The Art of Game Design: A Book of Lenses, 2 ed, Boca Raton, A K

Peters/CRC Press.

SEIDEWITZ, E., 2003, “What Models Mean”. IEEE Software, v. 20, n. 5, pp. 26–32.

SEQUEDA, J., 2012, “Introduction to: Open World Assumption vs Closed World

Assumption”. Available at: <http://www.dataversity.net/introduction-to-open-world-

assumption-vs-closed-world-assumption/>. Acessed: 2015-11-01 21:20:35.

SMITH, B., 2006. “Against Idiosyncrasy in Ontology Development.” In: Proceedings of the

2006 Conference on Formal Ontology in Information Systems: Proceedings of the Fourth

International Conference (FOIS 2006), 15–26. Amsterdam, The Netherlands, IOS Press.

SPYNS, P., MEERSMAN, R., JARRAR, M., 2002, “Data Modelling Versus Ontology

Engineering”. SIGMOD Record, v. 31, n. 4, pp. 12–17.

176

STAAB, S., STUDER, R., SCHNURR, H., et al., 2001, “Knowledge Processes and

Ontologies”. IEEE Intelligent Systems, v. 16, n. 1, pp. 26–34.

STUDER, R., BENJAMINS, V. R., FENSEL, D., 1998, “Knowledge Engineering: Principles

and Methods”. Data & Knowledge Engineering, v. 25, n. 1-2, pp. 161–97.

SURE, Y., STAAB, S., STUDER, R., 2009, “Ontology Engineering Methodology”, In:

Handbook on Ontologies, pp. 135–52. International Handbooks on Information Systems,

Springer Berlin Heidelberg.

TANG, S., HANNEGHAN , M., December 2011, “Game Content Model: An Ontology for

Documenting Serious Game Design”. In: DESE '11 Proceedings of the 2011 Developments in

E-systems Engineering, pp. 431–36, Dubai, UAE.

TANG, S., HANNEGHAN , M., CARTER, C., 2013. “A Platform Independent Game

Technology Model for Model Driven Serious Games Development”. Electronic Journal of E-

Learning, v. 11, n. 1, pp. 61–79.

TEKINBAS, K. S., ZIMMERMAN, E., 2003, Rules of Play: Game Design Fundamentals.

Cambridge, Massachusetts, The MIT Press.

THORN, A., 2013, Game Development Principles. 1 ed, Boston, MA, Cengage Learning

PTR.

USCHOLD, M., GRUNINGER, M., 1996, “Ontologies: Principles, Methods and

Applications”. The Knowledge Engineering Review, v. 11, n. 2, pp. 93–136.

USCHOLD, M., JASPER, R., 1999,“A Framework for Understanding and Classifying

Ontology Applications”. IJCAI-99 Workshop on Ontologies and Problem-Solving Methods

(KRR5), Stockholm, Sweden.

USCHOLD, M., KING, M., 1995, “Towards a Methodology for Building Ontologies”.

Workshop on Basic Ontological Issues in Knowledge Sharing, Held in Conjunction with

IJCAI-95, Quebec, Canada.

USCHOLD, M., TATE, A., 1998, “Putting Ontologies to Use”. The Knowledge Engineering

Review, v. 13, n. 1, pp 1–3.

WALKER, J.. 2011, “Deus Ex: HR’s Boss Fights Were Outsourced”. Available at:

<http://www.rockpapershotgun.com/2011/09/19/deus-ex-hrs-boss-fights-were-outsourced/>.

Acessed: 2015-07-24 15:41:25.

WINGET, M. A., SAMPSON, W. W., 2011, “Game Development Documentation and

Institutional Collection Development Policy”, In: Proceedings of the 11th Annual

International ACM/IEEE Joint Conference on Digital Libraries, pp. 29–38, JCDL ’11, New

York, NY, USA, ACM.

WONGTHONGTHAM, P., CHANG, E., DILLON, T., et al., 2009, “Development of a

Software Engineering Ontology for Multisite Software Development”. IEEE Transactions on

Knowledge and Data Engineering, v. 21, n. 8, pp. 1205–1217.

ZAGAL, J. P., MATEAS, M., FERNÁNDEZ-VARA, C., et al., June 2005, “Towards an

Ontological Language for Game Analysis”. In: DiGRA '05 - Proceedings of the 2005 DiGRA

International Conference: Changing Views: Worlds in Play, pp. 3–14, Vancouver, Canada.

177

Appendix A – OWL 2

 In this appendix, I will introduce OWL and OWL 2 to readers not familiar with the

language. All information presented in this appendix has been compiled from several sources

listed on Section A.6. First, the intended goals and design of OWL will be presented. Second,

the different versions of OWL will be detailed. Third, the most important features of OWL

and OWL 2 are presented. Fourth, OWL limitations will be presented. Finally, the references

used for this appendix are listed.

 This appendix is a compilation of OWL and OWL 2 originated from the W3C (2004a,

2004b, 2012a, 2012b, 2012c) website e OWL tutorials (HORRIDGE, 2011, STEVENS et al.,

2013).

A.1 – What is OWL?

 The OWL language is designed for use by applications that need to process the

content of information instead of just presenting information to humans. OWL facilitates

greater machine interpretability of Web content than that supported by XML, RDF, and RDF

Schema (RDF-S) by providing additional vocabulary along with a formal semantics (W3C,

2004a). OWL is a revision of the DAML+OIL (W3C, 2001) web ontology language

incorporating lessons learned from the design and application of DAML+OIL. OWL is part of

the growing stack of W3C recommendations related to the Semantic Web:

 XML provides a surface syntax for structured documents, but imposes no semantic

constraints on the meaning of these documents.

 XML Schema is a language for restricting the structure of XML documents and also

extends XML with datatypes.

 RDF is a datamodel for objects ("resources") and relations between them, provides a

simple semantics for this datamodel, and these datamodels can be represented in an

XML syntax.

 RDF Schema is a vocabulary for describing properties and classes of RDF resources,

with a semantics for generalization-hierarchies of such properties and classes.

 OWL adds more vocabulary for describing properties and classes: among others,

relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality,

richer typing of properties, characteristics of properties (e.g. symmetry), and

enumerated classes.

 OWL is not a programming language but a declarative language because it describes a

state of affairs in a logical way. Appropriate tools, like reasoners, can then be used to infer

further information about that state of affairs. Also, it is not a schema language for syntax

conformance. Unlike XML, OWL does not provide elaborate means to prescribe how a

document should be structured syntactically.

 OWL is not a database framework. Admittedly, OWL documents store information

and so do databases. Moreover a certain analogy between assertional information and

database content as well as terminological information and database schemata can be drawn.

178

However, usually there are crucial differences in the underlying assumptions. If some fact is

not present in a database, it is usually considered false (closed-world assumption) whereas in

the case of an OWL document it may simply be missing (but possibly true), following the

open-world assumption.

A.2 – OWL Types

 OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and

OWL Full.

 OWL Lite supports those users primarily needing a classification hierarchy and simple

constraints. For example, while it supports cardinality constraints, it only permits

cardinality values of 0 or 1. It also has a lower formal complexity than OWL DL.

 OWL DL (BAADER et al., 2007) supports those users who want the maximum

expressiveness while retaining computational completeness (all conclusions are

guaranteed to be computable) and decidability (all computations will finish in finite

time). OWL DL includes all OWL language constructs, but they can be used only

under certain restrictions (for example, while a class may be a subclass of many

classes, a class cannot be an instance of another class). OWL DL is so named due to

its correspondence with description logics (DL), a field of research that has studied the

logics that form the formal foundation of OWL.

 OWL Full is meant for users who want maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees. For example, in OWL Full a class

can be treated simultaneously as a collection of individuals and as an individual in its

own right. It is unlikely that any reasoning software will be able to support complete

reasoning for every feature of OWL Full.

A.3 – OWL Features

 The features presented are of the OWL DL sublanguage. OWL has several types of

constructors. They are separated in distinct categories.

A.3.1 – Basic Elements

 Most of the elements of an OWL ontology concern classes, properties, instances of

classes, and relationships between these instances. The following features of this type are:

 Class: It defines a group of individuals that belong together because they share some

properties. For example, Falcon and Owl are both members of the class Bird. Classes

can be organized in a specialization hierarchy using subclasses.

 Subclass: Class hierarchies may be created by making one or more statements that a

class is a subclass of another class. For example, the class Guitar is stated to be a

subclass of the class Music Instrument. Thus, reasoners can deduce that if an

individual is a Guitar, then it is also a Music Instrument.

 Property: They can be used to state relationships between individuals or from

individuals to data values. Examples of properties include hasWeapon and

hasHealthPoints. The first can be used to relate an instance of a class Warrior to an

instance of the class Weapon (and are thus occurrences of ObjectProperty), and the

179

second can be used to relate an instance of the class Warrior to an instance of the

datatype Integer (and is thus an occurrence of DatatypeProperty).

 Sub-property: Property hierarchies may be created by making one or more statements

that a property is a sub-property of one or more other properties. For example,

hasSword is stated to be a sub-property of hasWeapon. Thus, reasoners can deduce

that if an individual is related to another by the hasSword property, then it is also

related to the other by the hasWeapon property.

 Domain: A domain of a property limits the individuals to which the property can be

applied. If a property relates an individual to another individual, and the property has a

class as one of its domains, then the individual must belong to the class. For example,

the property hasWeapon is stated to have the domain of Warrior. Thus, reasoners can

deduce that if Guts hasWeapon Dragon Slayer, then Guts must be a Warrior.

 Range: The range of a property limits the individuals that the property may have as its

value. If a property relates an individual to another individual, and the property has a

class as its range, then the other individual must belong to the range class. For

example, the property hasWeapon is stated to have the range of Weapon. Thus,

reasoners can deduce that if Glenn is related to Masamune by the hasWeapon

property, (i.e., Masamune is the weapon of Glenn) then Masamune is a Weapon.

 Individuals: They are instances of classes, and properties may be used to relate one

individual to another. For example, an individual named Tigrex is described as an

instance of the class Monster and the property hasHabitat relates the individual Tigrex

to the individual Ancestral Steppe which is an instance of the class Habitat.

A.3.2 – Equality and Inequality

 The following features are related to equality or inequality:

 Equivalent Class: Two classes may be stated to be equivalent. Equivalent classes have

the same instances. Equality can be used to create synonymous classes. For example,

Ghost is stated to be equivalentClass to Phantom. Thus, reasoners can deduce that any

individual that is an instance of Ghost is also an instance of Phantom and vice versa.

 Equivalent Property: Two properties may be stated to be equivalent. Equivalent

properties relate one individual to the same set of other individuals. Equality may be

used to create synonymous properties. For example, hasFriend may be stated to be the

equivalentProperty to hasAlly. Thus, reasoners can deduce that if X is related to Y by

the property hasFriend, X is also related to Y by the property hasAlly and vice versa.

A reasoner can also deduce that hasFriend is a subProperty of hasAlly and hasAlly is a

subProperty of hasFriend.

 Same Individuals: Two individuals may be stated to be the same. These constructs

may be used to create a number of different names that refer to the same individual.

For example, the individual James Bond is stated to be the same individual as 007.

 Different Individuals: An individual may be stated to be different from other

individuals. For example, the individual Mario may be stated to be different from the

individual Luigi. Thus, if the individuals Mario and Luigi are both values for a

property that is stated to be functional (thus the property has at most one value), then

180

there is a contradiction. Explicitly stating that individuals are different can be

important in when using languages such as OWL (and RDF) that do not assume that

individuals have one and only one name. For example, with no additional information,

reasoners will not deduce that Mario and Luigi refer to distinct individuals.

A.3.3 – Property Characteristics

 The following features are related to property characteristics:

 Object Property: Relations between instances of two classes. Discussed in Section

A.2.1.

 Datatype Property: Relations between instances of classes and RDF literals or XML

Schema datatypes. Discussed in Section A.2.1.

 Inverse: One property may be stated to be the inverse of another property. If the

property P1 is stated to be the inverse of the property P2, then if X is related to Y by

the P2 property, then Y is related to X by the P1 property. For example, if

controlsCharacter is the inverse of isControlledBy and Player1 controlsCharacter

Ryu, then reasoners can deduce that Ryu isControlledBy Player1.

 Transitive: Properties may be stated to be transitive. If a property is transitive, then if

the pair (x,y) is an instance of the transitive property P, and the pair (y,z) is an instance

of P, then the pair (x,z) is also an instance of P. For example, if isBelow is stated to be

transitive, and if Block1 is below Block2 and Block2 is below Block3, then reasoners

can deduce that Block1 is below Block3.

 Symmetric: Properties may be stated to be symmetric. If a property is symmetric, then

if the pair (x,y) is an instance of the symmetric property P, then the pair (y,x) is also an

instance of P. For example, enemy may be stated to be a symmetric property. Then a

reasoner that is given that Mario is an enemy of Bowser can deduce that Bowser is an

enemy of Mario.

 Functional: Properties may be stated to have a unique value. If a property is a

functional, then it has no more than one value for each individual. The construct

functionalProperty is shorthand for stating that the property's minimum cardinality is

zero and its maximum cardinality is 1. For example, hasKeyItem may be stated to be

functional. From this a reasoner may deduce that no individual of Inventory may have

more than one key item. This does not imply that every KeyItem must be stored at an

Inventory.

 Inverse Functional: Properties may be stated to be inverse functional. If a property is

inverse functional then the inverse of the property is functional. Thus the inverse of

the property has at most one value for each individual. This characteristic has also

been referred to as an unambiguous property.

A.3.4 – Property Restrictions

 OWL restrictions fall into three main categories (HORRIDGE, 2011):

 Quantifier Restrictions;

 Cardinality Restrictions;

181

 hasValue Restrictions.

 Also, a restriction describes an anonymous class (an unnamed class). The anonymous

class contains all of the individuals that satisfy the restriction, i.e., all of the individuals that

have the relationships required to be a member of the class.

A.3.4.1 – Quantifier Restrictions

 Quantifier restrictions can be further categorized into existential restrictions and

universal restrictions.

 Existential restrictions describe classes of individuals that participate in at least one

relationship along a specified property to individuals that are members of a specified

class. Its OWL construct is someValuesFrom. In Protégé the construct is some.

 Universal restrictions describe classes of individuals that for a given property only

have relationships along this property to individuals that are members of a specified

class. Its OWL construct is allValuesFrom. In Protégé the construct is only.

 As seen before, domain and range restrict the types of the elements that make up a

property. These mechanisms are global as they apply to all instances of the property.

Existential and universal restrictions are local to their containing class definition.

 The allValuesFrom restriction requires that for every instance of the class that has

instances of the specified property, the values of the property are all members of the class

indicated by the allValuesFrom clause. For example, the weapon of an Archer must be a Bow.

The allValuesFrom restriction is on the hasWeapon property of this Archer class only.

Swordsman that use Sword as a Weapon are not constrained by this local restriction.

 The someValuesFrom restriction is similar. If allValuesFrom is replaced with

someValuesFrom in the example above, it would mean that at least one of the hasWeapon

properties of an Archer must point to an individual that is a Bow. The difference between the

two formulations is as follows:

 allValuesFrom: For all archers, if they have weapons, all weapons are bows.

 someValuesFrom: For all archers, they have at least one weapon that is a bow.

 The first does not require an archer to have a weapon. If it does have one or more, they

must all be bows. The second requires that there be at least one weapon that is a bow, but

there may be weapons that are not bows.

A.3.4.2 – Cardinality Restricitions

 The OWL construct cardinality permits the specification of exactly the number of

elements in a relation. For example, we specify Car to be a class with exactly four Wheel

instances.

 The construct maxCardinality can be used to specify an upper bound. The construct

minCardinality can be used to specify a lower bound. In combination, the two can be used to

limit the property's cardinality to a numeric interval.

182

A.3.4.3 – Value Restrictions

 The OWL construct hasValue allows us to specify classes based on the existence of

particular property values. Hence, an individual will be a member of such a class whenever at

least one of its property values is equal to the hasValue resource.

 For example, all Dragon instances are of the fire element. That is, their hasElement

property must have at least one value that is equal to Fire. As for allValuesFrom and

someValuesFrom, this is a local restriction. It holds for hasElement as applied to Dragon.

A.3.5 – Complex Classes

 OWL provides additional constructors with which to form classes. These constructors

can be used to create so-called class expressions. OWL supports the basic set operations,

namely union, intersection and complement. These are named unionOf, intersectionOf, and

complementOf, respectively. Additionally, classes can be enumerated. And it is possible to

assert that class extensions must be disjoint. Complement classes will not be described as they

are not supported by Protégé.

A.3.5.1 – Intersection Classes

 An intersection class is described by combining two or more classes using the

intersectionOf construct which is the same as a logical AND operator. For example, the

intersection of Human and Male describes an anonymous class that contains the individuals

that are members of both classes, it also means that it is a subclass of both classes. The

anonymous intersection class above can be used in another class description. For example,

Man is a subclass of the anonymous class described by the intersection of Human and Male.

In other words, Man is a subclass of Human and Male.

A.3.5.2 – Union Classes

 A union class is created by combining two or more classes using the unionOf construct

which is the same as a logical OR operator. For example, the union of Man and Woman

describes an anonymous class that contains the individuals that belong to either the class Man

or the class Woman (or both). The anonymous class that is described can be used in another

class description. For example, the class Person might be equivalent of the union of Man and

Woman.

A.3.5.3 – Enumerated Classes

 As well as describing classes through named superclasses and anonymous

superclasses such as restrictions, OWL allows classes to be defined by precisely listing the

individuals that are the members of the class. For example, the class DaysOfTheWeek contains

the individuals (and only the individuals) Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday and Saturday. Classes such as this are known as enumerated classes.

183

A.3.5.4 – Disjoint Classes

 In principle, OWL does not prevent classes to ‘overlap’. Therefore it cannot be

assumed that an individual is not a member of a particular class simply because it has not

been asserted to be a member of that class. In order to separate a group of classes, they must

be made disjoint from one another using the disjointWith construct. This ensures that an

individual who has been asserted to be a member of one of the classes in the group cannot be

a member of any other classes in that group. For example, Male and Female are made disjoint

from each other. This means that an individual that is member of the Male class cannot be

member of the Female class and vice-versa.

A.4 – OWL 2 New Features

 OWL 2 is an extension and revision of the OWL language developed by the W3C

Web Ontology Working Group and published in 2004 (referred to hereafter as “OWL 1”).

Like OWL 1, OWL 2 is designed to facilitate ontology development and sharing via the Web,

with the ultimate goal of making Web content more accessible to machine. OWL 2 adds new

functionality with respect to OWL 1. Some of the new features are syntactic sugar while

others offer new expressivity, including:

 keys;

 property chains;

 richer datatypes, data ranges;

 qualified cardinality restrictions;

 asymmetric, reflexive, and disjoint properties.

A.4.1 – Property Chains

 OWL 1 does not provide a means to define properties as a composition of other

properties, as uncle could be defined; hence, it is not possible to propagate a property

(locatedIn) along another property (partOf). The OWL 2 construct ObjectPropertyChain in a

SubObjectPropertyOf axiom that allows a property to be defined as the composition of several

properties. It allows the definition of relationships among three individuals; the most

prominent example is the property uncle which may be defined as chain of parent and brother

properties.

 A property may be chained even with itself. For example, we may define property

isEmployedAt, which is a chain of itself and the transitive property isPartOf, meaning that if a

person is employed at some organizational unit, the person is also employed at the bigger

organizational units.

A.5 – OWL 1 and OWL 2 Limitations

 OWL has some limitations that should be considered before it is used.

184

A.5.1 – Difference between Classes and Individuals

 There are important issues regarding the distinction between a class and an individual

in OWL. A class is simply a name and collection of properties that describe a set of

individuals. Individuals are the members of those sets. Thus classes should correspond to

naturally occurring sets of things in a domain of discourse, and individuals should correspond

to actual entities that can be grouped into these classes. In building ontologies, this distinction

is frequently blurred in two ways:

 Levels of representation: In certain contexts something that is obviously a class can

itself be considered an instance of something else. For example, Fire Dragon is an

example instance of the class Dragon, as it can denote an actual fire dragon. However,

Fire Dragon could itself be considered a class, the set of all actual fire dragons.

 Subclass vs. instance: It is very easy to confuse the instance-of relationship with the

subclass relationship. For example, it may seem arbitrary to choose to make Fire

Dragon an individual that is an instance of Dragon, as opposed to a subclass of it.

This is not an arbitrary decision. The Dragon class denotes the set of all dragons, and

therefore any subclass of Dragon should denote a subset of dragons. Thus, Fire

Dragon should be considered an instance of Dragon, and not a subclass. It does not

describe a subset of dragons, it is a dragon.

A.5.2 – Expressivity Limits

 KUBA (2012) explains that OWL 1 cannot express the uncle relation, which is a chain

of relations parent and sibling. OWL 2 can express uncle using property chains, however it

still cannot express relations between individuals referenced by properties. For example,

OWL 2 cannot express the child of married parents concept because it cannot express the

relationship between parents of the individual. Because OWL 2 DL is a fragment of first order

predicate logic, it cannot express the following:

 Fuzzy expressions - “It often rains in autumn.”

 Non-monotonicity - “Birds fly, penguin is a bird, but penguin does not fly.”

 Propositional attitudes - “Eve thinks that 2 is not a prime number.” (It is true that she

thinks it, but what she thinks is not true.)

 Modal logic (CHELLAS, 1980)

o Possibility and necessity - “It is possible that it will rain today.”

o Epistemic modalities - “Eve knows that 2 is a prime number.”

o Temporal logic - “I am always hungry.”

o Deontic logic - “You must do this.”

Bibliographic References

BAADER, F., CALVANESE, D., MCGUINNESS, D. L., et al., 2010, The Description Logic

Handbook: Theory, Implementation and Applications. 2 ed, New York, NY, USA, Cambridge

University Press.

CHELLAS, B. 1980, Modal Logic: An Introduction, Cambridge University Press.

185

HORRIDGE, M., 2011, Protégé OWL Tutorial. Available at:

<http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/>.

Accessed: 2015-09-18 23:37:42.

KUBA, M., 2012, OWL 2 and SWRL Tutorial. Available at:

<http://dior.ics.muni.cz/~makub/owl/>. Accessed: 2015-09-20 23:16:24

STEVENS, R., STEVENS, M., MATENTZOGLU, N., et al., 2013, Manchester Family

History Advanced OWL Tutorial. Available at:

<http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/fhkbtutorial/>. Accessed:

2015-09-18 23:38:06

W3C, 2001, DAML+OIL Reference Description. Available at:

<http://www.w3.org/TR/daml+oil-reference>. Accessed: 2015-11-01 18:26:59

———, 2004a, OWL Web Ontology Language Guide. Available at:

<http://www.w3.org/TR/owl-guide/>. Accessed: 2015-09-20 22:49:26

———, 2004b, OWL Web Ontology Language Overview. Available at:

<http://www.w3.org/TR/2004/REC-owl-features-20040210>. Accessed: 2015-09-18 17:17:13

———, 2012a, OWL 2 Web Ontology Language Document Overview (Second Edition).

Available at: <http://www.w3.org/TR/2012/REC-owl2-overview-20121211/>. Accessed:

2015-09-21 00:02:36

———, 2012b, OWL 2 Web Ontology Language New Features and Rationale (Second

Edition). Available at: <http://www.w3.org/TR/owl2-new-features/>. Accessed: 2015-09-20

23:59:10

———, 2012c, OWL 2 Web Ontology Language Primer (Second Edition). Available at:

<http://www.w3.org/TR/owl2-primer/>. Accessed: 2015-09-21 00:03:14

186

Appendix B – Conceptualization Tables

 In this appendix, the tables produced during the conceptualization phase and modified

during the implementation and evaluation phases of the ontology development process are

presented. As it was presented in Chapter 7, there are four types of tables: concepts, attributes,

relations and axioms. Furthermore, it is recommended that Appendix A is read before if the

reader has no knowledge of OWL 2. Those tables are going to be used as a base and reference

for the implementation of the ontology in OWL 2. Gray colored rows represent classes,

relations and axioms that were not implemented.

 For each module, the following tables will be presented: taxonomy (hierarchy of sub-

classes), relations and axioms. Note that some modules may not have some of the tables.

There will be only one data property table that will contain all data properties of the ontology.

The taxonomy table columns are:

 Name: Self-explanatory. Concepts cannot have the same name;

 Parent: Indicates that the concept is a specialization of another concept;

 Disjoint with: Indicates the other concepts that the concept is disjoint with. The

concept can only be disjoint with concepts that have the same parent;

 Level: The depth of the concept in the ontology taxonomy.

 The data properties table columns are:

 Name: Self-explanatory;

 Concept: The concept that has the attribute;

 Datatype: Indicates if the attribute is a string or integer for example;

 Description: A brief description of the attribute;

 Constraints: Describe any constraints that the attribute may have.

 The relations table columns are:

 Name: Self-explanatory;

 Domain: Indicates the concepts that are the beginning of the relation;

 Range: Indicates the concepts that are the end of the relation;

 Card. (Cardinality): Indicates the number of instances of the property a concept can

have;

 Properties: Indicates whether the relation is symmetrical, functional, etc.;

 Inverse: Indicates if the relation has an inverse relation.

 The axioms table columns are:

 Code: A unique identifier for the axiom;

 Axiom: A description of what the axiom is.

187

Table 7 – Game Object module taxonomy

Name Parent Disjoint with Level

Game Object - Attribute, Event, Action, State, EO 1

Space Game Object Space Connection 2

0D Space Space 1D, 2D, 3D Space 3

1D Space Space 0D, 2D, 3D Space 3

2D Space Space 0D, 1D, 3D Space 3

3D Space Space 0D, 1D, 2D Space 3

Discrete Space Space Continuous Space 3

Continuous Space Space Discrete Space 3

Bounded Space Space Unbounded Space 3

Unbounded Space Space Bounded Space 3

Display Object Game Object - 2

Display Space Bounded Space, Display Object - 4

Player Object Game Object - 2

Player View Display Space - 5

Table 8 – Game Object module relations

Name Domain Range Card. Property Inverse

hasGOPart Game Object Game Object 0..N Transitive isPartOfGO

isPartOfGO Game Object Game Object 0..1 Transitive hasGOPart

containsGO Game Object Game Object 0..N Transitive isContainedInGO

isContainedInGO Game Object Game Object 0..1 Transitive containsGO

handlesEvent Game Object Event 1..N - isHandledBy

sendsGOEvent Game Object Internal Event 0..N - isSentByGO

hasGOState Game Object State 1..N - isStateOfGO

performsAction Game Object Action 1..N - isPerformedBy

hasGOAttribute Game Object Attribute 1..N - isAttributeOfGO

sendsOutput Game Object Input 1..N - outputSentByGO

receivesInput Game Object Output 1..N - inputReceivedByGO

hasAsset Game Object Asset 0..N - assetOfGO

isGOofVG Game Object Video Game 0..N - hasGO

188

Table 9 – Game Object module axioms

Axiom

1 A GO that contains more than two instances of another GO implies that it has a Collection of the

contained GO

Table 10 – Attribute module taxonomy

Name Parent Disjoint with Level

Attribute - GO, Event, Action, State, EO 1

Simple Attribute Attribute Collection, File 2

Spatial Attribute Simple Attribute - 3

Position Spatial Attribute - 4

Atomic Attribute Simple Attribute Composite Attribute 3

Composite Attribute Simple Attribute Atomic Attribute 3

Collection Attribute File, Simple Attribute 2

File Attribute Collection, Simple Attribute 2

Number Atomic Attribute String, Boolean, Enumeration 4

String Atomic Attribute Number, Boolean, Enumeration 4

Boolean Atomic Attribute Number, String, Enumeration 4

Enumeration Atomic Attribute Number, String, Boolean 4

Time Number Time Flow 5

Time Flow Number Time 5

Discrete Time Time Continuous Time 6

Continuous Time Time Discrete Time 6

Output Attribute Attribute - 2

Visual Attribute Output Attribute - 3

189

Table 11 – Attribute Module relations

Name Domain Range Card. Property Inverse

compositePart Composite Att. Composite Part 2..N - partOfComposite

partOfComposite Composite Part Composite Att. 0..1 Functional compositePart

collectionOf Collection GO, Attribute 1 Functional -

isChangedByAction Attribute Action 0..N - changesAttribute

canBeChangedByAc

tion

Attribute Action 0..N - canChangeAttribute

determinesState Attribute State 1..N - isDeterminedBy

determinesEvent Attribute Event 1..N - isTriggeredByAttribute

attributeOfGO Attribute GO 0..1 Functional hasGOAttribute

attributeOfEvent Attribute Event 0..1 Functional hasEventAttribute

attributeOfEO Attribute EO 0..1 Functional

isParameterOf Attribute Action 0..1 Functional hasParameter

Table 12 – Attribute module axioms

Axiom

2 An Attribute can only be changed by Actions that belong to the same Game Object

2a A Composite Attribute can be only composed by Atomic or Composite Attributes

3 A Attribute triggers an Event if it determines the State that triggers the Event

Table 13 – Event module taxonomy

Name Parent Disjoint with Level

Event - GO, Attribute, Action, State, EO 1

Internal Event Event External Event 2

External Event Event Internal Event 2

Spatial Event Event - 2

Timed Event Event - 2

190

Table 14 – Event module relations

Name Domain Range Card. Property Inverse

isHandledBy Event Game Object 0..N - handlesEvent

hasEventAttribute Event Attribute 0..N - isAttributeOfEvent

isTriggeredByState Event State 1..N - triggersEvent

isTriggeredByAttrib

ute

Event Attribute 0..N - determinesEvent

causesAction Event Action 1..N - isCausedByEvent

isSentByGO Internal Event Game Object 1..N - sendsGOEvent

Table 15 – Event module axioms

Axiom

4 An External Event is an Event triggered by an External State

5 An Internal Event is an Event triggered by an GO State

Table 16 – Action module taxonomy

Name Parent Disjoint with Level

Action - GO, Attribute, Event, State 1

Spatial Action Action - 2

Timed Action Action - 2

Player Action Action - 2

Output Action Action - 2

191

Table 17 – Action module relations

Name Domain Range Card. Property Inverse

changesAttribute Action Attribute 0..N - isChangedByAction

canChangeAttribute Action Attribute 0..N - canBeChangedByAction

hasCondition Action State 1..N - isConditionOf

hasParameter Action Attribute 0..N - isParameterOf

nextAction Action Action 0..N - previousAction

previousAction Action Action 0..N - nextAction

hasOutcome Action State 0..N - isOutcomeOf

isCausedByEvent Action Event 0..N - causesAction

isPerformedBy Action Game Object 1 Functional performsAction

hasActionState Action State 1 Functional isStateOfAction

affectsOutput Action Output 1..N - outputAffectedByAction

Table 18 – Action module axioms

Axiom

6 An Action has a Previous Action if the Action condition is the same as the Previous Action outcome

7 An Action has a Next Action if the Action outcome is the same as the Next Action condition

8 It is impossible that the condition State is the same as the outcome State

Table 19 – State module taxonomy

Name Parent Disjoint with Level

State - GO, Attribute, Event, Action, EO 1

GO State State External State 2

External State State GO State 2

Spatial State State - 2

Timed State State - 2

192

Table 20 – State module relations

Name Domain Range Card. Property Inverse

hasStatePart State State 0..N Transitive isPartOfState

isPartOfState State State 0..N Transitive hasStatePart

nextState State State 1..N previousState

previousState State State 0..N nextState

equivalentState State State 0..N Symmetric

and

Transitive

-

isDeterminedBy State Attribute 1..N determines

triggersEvent State Event 1..N isTriggeredBy

isStateOfGO State Game Object 1 Functional hasGOState

isStateOfEO State EO hasEOState

isConditionOf State Action 1..N - hasCondition

isOutcomeOf State Action 1..N - hasOutcome

isPartOfCondition State Action 1..N - -

isPartOfOutcome State Action 1..N - -

isPartOfOutput State Output 1..N - -

isStateOfAction State Action hasActionState

outputsAsset State Asset 0..N - outputtedIn

Table 21 – State module axioms

Axiom

9 A State that is part of a condition State is also a condition State

10 A State that is part of an outcome State is also an outcome State

11 If the State that the Attribute determines is part of another State then the Attribute also determines it

12 A GO State is a State of a Game Object instance

13 An External State is a State of an External Object instance

14 If a State is a condition State of an Action and the Action changes the Attribute that determines the

State then its Next State is the Action outcome State (or part of the outcome State)

15 If a State is an outcome State of an Action and the Action changes the Attribute that determines the

State then its Previous State is the Action condition State (or part of the condition State)

15a A Divisible State is an State that has at least 2 parts (States).

193

Table 22 – Space module relations

Name Domain Range Card. Property Inverse

isConnectedTo Space Space 0..N Symmetric -

Table 23 – Space module axioms

Axiom

16 A Discrete Space is composed of 0D Spaces

17 A 0D Space must be connected to another 0D Space

17a Spaces have Spatial Attributes such as position, shape or speed.

18 Spatial States are States determined by Spatial Attributes

19 Spatial Actions change Spatial Attributes

20 Spatial Events are triggered by Spatial States

Table 24 – Time module relations

Name Domain Range Card. Property Inverse

hasEquivalence Time Time 0..N Symmetric -

isFlowOf Time Flow Continuous

Time

1 Functional hasFlow

hasFlow Continuous

Time

Time Flow 1..N - isFlowOf

Table 25 – Time module axioms

Axiom

21 A Timed State is determined by a Time Attribute and it has a duration data property

22 A Timed Action must have a Timed State

23 A Timed Event is triggered by a Timed State

194

Table 26 – External Object module taxonomy

Name Parent Disjoint with Level

External Object - GO, Attribute, Event, Action 1

Hardware External Object Software, Player 2

Software External Object Hardware, Player 2

Video Game Software - 3

Player External Object Hardware, Software 2

Table 27 – External Object module relations

Name Domain Range Card. Property Inverse

hasEOPart EO EO 0..N Transitive isPartOfEO

isPartOfEO EO EO 0..1 Transitive hasEOPart

hasEOAttribute EO Attribute 1..N Inverse

Functional

isAttributeOfEO

hasEOState EO State 1..N - isStateOfEO

sendsInput EO Input 1..N - inputSentByEO

receivesOutput EO Output 1..N - outputReceivedByEO

Table 28 – Hardware module relations

Name Domain Range Card. Property Inverse

hasHWPart Hardware Hardware 0..N Transitive isPartOfHW

isPartOfHW Hardware Hardware 0..1 Transitive hasHWPart

runSW Hardware Software 0..N - isRunByHW

manipulatedBy Hardware Player 1..N - interactsWith

Table 29 – Hardware module axioms

Axiom

24 Hardware only sends Physical Input

25 Hardware only receives Physical Output

195

Table 30 – Software module relations

Name Domain Range Card. Property Inverse

inRunByHW Software Hardware 1 Functional runSW

hasModule Software Software 0..N Transitive isModuleOf

isModuleOf Software Software 0..N Transitive hasModule

Table 31 – Software module axioms

Axiom

26 Software only sends Non-physical Input

27 Software only receives Non-physical Output

Table 32 – Player module relations

Name Domain Range Card. Property Inverse

interactsWith Player Hardware 1..N - manipulatedBy

controlsGO Player Player Object 1..N - controlledBy

controlledBy Player

Object

Player 1..N - controlsGO

playerSendsInput Player Player Input 1..N - inputSentByPlayer

inputSentByPlayer Player Input Player 1..N - playerSendsInput

playerReceivesOutput Player Player Input 1..N - outputReceivedByPlayer

outputReceivedByPlayer Player Input Player 1..N - playerReceivesOutput

Table 33 – Player module axioms

Axiom

28 A Player sends Input and receives Output through interaction with a Hardware

29 Physical Input is a Player Input if it is sent from the Hardware that the Player interacts with

30 Game Object is a Player Object if it handles Player Input

31 Player Action is an Action caused by a Player Input

32 Physical Output is a Player Output if it is received from the Hardware that the Player interacts with

33 Player View is a Display Space that sends Player Output

196

Table 34 – Input module taxonomy

Name Parent Disjoint with Level

Input External Event - 3

Physical Input Input Non-physical Input 4

Image Input Physical Input Touch Input, Sound Input 5

Sound Input Physical Input Image Input, Touch Input 5

Touch Input Physical Input Image Input, Sound Input 5

Player Input Physical Input - 5

Non-physical Input Input Physical Input 4

Table 35 – Input module relations

Name Domain Range Card. Property Inverse

inputSentByEO Input EO 1..N - sendsInput

inputReceivedByGO Input Game Object 1..N - receivesInput

Table 36 – Input module axioms

Axiom

34 A Non-physical Input can only be sent by a Software

35 A Physical Input can only be sent by a Hardware

Table 37 – Output module taxonomy

Name Parent Disjoint with Level

Output State - 2

Physical Output Output Non-physical Output 4

Player Output Physical Output - 5

Video Output Physical Output - 5

Audio Output Physical Output - 5

Mechanical Output Physical Output - 5

Non-physical Output Input Physical Output 4

197

Table 38 – Output module relations

Name Domain Range Card. Property Inverse

outputSentByGO Output Game Object 1..N - sendsOutput

outputReceivedByEO Output EO 1..N - receivesOutput

outputAffectedByAction Output Action 1..N - affectsOutput

Table 39 – Output module axioms

Axiom

36 An Output cannot be a condition (or part of one) of an Action

37 An Output Action is an Action that has an Output as an outcome

38 An Output Attribute is an Attribute that is an Parameter of an Output Action

39 An Action affects an Output if it changes an Output Attribute

40 A Game Object sends an Output if it has an Output Action

41 A Non-physical Output can only be received by a Software

42 A Physical Output can only be received by a Hardware

Table 40 – Video Output module axioms

Axiom

43 A Video Output Action is an Action that has a Video Output as an outcome

44 A Display Space is a Space that sends Video Output

45 A Display Object is a Game Object that sends Video Output

46 A Visual Attribute is an Attribute that is an Parameter of a Video Output Action

Table 41 – Asset module taxonomy

Name Parent Disjoint with Level

Asset - - 1

Visual Asset Asset - 2

Textual Asset Asset Visual Asset, Audio Asset 2

Audio Asset Asset - 2

198

Table 42 – Asset module relations

Name Domain Range Card. Property Inverse

assetOfGO Asset Game Object 1..N - hasAsset

fileType Asset File 1 Functional -

outputtedIn Asset State 1..N - outputsAsset

Table 43 – Asset module axioms

Axiom

47 If a State outputs an Asset it implies that the State is a condition of an Output Action

Table 44 – Video Game module relations

Name Domain Range Card. Property Inverse

hasGO Video Game Game Object 1..N - isGOofVG

Table 45 – VGDO data properties

Name Class Datatype Description

name Any String Self-explanatory

description Any String Self-explanatory

datatype Atomic Attribute Any Datatype of the attribute

initialValue Atomic Attribute Any Initial value

minValue Number Any Number Minimum value

maxValue Number Any Number Maximum value

duration Timed State Integer Duration of the State

developer Software String Name of the developer

genre Video Game String Genre of the video game

199

Appendix C – Competency Questions

 In this appendix, I present the competency questions that are used to evaluate the

VGDO. The questions are separated in two categories: internal and external modules. The

External Object module does not have competency questions because the Software, Player

and Hardware modules are natural extensions of it.

C.1 – Internal Module Questions

 What are the actions of a game object?

 What are the possible states of a game object?

 What are the events that the game object handles?

 What are the attributes of a game object?

 Which objects have an attribute of a certain type?

 What are the actions that change the value of a certain attribute?

 Which events are triggered by the value of a certain attribute?

 What are the actions that an event can possibly call?

 What are the attributes of an event?

 What are the events triggered by a certain state?

 What are the game objects that receive a certain event?

 What are the parameters of an action?

 What are the attributes that an action changes?

 What are the conditions for an action to be performed?

 What are the possible next states that of a certain state?

 What are the possible previous states of a certain state?

 What are the possible events that are triggered by a certain state?

 Which game objects are contained in a space?

 Which game objects have bounded spaces?

 Is a certain space connected to other spaces?

 What is the duration of an action?

 What is the duration of a state?

 What are the events triggered by time?

 What are the time attributes of the game?

200

C.2 – External Module Questions

 What physical inputs does a certain hardware send?

 What physical outputs do a certain hardware receives?

 Which software runs in the hardware besides the game?

 What non-physical inputs does a certain software send?

 What non-physical outputs do a certain hardware receives?

 What game objects does the player control?

 What inputs are available for the player to make?

 What are the outputs that the player receives?

 What game objects react to player inputs?

 What game object actions does an input invoke?

 What are the types of input present in the game?

 What are the outputs of a video game?

 What actions change a certain output?

 What events call an action that changes output?

 Which game objects have assets?

 What are the visual assets of the game?

 What are the audio assets of the game?

 What are the textual assets of the game?

 What is the name of the video game?

 What is the hardware used to play the video game?

 What is the software that communicates with the video game?

 What is the genre of the video game?

