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A mudança para sistemas de energia mais limpos introduz desafios complexos
de Gerenciamento de Recursos Energéticos (ERM), especialmente no contexto de
problemas do tipo de compromisso de unidade a ser despachada (do inglês Unit Com-
mitment (UC)). UC envolve a operação de uma microrrede com diversos geradores
renováveis juntamente com um fornecedor externo, o que representa um problema
NP difícil ao calcular o despacho econômico para cada unidade comprometida em um
horizonte de planejamento. Esta tese apresenta soluções algorítmicas para proble-
mas de ERM de objetivo único e multiobjetivo. Primeiro, novos operadores de busca
local são propostos para aprimorar uma metaheurística evolutiva para resolver um
problema de otimização de ERM baseado em risco com um único objetivo. Os re-
sultados demonstram melhor desempenho em comparação com outros algoritmos
baseados em inteligência de enxame, oferecendo redução de custos e proteção contra
cenários extremos. Em segundo lugar, é proposto um novo modelo de problema
de decisão em ERM com vários objetivos, considerando custo, emissões de CO2

e degradação da bateria. Um agente de aprendizagem controla a profundidade de
descarga de uma bateria de íons de lítio, e um novo algoritmo multiobjetivo chamado
Multi-Objective Evolutionary Policy Search (MEPS), que utiliza o NeuroEvolution
of Augmenting Topologies, é proposto. O MEPS desenvolve redes neurais artificiais
para estimar os valores de preferência de ação. A avaliação usando o hipervolume
como métrica revela a superioridade do MEPS em relação ao aprendizado por reforço
profundo padrão em problemas de referência padrão e recém-propostos. Notavel-
mente, o MEPS encontra redes neurais com um menor número de nós e conexões,
adequadas para sistemas de controle incorporados, demonstrando sua eficácia na
solução do problema ERM proposto.
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The shift towards cleaner energy systems introduces complex Energy Resource
Management (ERM) challenges, particularly in the context of the Unit Commit-
ment problem. This problem involves operating a microgrid with diverse renewable
generators alongside an external supplier, posing an NP-hard problem when cal-
culating the economic dispatch for each committed unit over a planning horizon.
This thesis presents algorithmic solutions to single-objective and multi-objective
ERM problems. First, novel local search operators are introduced to enhance an
evolutionary metaheuristic addressing a single-objective risk-based ERM optimiza-
tion problem. The results demonstrate improved performance compared to other
swarm-intelligence-based algorithms, offering cost reduction and protection against
extreme scenarios. Second, a novel multi-objective ERM decision problem model
is proposed, considering cost, CO2 emissions, and battery degradation. A learning
agent controls the depth of discharge of a Lithium-Ion battery, and the new Multi-
Objective Evolutionary Policy Search (MEPS) algorithm, utilizing NeuroEvolution
of Augmenting Topologies (NEAT), is introduced. The MEPS evolves artificial neu-
ral networks for estimating action-preference values. Evaluation using hypervolume
as a metric reveals MEPS’s superiority over standard deep reinforcement learning
on both standard and proposed benchmark problems. Notably, MEPS finds neu-
ral networks with minimal nodes and connections, suitable for embedded control
systems, showcasing its efficacy in solving the proposed ERM problem.

viii



Contents

List of Figures xi

List of Tables xiv

List of Abbreviations xvi

1 Introduction 1
1.1 Evolutionary Algorithms in ERM . . . . . . . . . . . . . . . . . . . . 3
1.2 Reinforcement Learning in ERM . . . . . . . . . . . . . . . . . . . . . 4
1.3 Neural Networks in Reinforcement Learning . . . . . . . . . . . . . . 5
1.4 Neural Networks in Multi-Objective Problems . . . . . . . . . . . . . 6
1.5 Reinforcement Learning in Real World . . . . . . . . . . . . . . . . . 7
1.6 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Foundations 9
2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Single-Objective Optimization . . . . . . . . . . . . . . . . . . 9
2.1.2 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . 10

2.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 C-DEEPSO algorithm . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Single-Objective Reinforcement Learning . . . . . . . . . . . . 13
2.3.2 Multi-Objective Reinforcement Learning . . . . . . . . . . . . 14

2.4 Neuroevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 NeuroEvolution of Augmenting Topologies . . . . . . . . . . . 17

3 Methods 21
3.1 Adaptive C-DEEPSO with Local Search . . . . . . . . . . . . . . . . 21

3.1.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Preliminary Validation Simulations for Adaptive C-DEEPSO

with LS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



3.2 The Multi-Objective Evolutionary Policy Search . . . . . . . . . . . . 28
3.2.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Preliminary Validation Simulations for MEPS . . . . . . . . . 36
3.2.3 Ablation Study for MEPS . . . . . . . . . . . . . . . . . . . . 44

3.3 Swarm Intelligence in Multi-Objective Evolutionary Policy Search . . 47
3.3.1 Preliminary Validation Simulations for SI-MEPS . . . . . . . . 48

4 Results and Discussion on the ERM problem 52
4.1 Single-Objective Energy Resource Management Problem . . . . . . . 52
4.2 Multi-Objective Energy Resource Management Problem . . . . . . . . 56

4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Solving the ERM problem . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Comparison between MEPS and SI-MEPS in the ERM problem 68

5 Hyperparameters Analysis of MEPS 71

6 Conclusions 75
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

References 78

x



List of Figures

2.1 Phenotype (a) and genotype (b) of a simple neural network in NEAT
(adapted from [117]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Illustration of topological mutations occurring in NEAT: Adding a
new neuron (upper part) and a new connection (lower part). Geno-
type changes are marked in red and changes in the networks’ pheno-
type are marked by dashed lines. Note that the innovation ids in the
red boxes are updated and the add neuron mutation happens before
the add link mutation w.r.t. the temporal dimension (adapted from
[117]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Illustration of recombination occurring in NEAT: First, connections
are aligned based on innovation number and common, disjoint, and
excess parts are identified. Common connections are copied randomly
from parents. All the remaining connections are transferred from the
most fit parent. Note that both parents are equally fit in this example
(adapted from [117]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Illustration of (a) the three search directions generated by the local
search mechanism for one particle; and (b) the local search operator
applied to a solution vector. In Xsouth all values are inverted. In Xeast

and Xwest, only d values are modified plus one (see [81]). . . . . . . . 22
3.2 Illustration of the movement rule in calculating new particle posi-

tion Xt using C-DEEPSO’s standard movement rule (left) and the
proposed adaptive velocity heuristic (right). The particle Xm is ran-
domly sampled from memory B . . . . . . . . . . . . . . . . . . . . . 24

3.3 Example of the agent’s interaction with the environment, transition-
ing from state st to state st+1 after selecting the action associated
with the highest preference value p(s, a). . . . . . . . . . . . . . . . . 29

3.4 Standard MEPS flowchart of the evolution from generation t to gen-
eration t+ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Discarded potential solutions due to dense regions of non-dominated
solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



3.6 Pareto distribution illustration for different values of α and four non-
dominated fronts. X-axis and Y-axis denote the non-dominated fronts
and the proportion of the population which will be selected from each
front, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Deep Sea Treasure (DST) benchmark . . . . . . . . . . . . . . . . . . 37
3.8 Modified Bountiful Sea Treasure (MBST) benchmark . . . . . . . . . 37
3.9 Discontinuous Deep Sea Treasure (DDST) benchmark . . . . . . . . . 38
3.10 Space Exploration (SE) benchmark . . . . . . . . . . . . . . . . . . . 38
3.11 Pressurized Bountiful Sea Treasure (PBST) benchmark . . . . . . . . 39
3.12 Bonus World (BW) benchmark . . . . . . . . . . . . . . . . . . . . . 39
3.13 MEPS initial topology configuration for benchmark tests. . . . . . . . 40
3.14 Normalized average hypervolumes obtained by PQL, QM, MPSAC,

and MEPS versions in all the MORL benchmark environments. . . . 42
3.15 Average normalized hypervolumes obtained by the unablated H1/S0

version and its six ablated versions in the DDST MORL benchmark
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.16 Illustration of the proposed integration between MESH and MEPS. . 47
3.17 Illustration of the encoding of MEPS individuals into real-valued vec-

tors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.18 Complexity of the networks obtained by each algorithm in each bench-

mark environment. Darker colors are used to indicate the complex-
ities for SI-MEPS, while lighter colors indicate the complexities for
standard MEPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Line diagram of the 13-bus distribution network. Adapted from [17]. . 53
4.2 Radar plot containing the average cost of each algorithm in 150 ran-

dom scenarios for 20 runs. The smaller the area covered by the algo-
rithm, the better it performed. Extracted from [61] . . . . . . . . . . 54

4.3 Average cost for different values of risk factor β . . . . . . . . . . . . 55
4.4 Solar wind power microgrid system structure. Based on [67]. . . . . . 57
4.5 Train and test load scenarios generation. . . . . . . . . . . . . . . . . 64
4.6 Hypervolume average values of 20 executions of each algorithm during

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Boxplot results of the average hypervolumes on test scenario for 20

executions of each algorithm. . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 MG behavior analysis of H1/S1 and H0/S1 solutions selected from

TOPSIS with equal preference over the three objectives. . . . . . . . 68

xii



4.9 Complexity of the networks obtained by both MEPS versions in the
proposed MG environment. Darker colors are used to indicate the
complexities for SI-MEPS, while lighter colors indicate the complex-
ities for standard MEPS. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Performance associated with each hyperparameter value using H1/S0.
Solid lines indicate the mean hypervolume, light areas indicate the
standard deviation, and a circle marks the value that led to the high-
est mean hypervolume value. . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Performance associated with each hyperparameter value using H1/S1.
Solid lines indicate the mean hypervolume, light areas indicate the
standard deviation, and a circle marks the value that led to the high-
est mean hypervolume value. . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Performance associated with each hyperparameter value using H0/S0.
Solid lines indicate the mean hypervolume, light areas indicate the
standard deviation, and a circle marks the value that led to the high-
est mean hypervolume value. . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Performance associated with each hyperparameter value using H0/S1.
Solid lines indicate the mean hypervolume, light areas indicate the
standard deviation, and a circle marks the value that led to the high-
est mean hypervolume value. . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



List of Tables

3.1 Summary of the obtained results on Rosenbrock benchmark function. 27
3.2 Summary of the obtained results on Schaffer benchmark function. . . 27
3.3 Wilcoxon signed rank test results for both benchmark functions. . . . 28
3.4 MEPS hyperparameter description . . . . . . . . . . . . . . . . . . . 33
3.5 Problem-specific parameter description . . . . . . . . . . . . . . . . . 33
3.6 Parameter initialization values used by the algorithms in benchmark

tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Hypervolume analysis for each MORL benchmark environment (la-

beled as Env). The hypervolume for the true Pareto front (PF) is
calculated with the reference points given in parenthesis. . . . . . . . 43

3.8 Wilcoxon signed-rank test using hypervolume analysis of each MORL
problem. Algorithms in the (+) column are statistically significant
compared to algorithms in the column (-). . . . . . . . . . . . . . . . 44

3.9 Hypervolume analysis of H1/S0 unablated version and its six ablated
versions in the DDST MORL benchmark environment. The hyper-
volume for the true Pareto front (PF) is calculated with reference
points given in parenthesis. . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Hypervolume analysis for each MORL benchmark environment (la-
beled as Env). The hypervolume for the true Pareto front (PF) is
calculated with the reference points given in parenthesis. . . . . . . . 49

3.11 Wilcoxon signed-rank test using hypervolume analysis of each MORL
problem. Algorithms in the (+) column are statistically significant
compared to algorithms in the column (-). . . . . . . . . . . . . . . . 51

4.1 Summary of the obtained average results in the ERM problem. . . . . 55
4.2 General information about the microgrid. . . . . . . . . . . . . . . . 57
4.3 Parameter initialization values used by the algorithms in the micro-

grid environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Performance of each algorithm regarding hypervolume when evalu-

ated in the test scenario. . . . . . . . . . . . . . . . . . . . . . . . . 65

xiv



4.5 Ranking of algorithms based on Wilcoxon signed-rank test results
using mean hypervolumes in test scenario. . . . . . . . . . . . . . . . 66

4.6 Parameter initialization values used by the algorithms in the micro-
grid environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Performance of each algorithm regarding hypervolume when evalu-
ated in the test scenario. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Ranking of algorithms based on Wilcoxon signed-rank test results
using mean hypervolumes in the test scenario. . . . . . . . . . . . . 70

5.1 Hyperparameter values associated with the mean hypervolume values
above the 95th percentile per MEPS version. The values for the
highest mean HV are in bold. . . . . . . . . . . . . . . . . . . . . . . 74

xv



List of Abbreviations

ANN Artificial Neural Network, p. 6

BW Bonus World environment, p. 39

C-DEEPSO Canonical Differential Evolutionary Particle Swarm Optimiza-
tion, p. 11

CD Crowding Distance, p. 28

CNN Convolutional Neural Networks, p. 7

DDPG Deep Deterministic Policy Gradient, p. 5

DDST Discontinuous Deep Sea Treasure environment, p. 37

DER Distributed Energy Resources, p. 1

DE Differential Evolution, p. 3

DP Dynamic Programming, p. 12

DQN Deep Q-Network, p. 5

DST Deep Sea Treasure environment, p. 36

DoD Depth of Discharge, p. 56

EA Evolutionary Algorithm, p. 2

EFC Equivalent Full Cycle, p. 60

EMS Energy Management System, p. 2

EPSO Evolutionary Particle Swarm Optimization, p. 3

EP Evolutionary Programming, p. 11

ERM Energy Resource Management, p. 2

ESS Energy Storage System, p. 2

xvi



ES Evolutionary Strategy, p. 11

EV Electric Vehicles, p. 1

FE Function Evaluation, p. 53

GA Genetic Algorithm, p. 3

GHG Greenhouse gases, p. 1

GP Genetic Programming, p. 11

HVC Hypervolume Contribution, p. 28

HV Hypervolume indicator, p. 39

IC Initial Cost, p. 58

LIB Lithium-Ion Battery, p. 60

LSTM Long-Short Term Memory, p. 4

LS Local Search, p. 21

LTO spinel lithium titanate Li4Ti5O12, p. 56

MBST Modified Bountiful Sea Treasure environment, p. 36

MCTS Monte Carlo Tree Search, p. 4

MDP Markov Decision Process, p. 12

MEPS Multi-objective Evolutionary Policy Search, p. 28

MESH Multi-objective Evolutionary Swarm Hybrid, p. 47

MG Microgrid, p. 1

MLP Multi-layer Perceptron, p. 6

MOEA Multi-Objective Evolutionary Algorithm, p. 6

MOMDP Multi-Objective Markov Decision Process, p. 14

MOO Multi-Objective Optimization, p. 10

MOQDN Multi-Objective Deep Q-Network, p. 62

MORL Multi-Objective Reinforcement Learning, p. 15

xvii



MPSAC Multi-Policy Soft Actor Critic, p. 36

NEAT NeuroEvolution of Augmenting Topologies, p. 17

NN Neural Network, p. 5

NSGA-II Nondominated Sorting Genetic Algorithm II, p. 7

PBST Pressurized Bountiful Sea Treasure environment, p. 38

PQL Pareto Q-Learning, p. 36

PSO Particle Swarm Optimization, p. 3

PV Photovoltaic Panel, p. 3

QM Q-Managed, p. 36

RES Renewable Energy Sources, p. 1

RL Reinforcement Learning, p. 2

RTP Real-time Pricing, p. 56

ReLU Rectified Linear Unit, p. 5

SARSA State-Action-Reward-State-Action, p. 4

SE Space Exploration, p. 37

SGD Stochastic Gradient Descent, p. 17

SI-MEPS Swarm-Intelligent MEPS, p. 47

SoC State of Charge, p. 5

TD Temporal Difference learning, p. 14

TOPSIS Technique for Order Preference by Similarity to Ideal Solution,
p. 67

TWEANN Topological and Weight Evolving Artificial Neural Networks,
p. 17

UC Unit Commitment, p. 1

VC Vapnik-Chervonenkis dimension, p. 5

WT Wind Turbine, p. 3

aC-DEEPSO adaptive C-DEEPSO with Local Search, p. 23

xviii



Chapter 1

Introduction

The concentration of greenhouse gases (GHG) in the atmosphere and the effects of
climate change have leveraged the employment of renewable energy sources (RESs)
to become one of the top priorities of humanity and industry worldwide [20, 34,
75]. During the 2010–2020 decade, solar and wind technologies have faced a cost
reduction that increased their deployment in energy generation in the detriment
of fossil fuel-based energy generation [55]. Furthermore, the decarbonisation of
transport and mobility services is also considered a key alternative for reducing GHG
emissions [33]. Accordingly, electric vehicles (EVs) are being promoted in helping
to achieve a transition towards renewable energies in this sector and to reduce the
corresponding environmental impacts of vehicles based on fossil fuels [9].

Towards the goal of zero carbon dioxide emissions, microgrids (MGs) have be-
come popular candidates to integrate distributed energy resources (DERs) into pub-
lic power grids. An MG is a small-scale power grid with defined electrical boundaries
that can operate independently or collaboratively with both the main public grid
and other small power grids. Microgrids facilitate the effective integration of dis-
tributed generators, and consist of generation sources (solar, wind, etc.), energy
storage systems (typically batteries) and loads (residential neighborhoods, business
centers, hospitals, etc.). Formally, the concept of microgrids comprises a low-voltage
distribution system that integrates distributed energy sources (microturbines, gen-
erators, photovoltaic panels, electric vehicles, among others) with storage devices
(energy capacitors and energy storage systems), and flexible loads [83]. These sys-
tems can either function autonomously or non-autonomously by interconnecting to
the public grid [46, 73].

A very important task in the operation of an MG involves identifying the optimal
Unit Commitment (UC), considering technical and economic constraints over a long
planning horizon, up to one year. UC refers to the problem of determining the
schedule of generating units within a power system, with the goal of minimizing
costs while satisfying system constraints [97]. The UC module of an MG controls
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not only the committed generators and the power imported from the public grid,
but also the power exported to or imported from the energy storage system (ESS)
units [104].

Therefore, due to the climate-dependent nature of renewable resources such as
solar and wind, and the fluctuating market price, UC in MGs with ESS units is a
complex constrained optimization problem. In this way, the Energy Resource Man-
agement (ERM) of an MG can be considered as a type of UC problem, where a
player operates an MG with various renewable generators integrated with an exter-
nal supplier [5]. An efficient ERM solution leads to not only a profitable but also
a sustainable and reliable operation of the MG [46]. Thus, one of the most impor-
tant optimization problems in daily operation scheduling and planning is to control
the dispatch of energy-generating units. Moreover, according to the International
Electrotechnical Commission in the standard IEC 61970, the computer systems that
ensure the effective management operation of microgrids are called Energy Manage-
ment Systems (EMSs) [23]. Consequently, the EMS of a microgrid includes both
supply-side and demand-side management, while ensuring that system constraints
are met.

EMSs are usually categorized as centralized or decentralized, according to their
operation mode. In centralized mode, the management system is located in a central
station and connected to the DERs via communication lines for control and to
exchange data. On the other hand, in decentralized mode, each DER operates
independently and manages itself using a local controller, thus eliminating the need
for communication. Therefore, this thesis is concerned with the ERM control of
centralized energy management systems.

Computational intelligence methods have been widely employed in many real-
world problems. In particular, the development of algorithms to solve energy
management-related problems has been an active area of research [66, 149]. Among
the different classes of algorithms, it is worth noting evolutionary algorithms (EAs)
and reinforcement learning (RL) techniques. The former addresses any class of op-
timization problem and comprises a set of metaheuristic techniques that use nature-
inspired concepts to efficiently explore and exploit the search space [43]. On the
other hand, the latter addresses a specific class of optimization problem that in-
volves sequential decision making. Reinforcement learning characterizes techniques
in which a learning agent interacts with its surrounding environment, without any
prior knowledge, aiming at learning an ideal set of control actions [123]. Moreover,
both EAs and RL techniques are considered suitable candidates for solving ERM
problems because they can handle nonlinear and non-convex problems containing
continuous and integer variables [95].
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1.1 Evolutionary Algorithms in ERM

Evolutionary algorithms (EAs) are a class of metaheuristics, inspired by Charles
Darwin’s theory of natural evolution, that reflect the process of natural selection,
wherein the fittest individuals are selected for reproduction to produce the offspring
of the next generation. From the computational perspective, such algorithms en-
compass problem-independent techniques that can be applied to a wide range of
problems, with purpose-appropriate values for the decision variables of an opti-
mization problem so that the objective function is optimized [43]. Compared to
classical optimization methods, such as Newton’s method, linear, nonlinear, and
dynamic programming, etc, EAs are not restricted to the optimization problem be-
ing linear/non-linear or convex/non-convex. They are also less computational and
converge to an optimal solution in less time [15]. From the multiple applications
of evolutionary algorithms present in the renewable energy sources and microgrids
literature, it is worth noting Genetic Algorithms (GAs) [128], Differential Evolution
(DE) [40], and an evolutionary variant of classical Particle Swarm Optimization
(PSO), Evolutionary Particle Swarm Optimization (EPSO) [85].

PSO variants are often present in the ERM and UC literature. For instance, in
[53] a regularized PSO algorithm is proposed for optimally charging and discharg-
ing battery energy according to electricity prices and the availability of renewable
energy. Besides the cost functions, a dynamic penalty function that takes into con-
sideration energy generation from RESs is employed. However, battery degradation
cost is not taken into consideration. Similarly, a modified cost function is proposed
in [54] which considers not only the electricity cost but also the cost of the ESS
charging and discharging cycles in a microgrid containing photovoltaic panels (PVs)
and wind turbines (WTs). Then, a PSO algorithm is applied to solve the resulting
energy management system problem. The characteristics of the battery used in the
microgrid are analyzed by [90], in which the depth of discharge, cycle life and invest-
ment costs are considered in minimizing the investment and ESS replacement costs.
Yet, electric vehicle dynamics are not considered. Another application of a PSO-
based algorithm is presented by [69], in which a quantum-based PSO algorithm is
used to solve an energy management problem regarding the operation costs of day-
ahead scheduling in distributed generators. Although present in the modeling, the
ESS costs are not considered.

A DE algorithm is applied by [92] to solve a two-step optimization energy man-
agement problem. In this formulation, multiple microgrids containing PVs, WTs
and ESSs are considered in maximizing each microgrid local RES consumption while
globally maintaining stability of the management system. Similarly, DE is also em-
ployed by [40] in energy management considering PVs, WTs, ESSs, and EVs. The
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goal is to evaluate EVs’ potential to decrease electricity market prices and shift
electricity demand during peak hours while maximizing profit. Despite promis-
ing results, neither proposal considers pollutant emissions. The ERM problem in
[27] is modeled from a multi-objective perspective in which not only the electricity
costs, but also the pollutant emissions were minimized, while maximizing customer
satisfaction. Then, the resulting problem is solved using a multi-objective genetic
algorithm, NSGA-III. A major drawback of the proposed solution is that it does not
consider the stochasticity of renewable energy generation.

1.2 Reinforcement Learning in ERM

When dealing with sequential decision optimization problems, classical and heuris-
tic optimization algorithms suffer from some drawbacks. For instance, for each
iteration, the algorithm needs to be restarted and, thus, extensive computational
resources are required. As a consequence, it is difficult to use such algorithms in
real-time decision making [148].

Reinforcement Learning (RL) is a branch of machine learning in which a learning
agent interacts with its surrounding environment, without any prior knowledge,
aiming at learning an ideal behavior to solve one or more tasks by maximizing
the obtained rewards [123]. This behavior, often called policy, denotes a set of
actions that leads the agent to maximize the reward signal received [123]. To learn
to solve a task, the agent evaluates state-action pairs, takes actions, and then it
receives rewards that indicate how good its actions were, according to the given
environment. RL has been shown to achieve compelling results, even with no prior
domain knowledge [62–64, 87, 112, 135, 142, 145].

Recently, various studies have been conducted using RL as a model-free alter-
native to metaheuristic-based approaches in ERM problems [2, 86]. In [96], a near-
optimal ESS operation strategy using state-action-reward-state-action (SARSA) al-
gorithm is presented. The operation strategy is then employed to manage uncertain-
ties in forecasting wind power generation. Wind power uncertainty is also tackled
in [67], in which a two-fold solution is proposed. First, a long-short term memory
(LSTM) model is used to predict wind power. Then, an energy management system
for wind power is modeled and solved as a sequential decision problem using deep
Q-learning. In the proposed model, the learning agent is responsible for finding the
optimal charge/discharge decision-making strategy for the ESS present in the MG.
Regarding the life span and maintenance of ESSs, a deep RL method is proposed
in [140] that combines Monte Carlo tree search (MCTS) and state-action estima-
tion using deep neural networks for preventive maintenance in a set of batteries. A
combination of Q-learning and MCTS is also presented in [111], in which the learn-
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ing agent handles the dispatching of the ESS in the microgrid using a multiperiod
stochastic model, while also considering battery degradation cost.

Electric vehicles’ popularity and availability are substantially increasing, with
the objective of reducing carbon dioxide emissions. Accordingly, there are new chal-
lenges for reducing costs and increasing performance. In [65] a deep deterministic
policy gradient (DDPG) is used to implement a multi-objective energy management
system in electric vehicles. The reward function employed in the algorithm combines
both energy loss and aging cost objectives with electrical and thermal constraints
to create a scalar reward signal. In addition, deep q-networks (DQN) are applied
in [124] to find an energy management strategy that minimizes both hydrogen con-
sumption and fuel cell system degradation, while maintaining the battery state of
charge (SoC) stability in fuel cell hybrid electric vehicles. Even though all the pre-
sented works performed well, the majority of RL studies focus on single-objective
decision problems with scalar rewards.

1.3 Neural Networks in Reinforcement Learning

Roughly all reinforcement learning algorithms require the estimation of value func-
tions that express the quality of being in a particular state (in terms of total expected
reward in the long run) or the quality of executing a specific action in a particular
state. The simplest method to construct such functions is by regularly updating
a table containing a value for every state (or state-action pair). However, this ap-
proach proves impractical for large scale problems. To handle problems with a large
or even infinite state space, it is imperative to utilize the generalization abilities of
function approximators [51, 52].

Feedforward neural networks (NNs) are a particular case of such function approx-
imators that have been successfully employed in combination with reinforcement
learning methods [87, 112, 135]. Specifically, neural networks employing Rectified
Linear Unit (ReLU) as activation function have become popular due to their prac-
tical performance [110]. Yet, the performance of these networks is subject to their
complexity, that is, correctly choosing both the network’s topology/architecture
(number of layers, nodes and connections), and the size of the parameters. A net-
work with a badly chosen topology may not be able to solve the task it was designed
for, even with a large amount of training steps. Consequently, several works have
attempted to establish a relationship between a NN complexity and its learning ca-
pability. For instance, the authors in [6, 10] have leveraged the Vapnik-Chervonenkis
(VC) dimension [134] theory to show, by using the concept of fat-shattering dimen-
sion, that the NN error in learning can be bounded by constraining either the number
of parameters (weights, layers, biases, and nodes) or the size of the parameters. In
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this thesis, we focus on bounding the NNs error by constraining their number of
parameters.

With respect to constraining the topology of a NN, Yarotsky [144] has proven
that adapting the NN’s topology to the function being approximated leads to a
smaller upper bound for learning error, compared to fixing the topology and only
adjusting the weights, for the specific case of Sobolev Spaces. Moreover, Frankle and
Carbin [41] have shown that for a given dense network, there is a subnetwork with
fewer nodes and connections that, when trained in isolation, achieves comparable
performance as the original one. Recently, Bartlett et al. [11] have reinforced
the importance of constraining the topology of a neural network by tightening the
learning capability bound of ReLU-based NNs. The VC-dimension of this class of
networks has been proven to have a linear dependency on the number of nodes and
connections. Since this thesis deals with ReLU-based NNs for multi-objective RL
policies, it can be said that the final performance of each policy directly depends
not only on the adjustment of the weight values, but also on the correct choice of
the number of nodes and connections in each NN [11].

1.4 Neural Networks in Multi-Objective Problems

Several real problems are inherently multi-objective. For example, a person buying a
car is interested in maximizing the performance while minimizing the cost. Despite
this multi-objective nature, most artificial neural network (ANN) studies dealt with
such kind of problems from a single-objective standpoint, by adopting a predefined
weight vector to combine different objectives into one single goal [108, 120].

The first ideas to employ ANNs in multi-objective problems were first reported
in mid-1990s. Liu and Kadirkamanathan [68] treated the L2-norm and L∞ as ob-
jectives along with the number of nonzero elements in a polynomial basis function
network of a Gaussian radial basis function network. Then, a GA was used to search
for the weights of the network. However, the problem was solved using a min-max
scalarization approach, which led to only one solution at the end. Afterward, Kot-
tathra and Attikiouzel [57] modeled the multi-objective problem of minimizing both
the mean squared error, and the number of nodes in the hidden layer of a Multi-layer
Perceptron (MLP). The authors solved the presented problem by using an uncon-
strained mixed integer nonlinear multicriteria optimization technique to optimize
not only the number of nodes in the hidden layer but also the set of weights in the
MLP.

With the increasing popularity of multi-objective EAs (MOEAs) [37], recent
studies have focused on employing ANNs as part of solutions to multi-objective
problems. In [1], a multi-objective problem of minimizing the error in two disjoint
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data sets is formulated and solved by optimizing the weights of the ANNs using
an algorithm based on differential evolution. An attempt to optimize not only
the accuracy but also the network’s size is presented in [70]. The authors used a
multi-objective genetic algorithm, NSGA-II, to search for the near-optimal set of
hyperparameters in convolutional neural networks (CNN), considering activation
functions, number and size of convolutional layers, learning rate, and so on. The
hyperparameters of CNNs are also optimized in [113], in which the authors employed
a multi-objective DE algorithm to optimize CNNs in classifying COVID-19-infected
patients. In spite of recent works, the literature still lacks studies that target the
optimization of ANN in multi-objective reinforcement learning problems. This thesis
attempts to shed light on this research gap.

1.5 Reinforcement Learning in Real World

Scheduling of real-world MG systems is a fragile and expensive operation. Besides,
real systems do not provide separate environments for training and evaluation [32].
Thus, learning usually is done through the use of real data along with simulations
of the real system. In this regard, RL algorithms are suitable solution candidates as
they can be trained offline for scheduling using different load and generation profiles,
and then be applied online for other load and generation profiles [8].

However, most of the existing RL models based on ANNs are considered as
black-boxes, and therefore cannot be blindly used in many cases [12]. Instead of
fully trusting output actions, including the human in the process by first analyzing
the action and its corresponding effects could be an alternative to increase the
acceptance of RL models in energy-related problems [121, 147]. In this thesis, we
are concerned with providing RL models that act as a decision-making assistance to
human operator for mid-term scheduling [99].

1.6 Thesis Statement

As a result, the main research question that motivates this thesis is: "how to per-
form optimal control in single and multi-objective energy resource management prob-
lems?". Throughout this thesis we seek to provide answers to this question, address-
ing specific questions towards a solution for the principle question. Some specific
questions addressed are:

1. Does the combination of a local search procedure with an existing EA im-
prove its performance in solving single-objective ERM problems considering
the occurrence of extreme events?
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2. Is the combination of NEAT with non-dominance sorting for multi-policy
search competitive against traditional multi-objective reinforcement learning
approaches in a multi-objective ERM control problem?

3. Is the combination of heuristics and an existing EA with multi-objective
neuroevolutionary reinforcement learning beneficial for multi-objective energy
management control? How can the different concepts be combined and inte-
grated with each other?

In this thesis, we attempt to answer these questions, with an applied research focus,
by presenting original solutions to ERM-based problems.

1.7 Document Organization

This proposal is structured as follows: Chapter 2 gives an introduction to single and
multi-objective optimization, evolutionary algorithms, single and multi-objective
reinforcement learning, and neuroevolutionary concepts. Then, Chapter 3 details the
contributions of this work along with their calibration through the use of benchmark
test solutions. The statistical protocol used to assess the preliminary validation
experiments is also presented in this chapter. Afterwards, Chapter 4 describes the
real-world problems in which the proposals are evaluated. There is also a discussion
about the experimental results and their correspondence with this thesis scope.
Chapter 5 shows an exploration analysis of a hyperparameters set on the multi-
objective real-world problem proposed. Finally, Chapter 6 summarizes the main
contributions, conclusions, and future research directions of this thesis.
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Chapter 2

Foundations

2.1 Optimization

The term optimization refers to the study of solving problems by finding one or more
feasible solutions that correspond to the extreme values of one or more objectives
[30]. The need for finding such optimal solutions is mostly motivated by the desire to
design a solution for the lowest possible fabrication cost, the maximum reliability, or
similar purposes. In order to effectively solve the problem, optimal solutions must lie
within the problem’s domains and respect its constraints. Because of such extreme
properties of optimal solutions, the development of optimization methods are of
great importance in practical engineering and business decision-making problems.

2.1.1 Single-Objective Optimization

When an optimization problem modeling a physical system involves only one ob-
jective function, the task of finding the optimal solution is called single-objective
optimization. In single-objective problems, only one objective function is involved
in the modeling of the physical system and, therefore, the task of finding the opti-
mal solution is called single-objective optimization. Conceptually, a single-objective
function is a mapping of type f : Rn → R expressed as:

minimize f(x), (2.1)

subject to


gi(x) ≤ 0, for i = 1, . . . , r

hj(x) = 0, for j = 1, . . . , l

x ∈ X,

in which X ⊂ Rn, f denotes the objective function, and x is the vector com-
posed of n optimization variables. Each of the functions gi(x) ≤ 0, for i = 1, . . . , r,

9



hj(x) = 0, for j = 1, . . . , l stand for inequality and equality constraints, respectively.
Moreover, a solution x ∈ X that satisfies all the constraints is called a feasible
solution to the problem [13].

2.1.2 Multi-Objective Optimization

The majority of real-world search and optimization problems naturally involve mul-
tiple objectives. In multi-objective problems, the optimization task involves finding
a vector of decision variables which satisfies constraints and optimizes a vector func-
tion whose elements denote each of the objective functions.

The principle of searching for extremes previously mentioned cannot be applied
to only one objective, as the multiple objective functions are usually conflicting.
Hence, different solutions may produce trade-offs (conflicting scenarios) among dif-
ferent objectives. This means that one is discouraged from choosing a solution
which is optimal with respect to only one objective, since a compromise with other
objectives is also required [21].

A multi-objective optimization (MOO), also often referred to as vector opti-
mization, problem has a number of objective functions which are to be minimized
or maximized. Similarly to single-objective optimization, any feasible solution must
satisfy a set of constraints. The MOO problem in its general form is defined as:

minimize/maximize fm(x), m = 1, . . . ,M, (2.2)

subject to


gi(x) ≤ 0, for i = 1, . . . , r

hj(x) = 0, for j = 1, . . . , l

x ∈ X,

in which there are M objective functions, X ⊂ Rn, and x is the vector with n

optimization/decision variables. The inequality and equality constraints are gi(x) ≤
0, for i = 1, . . . , r and hj(x) = 0, for j = 1, . . . , l, respectively [30].

2.2 Evolutionary Algorithms

In natural systems, evolution produces behaviors that are optimized, yet not op-
timal, over the biological hierarchy of individuals and populations. As a result,
evolution can be seen as an iterated, population-based process of genetic variation
and selection capable of solving novel problems in new ways [38]. Historically, the
biological concepts regarding evolution inspired the development of a research area
called evolutionary computing. Its origin dates back to 1948 when Alan Turing pre-
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sented the work “Intelligent Machinery” in which he states “There is the genetical
or evolutionary search by which a combination of genes is looked for, the criterion
being survival value. The remarkable success of this search confirms to some ex-
tent the idea that intellectual activity consists mainly of various kinds of search.”
[26]. Afterwards, with the advance of computational resources, this area rapidly has
grown as an active research field with more than 2000 publications in journals and
conferences [114].

Evolutionary algorithms (EAs) are a class of generic population-based meta-
heuristics. Within EAs, different paradigms emerged: genetic algorithms (GAs)
[49], evolution strategies (ES) [102], evolutionary programming (EP) [39], and ge-
netic programming (GP) [58]. The various paradigms follow a general outline of
maintaining a population of individuals, mating parents to generate offspring, and
selecting the following generation based on a fitness evaluation. This thesis proposal
focuses on evolutionary algorithms and a variant inspired by the swarm intelligence
phenomenon, namely evolutionary particle swarm optimization (EPSO) [85].

2.2.1 C-DEEPSO algorithm

The Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO)
[78] is a single-objective evolutionary algorithm based on swarm intelligence foun-
dations from PSO [56] that merges vectorial operations from Differential Evolution
(DE) [40]. C-DEEPSO has been successfully applied in solving several optimization
problems such as: active power dispatch in large scale grids minimizing the costs of
production [78], controlling the cascade operation of hydropower plants [80], active
and reactive power dispatch in hybrid microgrid systems operation with [81] and
without electric vehicles [76].

As an evolutionary algorithm, C-DEEPSO relies on mutation, recombination and
selection operations. Each particle in C-DEEPSO follows a movement rule defined
by Equations (2.3) and (2.4):

Vt = w∗I · Vt−1 + w∗A · (Xst + F (Xr −Xt−1)) + w∗C · C · (X∗gb −Xt−1), (2.3)

Xt = Xt−1 + Vt, (2.4)

in which Xst is a different particle from Xt−1 obtained from the DE/current-to-
best/1 operator. Besides storing each particle’s best position, C-DEEPSO employs
a collective memory archive containing a portion of the highest ranked solutions
found in previous generations, to refine the search process by providing a wider
view of the search space. The subscript t indicates the current generation, X is
the particle’s position, V denotes the velocity of the particle and Xgb is the highest
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ranked solution ever found by the swarm. The weights corresponding to inertia,
assimilation and communication are mutated as follows:

w∗ = w + τ ·N(0, 1), (2.5)

in which τ denotes the mutation rate parameter. Here term C in Equation (2.3)
represents a D×D diagonal matrix of Bernoulli random variables that are sampled
for each particle, where D stands for the decision space dimension. The intuition
behind using matrix C is based on a technique named "stochastic star communica-
tion topology" (see [81]). This technique limits the amount of information allowed
to be used from the global best at each iteration. This is controlled by a commu-
nication probability parameter, P . After a generation, C-DEEPSO saves a small
subset of the best solutions from the swarm in a memory archive called Memory B
[76]. Hence, with this memory mechanism, the term Xr is obtained according to the
SgPb − rnd strategy [76].

The global best solution Xgb is mutated to avoid getting trapped in particular re-
gions of the search space and to attract the current individual to a promising region.
The current individual is then slightly moved in the search space using a Gaussian
Distribution scaled by the parameter τ . Thus, Xgb is mutated in accordance with
Equation (2.6):

X∗gb = Xgb[1 + τ ·N(0, 1)]. (2.6)

2.3 Reinforcement Learning

Sequential decision making problems are ubiquitous in many scientific domains, with
several application areas. In general, these problems involve a feedback loop in which
a decision-maker determines a decision based on the available information at each
time step. From the viewpoint of an external observer, the result of such problems
is a sequence of perceived information and decisions that are performed iteratively
over time.

In sequential decision making, Markov decision processes (MDP) are the for-
malism used to model the environment the agent is operating in. In an MDP, an
environment is modelled as a set of states and actions that can be performed by an
agent to control the system’s state with the goal of maximizing some performance
criterion. Regarding the amount of knowledge available from the environment, two
paradigms can be employed: dynamic programming (DP), or reinforcement learn-
ing (RL). In the former, the full transition dynamics and reward distributions are
known. The latter is associated with the more difficult setting in which there is
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no prior knowledge available about the MDP [139]. In the context of ERM prob-
lems, this thesis proposal is also concerned with evolutionary methods to sequential
decision ERM learning problems characterized by the RL paradigm.

2.3.1 Single-Objective Reinforcement Learning

A learning agent is a computer system capable of performing sequential autonomous
actions in the environment in which it is situated. These agents are enabled to learn
from their own experiences by the Reinforcement Learning framework [123]. Thus,
in RL, the learning agent deals with the problem of taking decisions in unknown,
possibly dynamic environments. In the standard single-objective case, the overall
target of the agent is to learn a sequence of decisions that maximises the expected
value of a scalar feedback signal. Essentially, these decisions relate to action selection
in certain environmental states. A typical formalization of a reinforcement learning
environment by means of Markov decision process (MDP) is a tuple (S,A, T,R)

[123], in which:

• S = {s1, . . . , sN} denotes the state space,

• A = {a1, . . . , ar} denotes the finite set of available actions,

• T (s′|s, a) ∈ [0, 1] is a transition function that specifies, for each state – action
– next state, the probability of that next state occurring given an action at
the current state, and

• R(s, a) : S×A→ R is a reward function that specifies, for each state – action
pair, the expected immediate reward.

The goal of an agent is to learn a policy π that maps each state to an action,
so that the expected return received in the long run is maximized [101]. In this
work, only deterministic transitions are considered, hence T (s′|s, a) = 1. The state-
dependent value function of a policy π in a state s is defined as

V π(s) = Eπ

[
∞∑
k=0

γkrt+k|st = s

]
, (2.7)

in which rt is the reward obtained at time t and γ ∈ [0, 1] is the discount factor. In
a finite horizon model, the state value function becomes

V π(s) = Eπ

[
h∑
k=0

rt+k|st = s

]
, (2.8)
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in which h denotes the length of the horizon. The expected return from starting at
state s, taking action a and following policy π is given by a Qπ(s, a)-value. For an
infinite horizon model, it is expressed as:

Qπ(s, a) = Eπ

[
∞∑
k=0

γkrt+k|st = s, at = a

]
. (2.9)

The optimal Q∗-values are defined as

Q∗(s, a) = R(s, a) + E
[
γmax

a′
Q∗(s′, a′)

]
. (2.10)

The Q-Learning algorithm presented in [137] provides a way to iteratively approx-
imate Q∗. In Q-Learning, each state-action pair is stored in a Q-table and, with
learning rate α ∈ (0, 1], updated incrementally based on feedback values and Tem-
poral Difference learning (TD) [122] according to the rule

Q̂(s, a) = Q̂(s, a) + αt

(
R(s, a) + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

)
. (2.11)

Assuming that all state-action pairs are visited and updated under Q-Learning,
the Q̂ estimates converge to the optimal values Q∗ in either deterministic or non-
deterministic MDPs [28, 125].

By selecting the first action according to the policy π, the Q-function is equivalent
to the value function and can be written as

V π(s) = Eπ [Q
π(st, π(st))|st = s] . (2.12)

Finding a policy that maximizes Equation 2.12 requires searching over a function
space, which is generally an intractable problem. Therefore, policies are parameter-
ized by some θ ∈ Θ ⊂ Rd so that search is performed in a Euclidean space of finite
dimension. Consequently, the resulting problem becomes

max
θ

Eπθ [Q
πθ(st, πθ(st))|st = s] = J(θ). (2.13)

In this work, policies are parameterized using neural networks.

2.3.2 Multi-Objective Reinforcement Learning

In multi-objective optimization (MOO), the objective space consists of two or more
dimensions that must be optimized simultaneously [22]. Hence, a generalization
of regular MDPs to multi-objective MDPs (MOMDPs) was proposed in [106, 138].
Firstly, scalar reward values in MDPs are translated into reward vectors R(s, a) ∈
Rm in MOMDPs. The variable m stands for the number of objectives and the i-th
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component of the reward vector denotes the reward obtained for the i-th objective.
Analogously, both state and state-action value functions are vectorial:

Vπ(s) = Eπ

[
∞∑
k=0

γkrt+k|st = s

]
, (2.14)

Qπ(s, a) = Eπ

[
h∑
k=0

γkrt+k|st = s, at = a

]
. (2.15)

Moreover, the multi-objective optimal state-action value is defined as

Q∗(s, a) = R(s, a) + E
[
γmax

a′
Q∗(s′, a′)

]
. (2.16)

Considering that an agent will optimize several objectives simultaneously, there
will be different optimal policies with respect to different objectives. Therefore, the
optimality criteria used is, in general, the concept of Pareto dominance [30].

Generally, to establish an ordering among solutions in multi-objective reinforce-
ment learning (MORL) problems, two solutions are compared according to Pareto
dominance relation [98].

Definition 1 Given two policies π1, π2 ∈ Π, it is said that policy π1 strictly domi-
nates policy π2, denoted by π1 ≻ π2, if

∀i ∈ {1, . . . ,m},Vπ1
i (s) ≤ Vπ2

i (s) ∧ ∃j ∈ {1, . . . ,m},Vπ1
j (s) < Vπ2

j (s) (2.17)

Vπ1(s) strictly improves Vπ2(s) in at least one objective and Vπ1(s) is at least equal
to Vπ2(s) in all other objectives.

Definition 2 Given two policies π1, π2 ∈ Π, it is said that policy π1 is incomparable
to policy π2 if

∃i ∈ {1, . . . ,m},Vπ1
i (s) < Vπ2

i (s) ∧ ∃j ∈ {1, . . . ,m},Vπ2
j (s) < Vπ1

j (s). (2.18)

Vπ1(s) strictly improves Vπ2(s) in at least one objective and Vπ2(s) strictly improves
Vπ1(s) in at least one objective. Therefore, both policies are incomparable.

Definition 3 A policy π∗i ∈ Π is said to be Pareto optimal iff it is non-dominated
by any other policy πj:

π∗i ∈ Π↔ ∄πj ∈ Π : πj ≻ π∗i . (2.19)

The set Π∗ ⊂ Π with all Pareto optimal policies is named “Pareto front” [30].
Regarding the number of Pareto optimal policies a MORL approach yields af-

ter an execution, algorithms can be categorized as single-policy or multi-policy.
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In single-policy approaches, the MORL problem is decomposed into several single-
objective RL problems, each representing a particular pre-defined trade-off. Tradi-
tionally, a convex combination using weights w = [w1, . . . , wm] is applied to perform
a scalarization of the multiple objectives, so that

∑m
i=0wi = 1. The reformulated

reward and Q-Value estimates are as follows:

ŜRlinear(s, a) =
m∑
i=1

wi ·Ri(s, a) (2.20)

ŜQlinear(s, a) =
m∑
i=1

wi ·Qi(s, a). (2.21)

Consequently, for np pareto optimal solutions, np sub-problems have to be solved.
Despite simplicity, linear scalarization functions compute a convex combination

of the objectives and, therefore, are limited to only finding solutions in the convex
regions of the Pareto front [129]. An alternative to this limitation is to compute
a non-linear function of the objectives. Nevertheless, the algorithm’s convergence
cannot be guaranteed since Bellman’s equation no longer holds [100, 106].

Contrary to single-policy approaches, multi-policy approaches aim at learning
several optimal policies at once. To achieve this, a multi-policy DP algorithm pro-
posed by [138] has been used as basis for several MORL algorithms. The proposed
DP algorithm is able to compute a Pareto set of non-dominated policies. Its DP
function is

Q̂set(st, a) = R(st, a)⊕ γPF (∪a′Qset(st+1, a
′)) . (2.22)

The PF operator returns only the non-dominated elements from the union of the
Q̂set(st, a) of all actions.

The operator ⊕ denotes the vector-sum between a vector v and a set of vectors
V . This sum is performed by simply adding the components of v to the components
of each vector v′ in V :

v ⊕ V = ∪v′∈V (v + v′). (2.23)

The idea in [138] is that, after propagating discounted Pareto-dominating re-
wards, the Q̂sets converge to a set of Pareto optimal policies. As convergence is
achieved, the user can apply his/her preferences a posteriori to select a Pareto op-
timal policy.
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2.4 Neuroevolution

When dealing with real world RL problems, the state space may increasingly grow.
Thus, employing algorithms such as Q-Learning, that rely on tabular mapping to
estimate Q-values, becomes infeasible. In this regard, artificial neural networks
(ANNs) play an important role as function approximators in these problems with
high-dimensional state spaces [51, 52].

To train neural networks for supervised learning, reinforcement learning, and
recently, deep learning or deep reinforcement learning tasks, the dominant method is
backpropagation [107]. Backpropagation is an efficient algorithm for calculating the
gradient of a loss function, which, when combined with stochastic gradient descent
(SGD), can modify each neural network weight to reduce loss in a greedy manner.
The impressive results from Deep Q-Learning [88], Double Deep Q-Networks [132],
and Dueling Deep Q-Networks [136] in game-playing have proven the effectiveness of
backpropagation in RL. However, this procedure is susceptible to becoming trapped
in local minima of the error function, which are numerous in the error-surface [48].

In order to overcome this limitation, by the 1980s researchers had started to
employ evolutionary algorithms to train neural networks [89]. Certainly, EAs are
not guaranteed to converge to the global optimum. Yet, as they evolve a diverse
population of several solutions, compared to a population of only one individual
like in the backpropagation approach, EAs are less susceptible to local minima [35].
Moreover, EAs are agnostic about the rate of descent with respect to the slope of the
gradient. This field of research, called neuroevolution, is inspired by the biological
evolution of the brain [118]. Initially, neuroevolution methods used evolutionary
strategies (ES) to learn the weights of fixed topology/architecture networks [25, 44,
45, 89, 108, 120]. A potential drawback in the aforementioned approach is based
on the fact that the definition of a network’s topology has a major effect on its
performance [6, 10]. Therefore, finding the optimal topology of an ANN requires
time-consuming evaluations of potential architectures. As a result, new methods
known as Topological and Weight Evolving Artificial Neural Networks (TWEANNs)
have emerged as alternatives to searching not only the right ANN topology but also
the right set of weights [117, 143]. This work is focused upon the latter category of
methods.

2.4.1 NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [117], is a benchmark single-
objective TWEANN method. It starts with a population of simple ANNs and se-
quentially increases the search space dimensionality, building more complex topolo-
gies. Each individual from this population is evaluated regarding a fitness function,
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and the fittest ones survive to the next generation. NEAT uses both crossover and
mutation operators to perform topological and parametrical changes upon surviving
networks, resulting in new complex topologies with more sophisticated behaviors.

In NEAT, an individual or genome’s phenotype is represented according to Figure
2.1a and its genotype encoding is illustrated in Figure 2.1b. In order to allow com-
parison of network parts during recombination, NEAT employs a historical marking
assigned to each connection denoted innovation. Innovation is an incremental num-
ber that starts at 1 and is increased every time a new connection/node is added to
the network.

(a) Example neural network with 3 in-
put, 1 hidden, and 1 output nodes.

(b) Encoding for a neural network with 3 in-
put, 1 hidden, and 1 output nodes as pro-
posed by Stanley in [117].

Figure 2.1: Phenotype (a) and genotype (b) of a simple neural network in NEAT
(adapted from [117]).

Besides the parametrical mutation applied to each connection weight, NEAT in-
creases the search space dimensionality by using two topological mutation operators.
In the first, a connection with random weight is created between two existing nodes.
Note that, to preserve the feed-forward design self-recurrent links are not permitted.
In the second type of mutation, a new node is created and inserted into the net-
work in the place of an existing connection between two nodes. The procedure for
inserting a new node nodenew is as follows: the selected existing connection between
nodes node1 and node2 with weight w12 is disabled. Then, a new connection from
node1 to nodenew is created with weight equal to 1. Afterwards, a second connection
is created from nodenew to node2 with weight w12. In this way, the complexity is
increased without changing the network’s behavior.

In the recombination process, the connections of two parents are aligned accord-
ing to their innovation number. Despite having different weight values, connections
with same innovation number are considered as matching or common. Connections
that do not match are either disjoint if their innovation number is within the range
of the innovation numbers of the common parent connections, or excess otherwise.
Common connections are randomly selected from both parents, and transferred to
offspring. Excess and disjoint connections are transferred to offspring from the fittest
parent. If both parents are equally fit, excess and disjoint connections are randomly
selected [117]. An exemplary illustration is presented in Figure 2.3

A problem of modifying the structure of an ANN is that a structural modification

18



Figure 2.2: Illustration of topological mutations occurring in NEAT: Adding a new
neuron (upper part) and a new connection (lower part). Genotype changes are
marked in red and changes in the networks’ phenotype are marked by dashed lines.
Note that the innovation ids in the red boxes are updated and the add neuron muta-
tion happens before the add link mutation w.r.t. the temporal dimension (adapted
from [117]).

initially reduces the individual fitness. This would make topological innovations with
unoptimized parameters be extinguished prematurely. NEAT handles this problem
by speciating the population according to a topological similarity measure δ. In
this way, individuals compete within their own niche, giving time for topological
innovations to optimize before competing in other niches of the population. The
function δ measures the distance between two genomes as a linear combination
of excess (E) and disjoint (D) genes along with the average weight differences of
matching genes (W̄ ):

δ =
c1E

N
+
c2D

N
+ c3 · W̄ . (2.24)

The coefficients c1, c2 and c3 denote the importance given to each factor. N is
a normalizing constant that represents the number of genes in the largest genome
and W̄ is the difference in average connection weights. The speciation mechanism
consists in iteratively comparing one genome at a time. If an individual’s distance
to a species’ representative δ(Xi, X

s
j ) is below a pre-defined speciation threshold σ∗,

it is placed in that species. Otherwise, a new species is created with the current
genome as its representative. Furthermore, in its initial proposal, NEAT uses an
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Figure 2.3: Illustration of recombination occurring in NEAT: First, connections
are aligned based on innovation number and common, disjoint, and excess parts
are identified. Common connections are copied randomly from parents. All the
remaining connections are transferred from the most fit parent. Note that both
parents are equally fit in this example (adapted from [117]).

explicit fitness sharing mechanism, in which individuals within the same species have
their fitness divided by the number of individuals in that species. It prevents one
species from taking over the entire population.
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Chapter 3

Methods

This chapter firstly addresses the proposal of two heuristics and their combination
for a swarm intelligence algorithm based on a type of evolutionary swarm optimiza-
tion, the aC-DEEPSO. Then, the fundamentals of the Multi-Objective Evolution-
ary Policy Search (MEPS) algorithm are described. The proposed MEPS algorithm
integrates concepts from neuroevolution, multi-objective optimization, and policy
search. Moreover, all the computational simulations were conducted using an In-
tel(R) Core(TM) i9-10900X CPU@3.70GHz and 64GB RAM, with Windows 10 Pro.
The simulation code for aC-DEEPSO is implemented using Matlab R2020b. In ad-
dition, the code version for MEPS is based on [84] and is implemented in Python
3.10.

3.1 Adaptive C-DEEPSO with Local Search

When dealing with real-world optimization problems, algorithms have to be carefully
designed to handle difficulties, such as the presence of several local minima in the
search space or a high number of optimization variables, among others. In such cases,
hybrid EAs - the combination of an evolutionary and a heuristic method - commonly
perform better than EAs [35]. Therefore, this work shows two new mechanisms to
enhance C-DEEPSO’s search capability. The first is a local search (LS) operation
that explores the awareness of each particle, prior to moving to the next position.
The second operation changes the velocity update mechanism aiming at providing
an additional exploration ability to each particle. This heuristic is inspired by the
work using self-adaptive velocities in PSO for constrained optimization problems
presented by [72], in which each particle considers its distance to another random
particle, to reduce how far the particle’s new position can deviate from the feasible
region.

The first proposed procedure provides each particle in the swarm an awareness
mechanism, in which they are allowed to look in three additional directions besides
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the new Vt. These new directions are dubbed Vsouth, Veast and Vwest. Hereof, Vsouth
direction is obtained by inverting the direction of Vt. The Veast direction is calcu-
lated as a random vector with Xt−1 as the origin, which lies in a randomly generated
plane perpendicular to Vt passing through Xt−1. This plane is generated by choosing
at random d ≤ D − 1 features from the original D−dimensional space. Similarly
to Vsouth direction, Vwest direction is generated by inverting the vector Veast. Figure
3.1 illustrates the local search mechanism. With the new velocities, four new po-
sitions for the particle are evaluated: Xsouth, Xeast, Xwest and the position obtained
by following Vt, namely XVt . Finally, the position and velocity that lead to the best
fitness are assigned to Xt and Vt, respectively.

(a) (b)

Figure 3.1: Illustration of (a) the three search directions generated by the local
search mechanism for one particle; and (b) the local search operator applied to a
solution vector. In Xsouth all values are inverted. In Xeast and Xwest, only d values
are modified plus one (see [81]).

This mechanism helps particles to search the whereabouts of their current po-
sition in the search space for better movements than the one calculated by the
movement rule. By choosing a small d, each particle can search for a better move-
ment in fewer dimensions than the original decision space. However, similarly to
most local search methods, there is a trade-off between computational time and
solution quality. As this local search mechanism requires four times more function
evaluations, it can only be applied a predefined number of times and, preferably, at
random iterations. The Algorithm 1 shows the local search mechanism. Note that
the ⊙ operator denotes an element-wise multiplication between vectors.

The second heuristic is an adaptive velocity heuristic based on the work presented
in [72]. In this proposed heuristic, instead of adjusting velocity based on the distance
to a random particle, it takes advantage of C-DEEPSO’s memory mechanism. By
doing this, a particle adjusts its velocity according to how far it is to the swarm of
best solutions ever found. Thus, this heuristic modifies Equation (2.3) as follows,

Vt = w∗IV
′ + w∗A · (Xst + F (Xr −Xt−1)) + w∗C · C · (X∗gb −Xt−1), (3.1)

in which V ′ is calculated by means of Equation (3.2),
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Algorithm 1: Local Search Mechanism
Input: Xt−1, Xlb, Xub, d

1 Compute velocity Vt;
2 Vsouth ← −1 · Vt;
3 Xplane ← {0}D;
4 Sample y1, . . . , yd, yd+1 ∼ U(1, D);
5 For each i ∈ (1, d) do
6 Xplane[yi]← U(Xlb[yi], Xub[yi]);
7 end
8 Xrand ← (Xrand −Xt−1)⊙ Vt;
9 if Vt[yd+1] > 0 then

10 Xplane[yd+1]← Xt−1[yd+1]− 1/Vt[yd+1]×;
11

∑
yi ̸=yd+1

Xplane[yi];
12 end
13 else
14 Xplane[yd+1]← Xt−1[yd+1]−

∑
yi ̸=yd+1

Xplane[yi];
15 end
16 Vt ← argminV ∈{Vt,Vsouth,Veast,Vwest}f(Xt−1 + V );
17 Xt ← Xt−1 + Vt;

V ′ =

Vt−1, U(0, 1) > γ

(Xm −Xgb)⊙ sign(Vt−1), otherwise.
(3.2)

In Equation (3.2), Xm is randomly sampled from memory B, Xgb is the particle
with best fitness in memory and the operator ⊙, as previously stated, denotes an
element by element multiplication. The function sign(·) is a vector containing −1
and 1 in the components below zero and greater or equal to zero, respectively.
Figure 3.2 illustrates the movement following C-DEEPSO’s standard velocity, for
U(0, 1) > γ, and the movement following the proposed heuristic, for U(0, 1) ≤ γ.
This modification enhances each particle with the ability to, with a probability given
by γ, use its Vt−1 direction with the magnitude given by the distance between the
best particle in memory and a particle randomly sampled from memory. Associated
with SgPb − rnd memory strategy [76], particles are able to increase their velocity
based on how far the best particle is from a random position sampled from both
memory and population or, reversely, reduce velocity if both population and memory
converged to a region in the search space, preventing the particle from jumping from
the region and increasing exploitation. Thus, this newly proposed version is dubbed
adaptive C-DEEPSO with Local Search (aC-DEEPSO). The resulting algorithm for
aC-DEEPSO is presented in Algorithm 2.
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Figure 3.2: Illustration of the movement rule in calculating new particle position
Xt using C-DEEPSO’s standard movement rule (left) and the proposed adaptive
velocity heuristic (right). The particle Xm is randomly sampled from memory B

.
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Algorithm 2: Adaptive C-DEEPSO with Local search
Input: population size (NP ), mutation rate τ , communication rate (P ),

memory size (MB), dimension (D), dimension (d), number of local
search operator calls (nls), lower bounds (Xlb) and upper bounds
(Xub), adaptive velocity probability (γ)

1 Set the generation number t = 0;
2 Initialize the NP individuals in the population at random according to
U(Xlb, Xub);

3 Evaluate the current population;
4 Update the global best Xgb;
5 Sample nls generation numbers to apply local search operator and store in

Nls;
6 while stopping criterion is not satisfied do
7 For each individual i in the population NP do
8 Calculate Xr using the strategy SgPB − rnd;
9 Copy current individual Xt−1;

10 Mutate strategy parameters wI , wA, wC and X∗gb;
11 Apply movement rule in current individual Xt−1, according to

Equations (3.1) and (3.2);
12 if t ∈ Nls then
13 Vt ← LocalSearch(Xt−1, Xlb, Xub, d);
14 end
15 Evaluate current individual Xt and its copy;
16 Select the fittest individual to proceed to next generation;
17 Update personal best individual;

18 end
19 Update memory MB;
20 t = t+ 1;

21 end

3.1.1 Computational Complexity

Let the population size, number of decision variables (dimension), number of decision
variables used in the LS procedure, number of times the LS procedure is run, number
of fitness evaluations, time complexity of fitness function be NP,D, d,Nls, Nf , and
O(fitness), respectively. The time complexity of the algorithm (see Algorithm 2)
is divided in two parts: whether the LS procedure is run or not.

To provide a clearer notation, let Nit = ⌈Nf/NP ⌉ denote the number of itera-
tions the algorithm runs without the LS procedure and O(recombination) = D ·NP
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denote the time complexity of the recombination operator. Thus, the time complex-
ity of iterations running LS is O(d ·NP · 4 ·Nls ·O(fitness) ·P ·O(recombination)).
The time complexity of iterations without LS is O(D · Nit · NP · O(fitness) · P ·
O(recombination)). Finally, after ommiting the low-order terms, the total time com-
plexity of aC-DEEPSO is O(P ·O(recombination)·NP ·O(fitness)·[d·Nls+D ·Nit]),
which is polynomial in NP and D.

3.1.2 Preliminary Validation Simulations for Adaptive C-

DEEPSO with LS

In order to validate the effectiveness of the proposed heuristics, a preliminary study is
carried out on two multimodal benchmark functions from the literature: Rosenbrock
and Schaffer. A multimodal function presents several local minima or maxima into
which an EA can get trapped. The goal of this experiment is to verify the results
obtained by C-DEEPSO with adaptive velocity and local search compared to the
standard versions of both PSO and C-DEEPSO. After fine-tuning parameters using
irace [71], both versions of the C-DEEPSO were initialized using 0.6 and 0.9 for
communication and mutation rates, respectively. The local search is empirically set
to execute at 7 random iterations with γ = 0.7. Moreover, to evaluate different levels
of difficulty, each algorithm was run 30 times for a total of 105 fitness evaluations
with a population of 50 particles in dimensions 30, 50, and 100. The following
equations (3.3) and (3.4) show the benchmark functions:

• Rosenbrock function - Multimodal (D > 2) - Goal = 0,

f(x) =
D−1∑
i=1

[100(x2i − xi+1)
2 + (xi − 1)2]. (3.3)

• Schaffer function - Multimodal - Goal = 0,

f(x) = 0.5 +
sin2(x21 + x22)− 0.5

1 + 0.001(x21 + x22)
2
. (3.4)

Table 3.2 shows the results of standard PSO, standard C-DEEPSO and the pro-
posed adaptive C-DEEPSO with local search in the Schaffer function. The results
indicate that although standard C-DEEPSO obtained a competitive performance
compared to PSO, neither algorithm consistently achieved the global minimum
value. On the other hand, adaptive C-DEEPSO with LS was able to find, in all
the evaluated dimensions, the global optima more often, which led to obtaining a
lower mean objective function value. Regarding the median objective function value,
adaptive C-DEEPSO with LS obtained the global minimum value in all dimensions.
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Rosenbrock is considered a difficult non-convex function. Table 3.1 shows that the
Rosenbrock function was the most difficult benchmark problem for PSO. Standard
C-DEEPSO nonetheless achieved better results for both mean and median objective
function values than PSO. These good results are improved by employing the pro-
posed operators in adaptive C-DEEPSO with LS, lowering both mean and median
values in all cases.

Table 3.1: Summary of the obtained results on Rosenbrock benchmark function.

Rosenbrock
D Algorithm Mean Std. Best Median Worst

30

PSO 82.020 17.378 51.879 79.651 130.280
C-DEEPSO 25.385 1.214 24.212 25.072 28.727
aC-DEEPSO 23.553 1.300 22.509 23.131 28.789

50

PSO 162.225 27.537 122.430 156.555 234.040
C-DEEPSO 46.191 1.357 44.601 45.636 48.638
aC-DEEPSO 44.421 1.609 42.908 43.953 48.515

100

PSO 398.752 50.450 286.640 398.765 534.840
C-DEEPSO 97.484 1.145 95.003 98.180 98.439
aC-DEEPSO 96.365 1.629 92.990 96.554 98.276

Table 3.2: Summary of the obtained results on Schaffer benchmark function.

Schaffer
D Algorithm Mean Std. Best Median Worst

30

PSO 11.115 0.786 9.600 11.073 12.698
C-DEEPSO 1.566 1.379 0.000 1.542 5.290
aC-DEEPSO 0.216 0.510 0.000 0.000 2.293

50

PSO 20.368 0.978 18.523 20.284 22.051
C-DEEPSO 8.003 4.160 0.000 9.383 14.172
aC-DEEPSO 1.796 3.370 0.000 0.000 11.687

100

PSO 42.881 1.111 39.413 43.121 44.639
C-DEEPSO 19.708 13.646 0.000 27.437 35.968
aC-DEEPSO 2.564 6.712 0.000 0.000 27.563

The mean and standard deviation values are preliminary measures that are often
not sufficient to provide an effective analysis of the obtained results. Hence, a
statistical protocol based on [78] and [82] is employed. The Kruskal-Wallis test
[59] is performed, aiming to find possible differences among the mean objective
function values. Using a significance value of 5%, a p-value below 0.05 is found
indicating that there is a difference among the means. Accordingly, the Wilcoxon
signed-rank test [24] with Holm-Bonferroni correction [50] is carried out to perform
a pairwise analysis to identify the differences between the samples analyzed. For a
null hypothesis of equality of means, a p-value less than 0.05 indicates that the null
hypothesis can be rejected with 5% significance. Table 3.3 provides the results of the
statistical test indicating whether aC-DEEPSO is different or not when compared
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to standard PSO and C-DEEPSO. According to the results, aC-DEEPSO presents
the lowest values among the compared algorithms in both benchmark functions.

Table 3.3: Wilcoxon signed rank test results for both benchmark functions.

P-value 0.05
Winner

PSO x aC-DEEPSO C-DEEPSO x aC-DEEPSO
Schaffer 30D True True aC-DEEPSO
Schaffer 50D True True aC-DEEPSO
Schaffer 100D True True aC-DEEPSO
Rosenbrock 30D True True aC-DEEPSO
Rosenbrock 50D True True aC-DEEPSO
Rosenbrock 100D True True aC-DEEPSO

3.2 The Multi-Objective Evolutionary Policy

Search

The Multi-objective Evolutionary Policy Search (MEPS) algorithm proposed in this
study is a model-free algorithm that estimates action-preference values in MORL
problems. MEPS falls in the RL “actor-only” family of algorithms and inherits
NEAT structure to evolve artificial neural networks (ANNs) that implement deter-
ministic policies in MORL environments. First, an initial random population Pt (for
time t = 0) of np ANNs with one output node for each possible action is created.
At each generation, individuals are evaluated according to a multi-objective reward
function over h episodes, with rh indicating the accumulated reward of each individ-
ual. Thereafter, the accumulated reward is used to sort the networks in population
Pt by means of non-dominated sorting and a density measure.

Specifically, the ANNs employed in MEPS are designed to output action-
preference values p(s, a) for each available action a, given a state s as input. More-
over, to ensure that the agent deterministically follows the policy, the actions are
selected in a greedy manner. Thus, Figure 3.3 shows an example of an agent at
state st selecting an action, and transitioning to state st+1.

The density measures considered are crowding distance (CD) [31] and hypervol-
ume contribution (HVC) [36]. Crowding distance is defined as infinity for extremal
solutions, and as the sum of side lengths of the cuboid that touches adjacent so-
lutions in the case of a non-extremal solution on the Pareto front. It is meant to
distribute solution points uniformly on the Pareto front. In contrast to this, the
hypervolume contribution measure assigns a value to each solution according to its
contribution to the hypervolume of the Pareto front. Consequently, it is meant
to distribute them in a way that maximizes the covered hypervolume, focusing on
knee-points without losing extremal points of the Pareto front.
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Figure 3.3: Example of the agent’s interaction with the environment, transitioning
from state st to state st+1 after selecting the action associated with the highest
preference value p(s, a).

Afterwards, a Kt set of np parents are randomly selected from the population Pt
using a binary crowded tournament selection [31]. Note that if the density measure
used is the hypervolume contribution, the density value of an individual xi used in
the tournament selection is 1/HV C(xi). Thereafter, an offspring population Λt is
generated by cloning selected parents and applying two types of mutation: struc-
tural and parametrical mutations. Structural mutations occur with a pre-defined
probability and comprise (1) adding a new connection to previously unconnected
nodes, and (2) adding a new hidden node.

It is important to note that MEPS provides ReLU-based-feedforward ANNs,
hence, no recurrent connections are allowed. Parametrical mutation encompasses
updating connection weights and biases by adding a Gaussian noise with zero mean
and standard deviation given by a parameter σ. Despite the performance of the
crossover operator in the ablation studies presented in [117], it is not guaranteed
to generate a chromosome that preserves the good characteristics of the parents
regarding the quality of the solution. As a result, the crossover operator disturbs
NEAT’s search ability, as attested in [109]. Therefore, the crossover operator has
not been employed in MEPS.

The next generation population Pt+1 is composed of the survivors selected from
population Rt = Pt ∪ Λt of size 2np. Differently from NEAT original proposal,
MEPS does not utilize any speciation mechanism. Therefore, there are two possible
approaches to perform survival selection. The first approach is similar to the NSGA-
II [31] survival selection mechanism, in which the population Rt is sorted by means
of non-dominated sorting in fronts or ranks, and then selected to the next generation
iteratively by front. If the size of a front is bigger than the available slots in the
next generation, the front is sorted in descending order according to the selected
density measure, and the individuals from less dense regions are selected. Figure 3.4
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illustrates this approach.

Figure 3.4: Standard MEPS flowchart of the evolution from generation t to genera-
tion t+ 1

The second approach comprises adaptively restricting the number of selected
survivors from each front. From a multi-objective optimization perspective, in early
generations, some undesired non-dominated individuals are selected over individuals
from other fronts [146]. Figure 3.5 shows a situation in which some ignored domi-
nated solutions are potential candidates to improve the Pareto front. Likewise, from
a neuroevolutionary perspective, discarded potential solutions may indicate newly
introduced topologies, which are prematurely extincted. Thus, this work proposes
a novel selection method that allows some individuals from higher ranks to survive.
Specifically, a heavy-tailed Pareto distribution [7] is used for this purpose. The
maximum number of survivors for each i-th front is given by

nFi
=


α/iα+1

C
· (np − ⌈np · ratio⌉) , i > 1

⌈np · ratio⌉, i = 1,
(3.5)

in which C =
∑K

i>1 α/i
α+1 for K non-dominated fronts, and ratio denotes the

fraction of individuals selected from the first front. The parameter α determines
how heavy the distribution’s tail is, as presented in Figure 3.6. To avoid both
premature convergence to an incomplete Pareto front and extinction of potential
topology innovations, the ratio is set to increase with the number of generations in
a relationship defined by Equation 3.6

ratio =

1, tmax > t > tr

ψ + tr · (1−ψ)t
, t ≤ tr,

(3.6)

where ψ ∈ (0, 1) stands for the initial fraction of non-dominated individuals selected,
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which is increased over generations. This definition of ratio allows the algorithm
to gradually decrease the exploration of solutions from all non-dominated fronts.
Moreover, after the predefined tr generations, the heavy tail selection mechanism is
replaced by the approach shown in Figure 3.4.

Despite the fact that Equation 3.5 denotes the maximum number nFi
of allowed

survivors in each front i, there may not exist all the nFi
individuals in the i-th

front. To handle this problem, the procedure is started from the first front and,
if |fronti| < nFi

, the remaining nFi
− |fronti| slots are added to the nfi+1

allowed
survivors of front i + 1. This procedure is repeated until all fronts are processed.
Although unlikely, there could be situations in which there are still some slots left
at the end. In such cases, the procedure is repeated from the beginning with the
remaining individuals from each front until filling the remaining slots.

MEPS uses a memory of the same size as the population to store the best indi-
viduals ever found throughout generations. The memory is updated after the next
generation population Pt+1 selection. LetM be the memory population, the memory
update mechanism, inspired by [79], can be summarized as follows:

(1) Generate a temporary population Mtemp =M ∪ Pt+1.

(2) Clear memory M .

(3) Sort the temporary population Mtemp into non-dominated fronts.

(4) If the first front size is bigger than np, sort based on the density measure
employed.

(5) Assign individuals from the sorted front to M until memory is full.

Algorithm 3: Memory update mechanism
Input: Population (Pt+1), Memory (M), density measure S
Output: Updated memory M

1 Mtemp ←M ∪ Pt+1;
2 M ← ∅;
3 Sort population in non-dominated fronts F1, . . . , Fk according to Pareto Dominance;
4 if |F1| > np then
5 Sort F1 based on the density measure S;
6 end
7 i← 0;
8 while |M | < np do
9 Assign the i-th individual from F1 to M ;

10 i← i+ 1;

11 end
12 return M

Finally, MEPS avoids performing gradient updates and computing value func-
tion or q-value function estimators as it evolves network policies in an evolutionary
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Figure 3.5: Discarded potential solutions due to dense regions of non-dominated
solutions.

Figure 3.6: Pareto distribution illustration for different values of α and four non-
dominated fronts. X-axis and Y-axis denote the non-dominated fronts and the
proportion of the population which will be selected from each front, respectively.

manner. Additionally, MEPS is classified as a multi-policy algorithm, as it lever-
ages population-based techniques and produces a set of Pareto-optimal policies [47].
Algorithm 4 shows the pseudocode for the proposed method. In addition, Tables
3.4 and 3.5 summarizes a description of the MEPS hyperparameters and problem-
specific parameters used, respectively.

In order to provide a clear distinction among MEPS versions, the different config-
urations of MEPS are identified based on both the survivor selection method and the
density measure used. The survivor selection method can be either based on heavy
tail selection (H1) or based on non-dominance sorting (H0). The density measure
can be crowding distance (S0) or hypervolume contribution (S1). In this way, 4(2 ·2)
versions of MEPS are proposed and analyzed. As an example, one possible setting
of MEPS is H1/S1, in which the proposed heavy tail survivor selection mechanism
is used along with hypervolume contribution as the density measure.
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Table 3.4: MEPS hyperparameter description

Parameter Description
np Population size
ψ Initial fraction selected from first front
tmax Total generations
tr Final generation of the heavy tail survivor selection
α Heavy tail selection parameter
nh Number of initial hidden nodes
pac “Add connection” mutation probability
pan “Add node” mutation probability
σ Parametrical mutation standard deviation

Table 3.5: Problem-specific parameter description

Parameter Description
S Density measure function
ni Number of input nodes
no Number of output nodes
HT Indicate the use or not of the heavy tail survivor selection
h Length of the episode to evaluate the agent
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Algorithm 4: The Multi-Objective Evolutionary Policy Search algorithm
(MEPS)

Input: np, ψ, tmax, tr, α, σ, pac, pan, ni, no, nh, S, HT , h
Output: Memory M

1 t← 0;
2 Initialize population Pt with fully connected ANNs containing ni input nodes, nh hidden nodes and no

output nodes;
3 Evaluate each individual of Pt for an episode of length h;
4 while t < tmax do
5 Generate a population Kt of np parents selected from the population Pt using binary crowded

tournament selection and the selected density measure S;
6 Generate Λt offspring population;
7 Evaluate each individual of Λt for an episode of length h;
8 Rt ← Pt ∪ Λt;
9 Sort population Rt in non-dominated fronts F1, . . . , Fk;

10 Pt+1 ← ∅;
11 if t ≤ tr OR HT > 0 then

/* runs heavy tail selection */
12 Calculate ratio according to Equation 3.6;
13 Calculate maximum number of survivors nF1

, . . . , nFk
for each front using parameters α and

ψ;
14 remaining ← 0;
15 For each Front Fi do
16 nFi

← nFi
+ remaining;

17 if nFi
< |Fi| OR min(|Fi|, nFi

) > np − |Pt+1| then
18 Sort front based on density measure function S;
19 Add the min(|Fi|, nFi

, np − |Pt+1|) fittest individuals from Fi to Pt+1;

20 end
21 else
22 Pt+1 ← Pt+1 ∪ Fi;
23 end
24 if np = |Pt+1| then
25 break;
26 end
27 remaining ← max(nFi

−min(|Fi|, np − |Pt+1|), 0);
28 end
29 end
30 else
31 For each Front Fi do
32 if |Fi| > np − |Pt+1| then
33 Sort front based on density measure function S;
34 Add the np − |Pt+1| fittest individuals from Fi to Pt+1;

35 end
36 else
37 Pt+1 ← Pt+1 ∪ Fi;
38 end
39 if np = |Pt+1| then
40 break;
41 end
42 end
43 end
44 Update memory M following memory update procedure;
45 t← t+ 1;

46 end
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3.2.1 Computational Complexity

We then evaluate the time complexity of MEPS as shown in Algorithm 4. At
each generation, MEPS relies on executing the non-dominated sorting and, either
the binary crowded tournament selection operator or the hypervolume contribution
operator. Let m be the number of objectives, the time complexity for the non-
dominated sorting and the crowding distance selection operator are O(m · n2

p) and
O(m ·np log np), respectively. The time complexity of the hypervolume contribution
operator is determined by the calculation of the hypervolume for each individual
from the population. This procedure is executed with a time complexity of O(n3

p ·
m2), as stated by Emmerich et al. [36].

Thus, the time complexity of MEPS varies according to the density measure
employed. When using the crowding distance, the binary crowded tournament se-
lection operator in Step (5) involves running the non-dominated sorting for all fronts
and sorting based on the density measure once. Thus, this step is governed by the
non-dominated sorting, which is performed with a time complexity O(m · n2

p). On
the other hand, this Step is executed with a time complexity of O(n3

p ·m2) in the
MEPS counterpart that employs the hypervolume contribution.

In Step (6), the offspring generation is independent of the chosen density measure.
For each individual in the population, its nodes and connections are iterated for the
mutation procedure. Therefore, it is executed with time complexity O(np · (TC +

TN)), in which TC and TN are the total maximum number of connections and
nodes, respectively. Additionally, the fitness evaluation, which is also independent
of the density measure, is performed in Steps (3) and (7) with time complexity
O(h · |A|). Then the sorting is done in Step (9) with time complexity O(m · (2np)2).

In Steps (10)-(29) and (31)-(42), the worst-case scenario comprises sorting
only one front with size 2np. Hence, the time complexity for these Steps is
O(m · (2np) log(2np)) and O(2n3

p · m2) for the versions using crowding distance
and hypervolume contribution, respectively. Later in Step (44), the memory up-
date mechanism, presented in Algorithm 3, initially involves performing the non-
dominated sorting for all fronts. In the worst-case scenario that the current popu-
lation and memory are non-dominated, sorting is performed based on the selected
density measure. Hence, the time complexity of this Step depends directly on the
density measure. If the selected measure is the crowding distance, this Step is sim-
ilar to Step (5), with a time complexity of O(m · n2

p). In the MEPS version with
hypervolume contribution, this Step is governed by the hypervolume contribution
calculation, which runs with time complexity O(n3

p ·m2).
Finally, after omitting low-order terms, the MEPS version that employs crowd-

ing distance is governed by the non-dominated sorting component of the algorithm
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and runs with time complexity O(tmax ·m · n2
p). The MEPS counterpart using the

hypervolume contribution is governed by hypervolume computation, which is exe-
cuted with time complexity O(n3

p ·m2) [36]. As a result, both MEPS versions are
polynomial in the population size np. A full version of the MEPS code is available
at https://github.com/gabrielmatos26/MEPS-Paper.

3.2.2 Preliminary Validation Simulations for MEPS

The proposed versions of MEPS are compared with three state-of-the-art MORL al-
gorithms, Pareto Q-Learning (PQL) [133], Q-Managed (QM) [29] and Multi-Policy
Soft Actor Critic (MPSAC) [19]. For a fair comparison, as Q-Managed was initially
proposed only for 2-objective problems, we did not analyze its performance on en-
vironments with 3 objectives. Five MORL benchmark environments with 2 and
3 objectives have been selected to evaluate the proposal for an MORL algorithm,
namely Deep Sea Treasure [130], Pressurized Bountiful Sea Treasure [133], Modified
Bountiful Sea Treasure [29], Space Exploration [131], and Bonus World [131]. Be-
sides, a sixth novel MORL environment is proposed and used to validate the MEPS
proposal.

Deep Sea Treasure (DST) is an episodic deterministic environment in which an
agent controls a submarine searching for an undersea treasure. The environment is a
rectangular grid with 11 rows and 10 columns (Figure 3.7a), containing 10 treasures
of varying values at different locations. Each episode starts with the submarine at
the top left corner and ends if either a treasure is found or h actions were taken.
The treasures are arranged to have the lowest treasure value at the closest location
to the starting point and the highest value at the furthest location, which means the
treasure value is inversely proportional to its distance from the source. The agent
can move around the environment by performing four available actions, representing
the four cardinal directions - (1) right, (2) left, (3) down, or (4) up. Each action
taken by the agent incurs a time penalty1, which is a −1 decrease applied to the
time penalty objective. Note that, this time penalty objective is not a time unit,
but is the sum of penalties the agent receives for the time it takes in interacting with
the environment. Additionally, the agent’s goals are to minimize the time penalty
received in finding a treasure while maximizing its value. The reward vector rh ∈ R2

consists in the time penalty as first element and the treasure value as second element.
The true Pareto front (Figure 3.7b) is globally concave with some local concavities
in the second, fourth and sixth points from left to right.

A variation of the DST is the Modified Bountiful Sea Treasure (MBST) envi-
ronment. This is a 2-objective problem in which not only the treasure values but

1In order to maintain the same description for penalty objective in time from [29], it is presented
as a negative time penalty in the Pareto fronts.
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(a) Environment (b) Pareto Front

Figure 3.7: Deep Sea Treasure (DST) benchmark

also their location are modified (Figure 3.8a). To find all the Pareto optimal poli-
cies, the agent must learn how to enter in a tunnel between two locations, which
makes learning more challenging. With this change, the Pareto front (Figure 3.8b)
is divided in one convex part and one non-convex part.

(a) Environment (b) Pareto Front

Figure 3.8: Modified Bountiful Sea Treasure (MBST) benchmark

Afterwards, a new variation of the DST is proposed, dubbed Discontinuous DST
(DDST). Inspired by the ZDT set of MOO benchmark functions [150], specifically
ZDT3, both treasure values and treasure locations are modified to create two discon-
tinuities in the Pareto front. Furthermore, to increase difficulty in learning, DDST
includes a tunnel containing three treasures (Figure 3.9a). To discover all the Pareto
optimal policies, the agent needs to decide not to collect the closest reward to the
tunnel entrance but, instead, to enter the tunnel. The true Pareto front (Figure 3.9b)
is also divided into three parts, mixing convex and non-convex parts.

Another 2-objective benchmark environment is the Space Exploration (SE) (Fig-
ure 3.10a), in which the agent controls a spaceship that starts the episode in the
location marked ’S’ with the goal of discovering a habitable planet while minimising
the radiation it is exposed to during the search. The first objective is the radiation
penalty. After every action, the radiation objective is penalized by −1, or −11 if the
next state is marked ’R’. The second objective is the mission level of success, which
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(a) Environment (b) Pareto Front

Figure 3.9: Discontinuous Deep Sea Treasure (DDST) benchmark

denotes the habitability of the planet, or −100 if the agent moves to a black cell,
representing an asteroid. The episode ends after the agent performs h actions, or
reaches a planet, or collides with an asteroid. Unlike the previous environments, in
SE the agent is also allowed to move diagonally, totaling eight directions. Addition-
ally, a movement that would lead the agent out of the grid, takes it to the opposite
edge of the grid. For example, if the agent moves downwards from the bottom row
of the grid, the next state will be the top row of the grid, maintaining the column.
Thus, in this environment, every action leads to a state change. The Pareto front is
illustrated in Figure 3.10b.

(a) Environment (b) Pareto Front

Figure 3.10: Space Exploration (SE) benchmark

Pressurized Bountiful Sea Treasure (PBST) Environment (Figure 3.11a) is a
variation of DST in which a third objective representing the pressure penalty is
included. Similarly to penalty in time, this objective denotes the pressure penalty
received by the agent for staying underwater at the depth indicated by the row, with
initial value equal to -1. For example, if the agent moves down from starting point,
it receives a -2 pressure penalty for row 2 and, therefore the total pressure penalty
is -3. The first and second objectives remain the same as in the DST environment.
Moreover, the treasure values are modified to create a Pareto front that is globally
convex. The set of Pareto optimal policies is presented in Figure 3.11b.
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(a) Environment (b) Two-dimensional projection of Pareto
Front with colors indicating Pressure objec-
tive

Figure 3.11: Pressurized Bountiful Sea Treasure (PBST) benchmark

Bonus world (BW, Figure 3.12a) is a 3-objective environment similar to DST, in
which the agent starts at cell marked ’S’ and is allowed to move in the four cardinal
directions with black cells indicating walls the agent cannot pass through. At every
step, a time penalty of −1 is applied to the first objective. The gray cells correspond
to terminal states that reward the agent with values corresponding to treasure 1 and
treasure 2. If the agent reaches a cell marked ’X2’, a bonus is activated and the
values for treasure 1 and treasure 2 are doubled. Contrarily, if the agent enters a
cell marked ’PIT’, it not only loses the bonus but is also moved to the start state.
Although not all the Pareto optimal policies require the agent to activate the bonus,
some Pareto optimal policies are only reachable with the bonus activated. Therefore,
this is a difficult environment because the agent must learn to both avoid penalties
and activate the bonus before moving to some terminal states. The set of Pareto
optimal policies is show in Figure 3.12b.

(a) Environment (b) Two-dimensional projection of Pareto
Front with colors indicating Time objective

Figure 3.12: Bonus World (BW) benchmark

The metric employed to evaluate the performance of each algorithm is provided
by the hypervolume indicator (HV) on the multiple policies’ accumulated rewards
obtained by the learning agents at the end of the pre-defined number of generations
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[130]. Accordingly, the obtained HVs are compared to the HV of the true Pareto
front in each benchmark environment. For the Bonus World and Space Exploration
environments, the choice of reference point was based on choosing a point that
is worse than the nadir point. In the Deep Sea Treasure and its variations, the
reference points used are the same as in [133]. Moreover, as a measure of network
complexity, MEPS and MPSAC are compared in terms of their average number of
network nodes and connections.

In order to guarantee a fair comparison, each algorithm was executed indepen-
dently 20 times in every problem. Since the main goal of this experiment is to
validate the proposed approach, no fine-tuning of the parameters has been done.
Therefore, PQL and QM were run with the hyperparameter values found in the
literature. Also, MPSAC execution was divided in two stages. The hyperparam-
eters used throughout executions are presented in Table 3.6 and initial topology
used in MEPS is presented in Figure 3.13. The output layer for both MEPS and
MPSAC contains as many nodes as the number of available actions in the evaluated
benchmark. Moreover, the different configurations of MEPS are identified based on
both the survivors selection method and the density measure used. The survivors
selection method can be based on either heavy tail selection (H1) or non-dominance
sorting (H0). The density measure can be crowding distance (S0) or hypervolume
contribution (S1). In this way, 4(2 · 2) versions of MEPS have been analyzed. As
an example, one possible setting of MEPS is H1/S1, in which the proposed heavy
tail survivor selection mechanism is used along with hypervolume contribution as
the density measure.

Figure 3.13: MEPS initial topology configuration for benchmark tests.
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Table 3.6: Parameter initialization values used by the algorithms in benchmark tests

Description MEPS PQL QM MPSAC
Population size 50 - 50 50
Activation function relu - - relu
Initial fraction selected from first front 0.5 - - -
End generation number of heavy tail survivor selection 1000 - - -
Heavy tail selection parameter 1.0 - - -
Number of input nodes 1 - - 1
Number of initial hidden nodes 4 - - 64
Number of output nodes 4 or 8 - - 4 or 8
Add connection mutation probability 0.2 - - -
Add node mutation probability 0.2 - - -
Parametrical mutation standard deviation 0.5 - - 1.0
Learning rate - - - 0.001
Gamma - - - 0.99
Generations 2000 2000 2000 1000 + 1000
Episode length 20

Detailed benchmark results based on hypervolume indicator are shown in Ta-
ble 3.7 and the algorithm with superior performance is indicated in bold for each
problem. The normalized average hypervolume obtained by each algorithm in each
benchmark environment is shown in Figure 3.14. In both the DST (Figure 3.14a)
and PBST (Figure 3.14b) problems, all the four versions of MEPS are able to find
the entire Pareto front in less than half the number of maximum generations with
similar topologies. The final networks evolved using MEPS are composed by an
average of 25 connections and 10 (1 input, 5 hidden, and 4 output) nodes. PQL,
QM and MPSAC are not able to consistently find all the non-dominated policies in
DST, only achieving the maximum hypervolume value in some executions. However,
MPSAC is able to find all the non-dominated policies in all the 20 runs in PBST. It
is worth noting that, due to the simpler Pareto front of these benchmarks compared
to the other benchmarks, the use of the proposed heavy tail survivor selection op-
erator (H1/S0 and H1/S1) results in a delay in the search. Hence, both H0/S0 and
H0/S1 achieve the maximum hypervolume in fewer generations.

In the MBST problem (Figure 3.14c), with the exception of MPSAC, all the
algorithms obtained all the Pareto optimal solutions in at least one execution. The
effectiveness of the proposed survivor selection method is demonstrated with H1/S0
and H1/S1 achieving the highest mean hypervolume values. Specifically, H1/S0 can
find all the Pareto optimal solutions in all the executions. Regarding the topol-
ogy of the final networks, H1/S0 networks provide an average of 26 connections
and 10 (1 input, 5 hidden, and 4 output) nodes. By increasing the difficulty, as
in the DDST problem (Figure 3.14d), the MEPS stands out as an advantageous
algorithm, as PQL, QM and MPSAC cannot find all the Pareto optimal solutions in
any execution. Among the MEPS configurations, H1/S0 achieves the highest mean
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hypervolume with less complex networks, with an average of 28 connections and 12
nodes. Therefore, it can be said that H1/S0 achieved the highest mean hypervol-
umes in the DST problem and its variations, providing a population of solutions
comprising less complex networks.

(a) DST (b) PBST

(c) MBST (d) DDST

(e) SE (f) BW

Figure 3.14: Normalized average hypervolumes obtained by PQL, QM, MPSAC,
and MEPS versions in all the MORL benchmark environments.

Furthermore, in both the SE (Figure 3.14e) and BW (Figure 3.14f) problems, the
MEPS obtained the highest average hypervolumes, which indicates a better approx-
imation of the true Pareto front. Similarly to the DST and PBST results, the use of
the heavy tail survivor selection operator in a problem with a Pareto front without
any discontinuities, such as SE, worsened the results. The configuration H0/S0 con-
sistently found the entire Pareto front, while the use of hypervolume contribution
as the density measure achieved the worst results among MEPS versions. Moreover,
MEPS versions using crowding distance, H0/S0 and H1/S0, obtained networks with
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a smaller average number of connections and nodes, 52 and 18, respectively. It is
worth mentioning that, despite the simple Pareto front (only three solutions) in the
SE problem, the increased action space poses a more difficult problem in searching
for the optimal policies. This is indicated by results showing that six out of seven
algorithms struggled to obtain all the Pareto optimal solutions across runs. Unlike
previous benchmark results, BW stands as the most difficult benchmark problem,
in which none of the algorithms were able to approximate the Pareto front. H1/S0
nonetheless achieved the highest average hypervolume among the algorithms, with
an average of only 7 hidden nodes (12 nodes in total) and 28 connections.

Table 3.7: Hypervolume analysis for each MORL benchmark environment (labeled
as Env). The hypervolume for the true Pareto front (PF) is calculated with the
reference points given in parenthesis.

Env PF Algorithm Mean Std Min Median Max

DST 1155.00
(25, 0)

MEPSH1/S0 1155.00 0.00 1155.00 1155.00 1155.00
MEPSH1/S1 1155.00 0.00 1155.00 1155.00 1155.00
MEPSH0/S0 1155.00 0.00 1155.00 1155.00 1155.00
MEPSH0/S1 1155.00 0.00 1155.00 1155.00 1155.00
PQL 947.40 223.66 663.00 1005.00 1155.00
QM 1091.80 120.22 759.00 1155.00 1155.00
MPSAC 1098.95 250.66 34.00 1155.00 1155.00

PBST 358636.00
(25, 0)

MEPSH1/S0 358636.00 0.00 358636.00 358636.00 358636.00
MEPSH1/S1 358636.00 0.00 358636.00 358636.00 358636.00
MEPSH0/S0 358636.00 0.00 358636.00 358636.00 358636.00
MEPSH0/S1 358636.00 0.00 358636.00 358636.00 358636.00
PQL 353983.20 1250.58 351582.00 353790.00 356175.00
QM - - - - -
MPSAC 358636.00 0.00 358636.00 358636.00 358636.00

MBST 2632.00
(25, 0)

MEPSH1/S0 2632.00 0.00 2632.00 2632.00 2632.00
MEPSH1/S1 2630.50 3.66 2622.00 2632.00 2632.00
MEPSH0/S0 2626.00 5.03 2622.00 2622.00 2632.00
MEPSH0/S1 2623.00 3.08 2622.00 2622.00 2632.00
PQL 2608.20 26.97 2564.00 2620.00 2632.00
QM 2629.50 11.18 2582.00 2632.00 2632.00
MPSAC 870.60 1176.35 120.00 120.00 2622.00

DDST 1416.00
(25, 0)

MEPSH1/S0 1412.15 2.08 1411.00 1411.00 1416.00
MEPSH1/S1 1409.95 2.82 1405.00 1411.00 1416.00
MEPSH0/S0 1408.95 3.05 1405.00 1409.00 1416.00
MEPSH0/S1 1407.55 3.42 1405.00 1405.00 1416.00
PQL 1310.15 114.26 1033.00 1330.00 1411.00
QM 1383.40 38.57 1299.00 1405.00 1405.00
MPSAC 1406.60 2.01 1405.00 1405.00 1409.00

SE 11540.00
(400, 0)

MEPSH1/S0 11539.00 4.47 11520.00 11540.00 11540.00
MEPSH1/S1 11347.00 832.95 7810.00 11540.00 11540.00
MEPSH0/S0 11540.00 0.00 11540.00 11540.00 11540.00
MEPSH0/S1 10956.50 1388.37 7700.00 11540.00 11540.00
PQL 10740.00 1954.72 3960.00 11420.00 11540.00
QM 5006.00 3313.47 0.00 7570.00 7790.00
MPSAC 11131.00 1139.12 7810.00 11530.00 11540.00

BW 2038.00
(20, 0, 0)

MEPSH1/S0 799.12 166.09 690.46 724.86 1210.58
MEPSH1/S1 709.32 6.46 693.90 709.12 720.66
MEPSH0/S0 772.10 127.18 708.68 722.19 1121.11
MEPSH0/S1 711.55 9.35 691.83 711.53 728.89
PQL 704.00 29.42 608.00 708.00 732.00
QM - - - - -
MPSAC 684.40 20.18 660.00 692.00 716.00

Similarly to Section 3.1.2, the mean and standard deviation hypervolume values
are not sufficient to provide an effective analysis of the obtained results. Hence,
the same statistical protocol is employed with a 5% significance value. Table 3.8
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provides the results of the statistical test. The test results indicated that the results
of algorithms under the column with a (+) differ with 95% confidence from those
under the column with a (-). According to the test results, MEPS versions obtained
competitive results in all the benchmark problems evaluated. In both DST and
PBST, MEPS was as efficient as MPSAC. Moreover, MPSAC’s networks contained
320 (64 + 64 + (64 · 7)) connections and 69 (1 input, 64 hidden, 4 output) nodes,
whereas MEPS output networks with an average of 25 connections and 10 nodes.
Despite obtaining similar results as the QM algorithm in the MBST problem, MEPS
versions were the best algorithms in DDST, SE and BW. Besides, H1/S0 was the
best algorithm for the DDST problem, indicating that the proposal for a survivor
selection mechanism that attempts to search through all the non-dominated fronts
leads to competitive results in a problem with discontinuities and non-convex regions
in the Pareto front. It is worth noting that no fine-tuning was performed and the
parameters employed were selected empirically.

Table 3.8: Wilcoxon signed-rank test using hypervolume analysis of each MORL
problem. Algorithms in the (+) column are statistically significant compared to
algorithms in the column (-).

Env Statistically Significant
(+) (-)

DST
MEPS (all versions),

MPSAC
PQL, QM

PBST
MEPS (all versions),

MPSAC
PQL

MBST
MEPSH1/S0, MEPSH1/S1,

QM
MEPSH0/S0, MEPSH0/S1

PQL, MPSAC

DDST
MEPSH1/S0

MEPSH1/S1, MEPSH0/S0, MEPSH0/S1

PQL, QM, MPSAC

SE MEPS (all versions) PQL, QM, MPSAC

BW
MEPSH1/S0, MEPSH0/S0

MEPSH1/S1, MEPSH0/S1

PQL, QM, MPSAC

3.2.3 Ablation Study for MEPS

After evaluating the different versions of MEPS in multiple benchmark environ-
ments, we performed an ablation study to investigate the effects of both parametrical
and structural mutation operations. Ablations can significantly harm performance.
Accordingly, we selected the DDST environment for the ablation study. This envi-
ronment is complex enough even for unablated MEPS versions. Thus, we believe
that it is suitable to compare ablated MEPS to its unablated counterpart.

According to the previously presented results, the MEPS version using crowding
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distance and the heavy tail survivor selection operator, namely H1/S0, obtained
the most competitive performance among the compared versions. Thus, we selected
H1/S0 as the unablated MEPS version and, consequently, ablations were performed
on this MEPS version.

In order to assess the hypothesis that H1/S0, using both structural mutations
in combination with parametrical mutation, is the most competitive option for the
DDST problem, we performed six ablations as follows:

• Ablation 1: allowed only the structural mutation of adding a new connection
to previously unconnected nodes;

• Ablation 2: allowed only the structural mutation of adding a new hidden node;

• Ablation 3: allowed both structural mutations;

• Ablation 4: allowed only parametrical mutation;

• Ablation 5: allowed both the structural mutation of adding a new connection
to previously unconnected nodes and parametrical mutation;

• Ablation 6: allowed both the structural mutation of adding a new hidden node
and parametrical mutation.

Each ablated version was initialized using the parameters presented in Table 3.6,
zeroing each respective restricted mutation probability. For example, Ablation 1
was initialized with zero probability for the “add node” mutation and zero standard
deviation for parametrical mutation. With respect to the initial topology, ablated
versions 2, 3, 4, and 6 were initialized as presented in Figure 3.13. However, if
ablated versions 1 and 5 were initialized containing all the possible connections,
the “add connection” mutation would never be executed and, therefore, we would
not be able to assess its effect on the final performance. As a result, networks in
ablated versions 1 and 5 were initialized by randomly connecting 50% of the possible
connections.

Subsequently, 20 independent executions were performed for each ablated ver-
sion. Figure 3.15 shows the normalized average hypervolume obtained by the unab-
lated version and each of the ablations. Detailed results based on the hypervolume
indicator are presented in Table 3.9. Ablations 1 and 2, which constrained the mu-
tations to either add a new hidden node or a new connection, presented the worst
average hypervolume values. Although Ablation 3, which employs both structural
mutations, improved its performance when compared to Ablations 1 and 2, its per-
formance is still far from those that employ parametrical mutation. This highlights
the importance of the parametrical mutation in MEPS.
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Among the ablated versions that employed parametrical mutation, Ablation 4,
which does not use any structural mutation, achieved the highest mean hypervolume
value. This indicates that the combination of parametrical mutation with either the
“add connection” (Ablation 5) or “add node” (Ablation 6) mutations is still worse
than employing all operators together as in the unablated version. Finally, we can
see that only the unablated version of MEPS was able to find all the Pareto optimal
solutions.

Figure 3.15: Average normalized hypervolumes obtained by the unablated H1/S0
version and its six ablated versions in the DDST MORL benchmark environment.

Table 3.9: Hypervolume analysis of H1/S0 unablated version and its six ablated
versions in the DDST MORL benchmark environment. The hypervolume for the
true Pareto front (PF) is calculated with reference points given in parenthesis.

PF Algorithm Mean Std Min Median Max

1416.00
(25, 0)

MEPSH1/S0 1412.15 2.08 1411.00 1411.00 1416.00
Ablation 1 574.30 602.43 144.00 144.00 1405.00
Ablation 2 1198.05 461.82 144.00 1405.00 1411.00
Ablation 3 1279.20 388.23 144.00 1405.00 1411.00
Ablation 4 1407.60 2.76 1405.00 1407.00 1411.00
Ablation 5 1405.90 2.20 1405.00 1405.00 1411.00
Ablation 6 1406.20 2.46 1405.00 1405.00 1411.00
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3.3 Swarm Intelligence in Multi-Objective Evolu-

tionary Policy Search

This thesis evaluates whether the combination of the Multi-objective Evolution-
ary Swarm Hybrid (MESH) [79] and MEPS improves the performance of standard
MEPS. The motivation for addressing this challenge is based on the promising results
in single-objective policy search achieved through a two-step evolution proposed by
Stein et. al.[119]. This approach utilizes NEAT to optimize the topology of an ANN
and PSO to optimize its corresponding weights. Therefore, this study proposes eval-
uating the use of MESH coupled with the aC-DEEPSO’s adaptive velocity operator
to perform an initial depth search in the weights space. Subsequently, MEPS will
be utilized to evolve the ANN’s topology along with weights to estimate action-
preference values in MORL. Figure 3.16 illustrates the flowchart of the proposed
approach, dubbed Swarm-Intelligent MEPS (SI-MEPS).

Figure 3.16: Illustration of the proposed integration between MESH and MEPS.

In order to run MESH, each individual in the MEPS population must be encoded
as a real-valued vector. This encoding is done by creating a vector with a dimension
equal to the number of connections and biases present in the initial population.
Figure 3.17 illustrates this encoding for a population of ANNs containing three
input nodes, one hidden node, and one output node. Finally, Algorithm 5 shows the
pseudocode for the proposed coupling.

Figure 3.17: Illustration of the encoding of MEPS individuals into real-valued vec-
tors.
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Algorithm 5: Swarm-Intelligent Multi-Objective Evolutionary Policy
Search (SI-MEPS)

Input: np, ψ, tmax, tr, tmesh, α, σ, pac, pan, ni, no, nh, S, HT , h
Output: Memory M

1 Initialize population Pt with fully connected ANNs containing ni input nodes, nh hidden nodes and no

output nodes;
2 t← 0;
3 Evaluate each individual of Pt for an episode of length h;
4 Encode each individual of Pt as real-valued vector;
5 while t < tmesh do
6 Run MESHa evaluating each individual of Pt for an episode of length h;
7 t← t+ 1;

8 end
9 Update population Pt with the individuals output from MESH;

10 while t < tmax do
11 Run MEPS main loop, evaluating each individual of Pt for an episode of length h;
12 Update memory M following memory update procedure;
13 t← t+ 1;

14 end

aBoth the pseudocode and the Python implementation of MESH are available in [79].

3.3.1 Preliminary Validation Simulations for SI-MEPS

The proposed coupling is compared to standard MEPS in three MORL benchmark
environments, namely Modified Bountiful Sea Treasure [29], Discontinuous Deep
Sea Treasure [60], and Space Exploration [131]. These environments were selected
because not all versions of MEPS were able to find the entire set of solutions. Ad-
ditionally, both versions were compared not only using the hypervolume measure,
but also considering the complexity (number of connections + number of nodes) of
the final solutions.

Similarly to Section 3.2.2, the SI-MEPS was executed independently 20 times in
every problem. Since the main goal of this experiment is to validate the proposed
approach, no fine-tuning of the parameters has been done. Therefore, SI-MEPS
was executed with the same hyperparameters and initial topology as presented in
Table 3.6 and Figure 3.13, respectively. Furthermore, the hyperparameters for the
MESH counterpart of SI-MEPS were selected based on the results presented in [79].
As a result, the employed MESH version was E1/V1/D1 with 0.3 for both mutation
and communication rates, guide size of 3, and memory size equal to the population
size (for further details see [79]). In addition, the adaptive velocity operator of
aC-DEEPSO presented in Section 3.1 is included with γ = 0.2. With respect to
the number of generations, MESH was run for 200 generations and, subsequently,
MEPS was run for 1800 generations.

Detailed benchmark results based on hypervolume indicator are shown in Ta-
ble 3.10 and the algorithm with superior performance is indicated in bold for each
problem. The average complexity of the networks obtained by each algorithm in
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each benchmark environment is shown in Figure 3.18.

Table 3.10: Hypervolume analysis for each MORL benchmark environment (labeled
as Env). The hypervolume for the true Pareto front (PF) is calculated with the
reference points given in parenthesis.

Env PF Algorithm Mean Std Min Median Max

MBST 2632.00
(25, 0)

MEPSH1/S0 2632.00 0.00 2632.00 2632.00 2632.00
SI-MEPSH1/S0 2632.00 0.00 2632.00 2632.00 2632.00
MEPSH1/S1 2630.50 3.66 2622.00 2632.00 2632.00
SI-MEPSH1/S1 2632.00 0.00 2632.00 2632.00 2632.00
MEPSH0/S0 2626.00 5.03 2622.00 2622.00 2632.00
SI-MEPSH0/S0 2624.50 4.44 2622.00 2622.00 2632.00
MEPSH0/S1 2623.00 3.08 2622.00 2622.00 2632.00
SI-MEPSH0/S1 2624.50 4.44 2622.00 2622.00 2632.00

DDST 1416.00
(25, 0)

MEPSH1/S0 1412.15 2.08 1411.00 1411.00 1416.00
SI-MEPSH1/S0 1411.25 1.12 1411.00 1411.00 1416.00
MEPSH1/S1 1409.95 2.82 1405.00 1411.00 1416.00
SI-MEPSH1/S1 1414.25 2.45 1411.00 1416.00 1416.00
MEPSH0/S0 1408.95 3.05 1405.00 1409.00 1416.00
SI-MEPSH0/S0 1410.05 2.58 1405.00 1411.00 1416.00
MEPSH0/S1 1407.55 3.42 1405.00 1405.00 1416.00
SI-MEPSH0/S1 1412.05 3.47 1405.00 1411.00 1416.00

SE 11540.00
(400, 0)

MEPSH1/S0 11539.00 4.47 11520.00 11540.00 11540.00
SI-MEPSH1/S0 11537.00 4.70 11530.00 11540.00 11540.00
MEPSH1/S1 11347.00 832.95 7810.00 11540.00 11540.00
SI-MEPSH1/S1 11540.00 0.00 11540.00 11540.00 11540.00
MEPSH0/S0 11540.00 0.00 11540.00 11540.00 11540.00
SI-MEPSH0/S0 11537.50 4.44 11530.00 11540.00 11540.00
MEPSH0/S1 10956.50 1388.37 7700.00 11540.00 11540.00
SI-MEPSH0/S1 11540.00 0.00 11540.00 11540.00 11540.00

In MBST environment, the coupling of MESH as an initial depth search was able
to improve the standard MEPS performance for the H1/S1 version, which consis-
tently found all the Pareto solutions across executions. Despite this improvement,
neither H0/S0 nor H1/S0 average hypervolumes were improved in SI-MEPS. The
performance of the former version was slightly worse compared to standard MEPS.
There was a marginal improvement in H0/S1, which was not enough to obtain the
maximum hypervolume in every run. Concerning the network’s complexity, SI-
MEPS solutions consisted of networks at least as complex as standard MEPS solu-
tions, indicating that, the proposed approach efficiently found less complex solutions
for the H1/S0 configuration and improved H1/S1 performance without increasing
its network complexity.

Except H1/S0, SI-MEPS improved the performance of all versions in the DDST
environment. Moreover, the average hypervolume of H1/S1 not only increased but
also outperformed the highest standard MEPS hypervolume. In terms of network
complexity, SI-MEPS solutions were at least as complex as standard MEPS solu-
tions, apart from the H0/S1 configuration. Similarly to the MBST environment,
the SI-H1/S1 version improved the H1/S1 performance without increasing its net-
work complexity. Furthermore, in SE environment, SI-MEPS had also enhanced
standard MEPS performance performance. Contrarily to standard MEPS, in which
only the H0/S0 version found all the solutions across runs, SI-MEPS enhanced the
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performance of both H1/S1 and H0/S1 versions, at the expense of worsening the
performances of H1/S0 and H0/S0. Although SI-H1/S1 solutions were less com-
plex than standard H1/S1, SI-MEPS increased the network complexity of H0/S1
solutions.

(a) MBST (b) DDST

(c) SE

Figure 3.18: Complexity of the networks obtained by each algorithm in each bench-
mark environment. Darker colors are used to indicate the complexities for SI-MEPS,
while lighter colors indicate the complexities for standard MEPS.

Similarly to previous Sections, the performances are analyzed employing the
same statistical protocol with a 5% significance value. Table 3.11 provides the results
of the statistical test. The test results indicated that the results of algorithms under
the column with a (+) differ with 95% confidence from those under the column
with a (-). According to test results, the coupling between MESH and MEPS was
most successful for H1/S1 version, which had its performance improved in every
benchmark environment.
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Table 3.11: Wilcoxon signed-rank test using hypervolume analysis of each MORL
problem. Algorithms in the (+) column are statistically significant compared to
algorithms in the column (-).

Env Statistically Significant
(+) (-)

MBST
MEPSH1/S0, MEPSH1/S1,

SI-MEPSH1/S0, SI-MEPSH1/S1

MEPSH0/S0, MEPSH0/S1

SI-MEPSH0/S0, SI-MEPSH0/S1

DDST
SI-MEPSH1/S1

MEPSH1/S1, MEPSH0/S0, MEPSH0/S1

MEPSH1/S0, SI-MEPSH0/S0, SI-MEPSH0/S1

SI-MEPSH1/S0

SE
SI-MEPSH1/S1, MEPSH0/S0, SI-MEPSH0/S1

MEPSH1/S1, MEPSH1/S0, MEPSH0/S1

SI-MEPSH1/S0, SI-MEPSH0/S0
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Chapter 4

Results and Discussion on the ERM
problem

4.1 Single-Objective Energy Resource Management

Problem

Additionally to the preliminary validation tests for aC-DEEPSO, the framework
of an energy resource management problem (ERM) [4, 17] is utilized to assess the
performance of the proposed algorithm in a large-scale problem. This framework,
which was proposed in the scope of the GECAD Smart Grid Competition 2022
[42, 115], simulates a large smart grid or smart city mockup located in BISITE
laboratory1 [17]. This simulated smart grid is built on a 13-bus medium voltage
distribution network as shown in Figure 4.1. It is composed of one substation,
two wind farms, 13 photovoltaic (PV) parks, and 2 energy storage systems (ESSs).
Moreover, a fleet of 500 electric vehicles (EVs) and five charging stations are also
included [4].

Regarding load demand, 25 distinct loads are considered, including residential
(1375 houses) and office buildings (seven buildings), a hospital, a fire station, and
a shopping mall [17]. Thus, each particle is encoded as the hourly state of this
distribution network in a 24 hour period. For each hour, the simulation follows these
optimization characteristics: (1) 21 continuous variables are used to represent the
active power in each generator; (2) 21 binary variables are used to indicate whether
each generator is active or not; (3) 500 continuous variables are used to describe
the amount of power being charged or discharged in each EV; (4) 25 continuous
variables are employed to indicate the reduction in each of the 25 loads; (5) 2
continuous variables are used to represent the charge/discharge state of each ESS;

1This laboratory is located in the University of Salamanca, but the network does not correspond
to a physical electrical network located in the city of Salamanca.
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and (6) 1 continuous variable is used to describe the behavior of the aggregator
in the energy market. Moreover, a maximum limit of 5000 function evaluations is
allowed in each execution [4, 17, 42, 115].

Hence, each particle lies in R24·570 totaling 13680 optimization variables. In
addition to this, the objective function is calculated through the evaluation of 150
randomly generated scenarios. For further details on scenario generation, please
refer to [4].

Figure 4.1: Line diagram of the 13-bus distribution network. Adapted from [17].

Accordingly, the objective function (OF) employed in the management problem
is the following [4]:

OF = ZEx + β · CV aRα(Z
tot
s ), (4.1)

in which β ∈ [0, 1] represents the level of aversion to risk for CVaR in the worst case
scenario s, and ZEx is the expected cost accross the set of scenarios. Moreover, in
this experiment, population size was set to 50 particles and C-DEEPSO’s parameters
to 0.6 and 0.9 for communication and mutation rates, respectively. Each run was
evaluated over 150 different randomly-generated scenarios that may include, or not,
an extreme event. For the addressed ERM problem, each algorithm was allowed to
execute for a maximum of 5000 function evaluations (FEs). Due to the stochastic
nature of the evaluated methods, each algorithm was run 20 times. Moreover, the
average computational time of seven minutes for each execution to find an optimized
solution is viable for day-ahead operational planning in a high-dimensional complex
ERM problem.
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Figure 4.2 shows a radar plot containing the average performance in 150 scenarios
of each of the evaluated algorithms for each run. The goal was to minimize the
objective function of the ERM problem described by Equation (4.1), with β = 1.0.
Thus, the smaller the area covered by the algorithm, the better its performance is.
Regarding standard PSO and EPSO, neither version of either algorithm was able
to escape from a local minima in any of the 20 runs, obtaining a mininum cost of
around 18500 monetary units (m.u.).

C-DEEPSO version with local search, depicted as the orange area, presented
some improvements. It was able to escape the aforementioned local minima in eight
out of the 20 runs, outperforming not only PSO and EPSO but also their counter-
parts with local search in runs 4, 6, 10, 11, 12, 13, 14 and 19. After introducing
the proposed adaptive velocity operator to C-DEEPSO with local search it is pos-
sible to see a reduction in the area depicted in blue. This smaller area indicates
that combining adaptive velocity and local search (LS) with C-DEEPSO leads to
finding smaller costs across runs. For instance, Adaptive C-DEEPSO with LS was
able to escape from the previously mentioned local minima in 14 out of 20 runs,
outperforming C-DEEPSO with LS in runs 2, 3, 4, 5, 8, 9, 13, 15, 16, 17, 19 and 20.

Figure 4.2: Radar plot containing the average cost of each algorithm in 150 random
scenarios for 20 runs. The smaller the area covered by the algorithm, the better it
performed. Extracted from [61]

.

Table 4.1 shows the average results for the 20 runs of each algorithm, separated
into the mean expected cost and CV aRα=95%. It can be seen that aC-DEEPSO
achieves the smallest value of 17460.838 m.u.. It is worth noting that there is a trade-
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off between mean expected cost and CV aRα=95%. While PSO and EPSO algorithms
obtained a lower mean expected cost, the risk cost was increased. Reversely, both C-
DEEPSO versions obtained results with smaller CV aRα=95% cost at the expense of a
small increase in the mean expected cost. This trade-off is illustrated by Figure 4.3,
in which the risk factor β is varied from 0 (risk-neutral) to 1 (risk-averse).

For a value of β < 0.1, the increase in the mean expected cost leads to a higher
average cost for both C-DEEPSO with LS and Adaptive C-DEEPSO with LS. How-
ever, for β ≥ 0.1, the reduction in risk cost compensates the higher mean expected
cost. With respect to the costs of the worst scenarios, Adaptive C-DEEPSO with
LS also achieved the lowest average cost. Moreover, Adaptive C-DEEPSO with
LS produced less constraint violations, indicated by a penalty value of 385 against
411.667 for C-DEEPSO with LS and 433.333 for the other algorithms.

Table 4.1: Summary of the obtained average results in the ERM problem.

Algorithm OF Fex CVaR Worst Scenario Violations

PSO 18554.270 8508.164 10046.106 20709.064 433.333
PSO w/ LS 18551.606 8508.476 10043.129 20706.777 433.333
EPSO 18549.344 8507.215 10042.129 20706.786 433.333
EPSO w/ LS 18548.565 8506.886 10041.679 20706.770 433.333
C-DEEPSO w/ LS 18128.825 8600.884 9527.942 20160.072 411.667
Adaptive
C-DEEPSO w/ LS

17460.838 8628.736 8832.103 19309.028 385.000

Figure 4.3: Average cost for different values of risk factor β
.

To provide a robust evaluation of the results, the null hypothesis is defined as
the equality of the mean results obtained after 20 runs of the experiment. After
that, the Conover non-parametric statistical test [24] is applied to do a pairwise
comparison and assess the pairs in which the null hypothesis can be rejected, for
a given significance level α. The test results indicated that, with 99% confidence,
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Adaptive C-DEEPSO with LS achieved lower costs compared to PSO, PSO with
LS, EPSO and C-DEEPSO with LS. Furthermore, test results also indicated, with
95% confidence, that Adaptive C-DEEPSO with LS achieved lower costs than EPSO
with LS.

Finally, in a monthly projection Adaptive C-DEEPSO with LS is able to save
more than 20 thousand m.u. and more than 32 thousand m.u. when compared to
C-DEEPSO with LS and standard PSO, respectively. Additionally, from a carbon
dioxide (CO2) emission standpoint, an estimation of the daily environmental im-
pact of the ERM solutions obtained using our proposal compared to standard PSO,
in terms of the amount of CO2 generated per kWh consumed, indicated that our
proposal saves up to 4.497 tons of CO2eq./kWh per day (see [61]). Furthermore, it
can be said that Adaptive C-DEEPSO with LS is suitable for a risk-based energy
management system.

4.2 Multi-Objective Energy Resource Management

Problem

4.2.1 Problem Formulation

In this section the Energy Resource Management problem for a planning horizon
of one year is formally defined. First, the microgrid configuration followed by the
objective functions and constraints definitions is presented. Then, the ERM con-
trol problem is modeled as a Markov Decision Process (MDP) and treated from a
multi-objective perspective regarding operating cost, greenhouse gas emissions, and
battery degradation. In this resulting control problem, the learning agent plays the
role of an EMS that is responsible for managing the maximum allowed monthly ESS’
depth of discharge (DoD), and the energy imported from public grid.

Microgrid System model

The structure of the simulated solar wind power microgrid system is based on [83].
It is composed by six Norvento nED 100-22 wind turbines [94], 5000 HiKu 450W-
CS3W-450MS photovoltaic panels [16], an ESS, DC/AC converter, electrical load
that comprises both residences and industrial buildings, main grid connection (the
main grid price mechanism employed is real-time pricing (RTP)), and EMS. Figure
4.4 presents the system structure. Moreover, the ESS consists in a 1000kW capac-
ity spinel lithium titanate (Li4Ti5O12 (LTO) [141]) battery. Table 4.2 details the
configurations values for the MG project with lifetime of 24 years.
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Figure 4.4: Solar wind power microgrid system structure. Based on [67].

Table 4.2: General information about the microgrid.

Unit INV PV WT LTO Battery
Life Time (years) years 15 24 24 17.5
Efficiency (%) % 96 20.4 95 90
Rated Power kW - 0.45 100 -
Capacity kW - - - 1000
Cycles un - - - 8000
Initial Cost $ - 500.00 1800.00 -
Cost $/kW 700.00 - - 1143.00
Operational Cost $/kW - 18 0.36 -

Regarding the data used, a generic region from Cadiz, in Southern Spain, was
used as case study of this work. In this regard, an annual load profile (measured in
8640h) comprising both a residential community and an industrial consumption are
analyzed. Besides, hourly data from 2021 for dynamic energy price along with solar
radiation, wind speed, and ambient temperature from Solcast [116] serve as input to
the MG system. Next, the objective functions and the different constraints involved
in the problem are introduced.

Operational Costs objective and ESS constraints

The charge/discharge control of the ESS represents the use or storage of energy
from the ESS. At each time step t, the ESS can be either charging or discharging.
The minimum state-of-charge (SoC) value is defined as the 1 − DoD(t) of ESS.
Furthermore, the SoC at time step t is given by [67]:

SoC(t) =

SoC(t− 1) + Ebat(t)·ηc
Erated

, Ebat(t) ≥ 0

SoC(t− 1) + Ebat(t)
Erated·ηd

, Ebat(t) < 0,
(4.2)
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in which ηc = 0.90 and ηd = 1.0 are the charging and discharging efficiencies,
respectively. Erated denotes the rated capacity of the ESS. The amount of used or
stored energy from the ESS, Ebat(t), is calculated as

Ebat(t) =

Edch(t), if discharging

Ech(t), if charging,
(4.3)

in which Edch(t) and Ech(t) are the discharging and charging requested energy
amount given by [83]:

Edch(t) =

max{(1−DoD(t)− SoC(t− 1)) · Erated, Edch(t)}, SoC(t− 1) > 1−DoD(t)

0, SoC(t− 1) ≤ 1−DoD(t),

(4.4)

Ech(t) = min{(SoCmax − SoC(t− 1)) · Erated, Ech(t)}. (4.5)

In addition, the use and degradation costs of ESS are considered in the operation.
The ESS use cost coefficient is given by [77, 83]:

cd(t) =
Ci

Lc · Erated ·DoD(t)
, (4.6)

in which Lc is the available cycle lifetime and Ci is the initial investment of ESS.
Therefore, in this modeling the total cost of an operation is obtained by [77]:

Ctotal(tstart, tend) = IC + PWp + PWnp +

tend∑
t=tstart

cd(t), (4.7)

in which the value Ctotal(tstart, tend) represents the sum of the system costs of operat-
ing from time tstart to tend. The initial cost (IC) refers to the 20% cost for operation &
maintenance, 6% discount rate, 1.4% inflation rate, personnel cost, installation and
connections. It is also included both the periodic costs PWp of components mainte-
nance, such as PV panels and wind generators, and the non-recurrent costs PWnp

of components replacement, such as ESS [77]. Moreover, the charging/discharging
power constraints are given by

0 ≤ Ech ≤ Emax
ch ,

0 ≤ Edch ≤ Emax
dch ,

Ech · Edch = 0,

(4.8)

in which Emax
ch and Emax

dch are the maximum charge and discharge energy, respectively.
Additionally, the ESS’ SoC should be maintained at a suitable range at each time
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step
SoCmin(t) ≤ SoC(t) ≤ SoCmax, (4.9)

with SoCmin(t) denoting the minimum SoC value at time step t and SoCmax as the
maximum allowed SoC. Finally, the resulting objective function for cost minimiza-
tion modeled by [83] is

minCost(tstart, tend) = Ctotal(tstart, tend) +

tend∑
t=tstart

P buy
t · Prt, (4.10)

where the operational cost is combined with the cost of the energy bought from the
public grid P buy

t at price Prt to supply the insufficient microgrid power.

Microgrid CO2 emissions objective

In order to take into consideration an estimation of the amount of CO2 emissions for
public grid energy bought and renewable generation, each energy source is quantified
in terms of grams of CO2eq./KWh. The greenhouse gas emission values used are
the average between the minimum and maximum values from [127]. Hence, the
following values have been used:

• Solar Photovoltaic: 44.15 g CO2eq./KWh;

• Wind Power: 11.90 g CO2eq./KWh;

• Nuclear: 5.75 g CO2eq./KWh;

• Hydro: 76.50 g CO2eq./KWh;

• Cogeneration and Combined cycle: 156.00 g CO2eq./KWh;

Moreover, with respect to energy bought from public grid, the CO2eq./KWh quan-
tity is calculated using the dispatchable energy composition in Spain as reported by
[103]:

• Solar Photovoltaic: 9%;

• Wind Power: 26%;

• Nuclear: 24%;

• Hydro: 13%;

• Cogeneration: 17%:

• Combined cycle: 11%;
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Thus, the total emissions in CO2eq./KWh [61] for wind/solar power generation
and energy imported from the public grid are each:

EmissionWT (tstart, tend) = 11.90 ·
tend∑

t=tstart

PWT
t (4.11)

EmissionPV (tstart, tend) = 44.15 ·
tend∑

t=tstart

P PV
t (4.12)

EmissionBuy(tstart, tend) = (44.15 · 0.09 + 11.90 · 0.26 + 5.75 · 0.24+

75.60 · 0.13 + 156.00 · 0.28) ·
tend∑

t=tstart

PBuy
t , (4.13)

in which PWT
t and P PV

t stand for the energy generate from wind turbines and
photovoltaic panels at time t, respectively. From that, Leite et al. [61] modeled an
objective function for minimizing the amount of CO2 emissions, according to:

minEmission(tstart, tend) = EmissionWT (tstart, tend)+

EmissionPV (tstart, tend) + EmissionBuy(tstart, tend). (4.14)

ESS degradation objective

This modeling approach includes a quantification of the Lithium-Ion battery (LIB)
capacity degradation as a combination from calendar and cycle ageing, given by
[105]:

∆C = C0 ·

(
0.75τ ·

∑
t

αcapt · d−0.25+

1√
EFC

(
W∑
w=1

βcap(DoDw) ·DoDw +
1

2

H∑
h=1

βcap(DoDh) ·DoDh

))
, (4.15)

in which C0 is the initial battery capacity, d are the total days, t is the model
period in hours. W and H are the number of whole and half equivalent full cycles
(EFC), obtained after applying rainflow cycle counting algorithm to the ESS state
of charge’s (SoC) profile [91]. DoDw and DoDh are the depths of discharge (DoD)
associated to each whole and half EFCs, respectively. The term αcap denotes the
calendar ageing factor, given by [105]

αcap = (7.543V − 23.75) · 106 · e6976/T , (4.16)
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in which V and T are the battery’s cell voltage and temperature (in K), respectively.
It is assumed that the cell voltage is constant and equals to 3.7 [74] and T is equal
to the ambient temperature Tamb converted from Celsius to Kelvin. In addition, the
term βcap describes the battery ageing factor in terms of equivalent full cycles [105],

βcap(DoD) = 7.348 · 10−3 · (V̄ − 3.667)2 + 7.6 · 10−4 + 4.081 · 10−3 ·DoD. (4.17)

The term V̄ is the average cell voltage, which, in this work, is equal to the cell
voltage V = 3.7. Therefore, the objective function for minimizing the accumulated
ESS’ degradation according to [105] is

minDegradation(tstart, tend) =

tend∑
t=tstart

∆C(DoD(t)). (4.18)

ERM Markov Decision Process

In the presented ERM problem, the energy management is performed through both
the monthly control of the ESS’s depth of discharge (DoD), and the imported energy
from public grid. By setting a DoD value, the manager restricts the amount of
energy that is available to be used from the ESS. The insufficient microgrid power
is supplied by importing from the public grid. Thus, the system needs information
from the environment to set different DoD values under different states. As a result,
the system dynamics of the ERM can be formalized as a Markov decision process
(MDP) characterized by a state space S, an action space A, and a reward R evaluated
every month over a finite time horizon of a year. The state space S is characterized
by a R3 vector that contains the state information at each month m:

sm ∈ S =

{
SoC(t),

T buym

T loadm

,
T dchm

T loadm

}
, (4.19)

in which T buym denotes the total energy bought in month m, T dchm denotes the total
energy discharged from the ESS in month m, and T loadm is the accumulated load
demand over the month m. Note that, since data time steps are defined in hours,
each month consists in a batch of 720 hours.

At each month, the agent decides the DoD that will be used. Thus, the action
space contains eight available actions and is defined as

am ∈ A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. (4.20)

After an action is performed, the ESS dynamics is updated as follows:

DoD(m) = am, (4.21)
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in which DoD(m) indicates the DoD used for every hour corresponding to month
m.

Finally, the multi-objective reward function is a R3 vector as follows:

R(sm, am) = [Cost(tmstart, t
m
end), Emission(t

m
start, t

m
end), Degradation(t

m
start, t

m
end)] ,

(4.22)
where tmstart = 720 · (m−1) and tmend = 720 ·m. The components of the reward vector
indicate a summation of the Cost, CO2 Emission and ESS Degradation over the
hours within the current month m.

Once the MDP is defined, reinforcement learning is used for solving the resulting
control problem. The learning agent dynamics of the proposed control problem can
be summarized as follows:

(1) Choose an action am.

(2) Run the microgrid for 720 hours (30 days).

(3) Update the current state sm.

(4) Update Costs.

(5) Update Emission.

(6) Update Degradation.

(7) Update battery capacity based on its degradation from the previous month.

(8) Repeat steps (1)-(7).

4.2.2 Solving the ERM problem

This section presents an analysis of the MEPS results in the proposed multi-objective
ERM problem of controlling the DoD of an ESS in a microgrid, with both solar
and wind generation. In addition, two standard MORL algorithms are used for
comparison, namely the Multi-Policy Soft Actor Critic and the Multi-Objective Deep
Q Networks (MODQN). The former is based on ANNs and multi-objective CMA-ES
[19], while the latter is based on the MORL framework for Deep RL proposed in
[93].

In terms of configurations, MODQN used two 64-neuron fully connected layers.
MPSAC used ANNs with a hidden layer of size 64, and MEPS initialized the ANN
population without any hidden layers. For all algorithms, ReLU function activation
was used in the neurons. In addition, the configuration of the output layer was the
same for all three algorithms. It contained 8 neurons for the 8 actions as given in
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equation 4.20. After fine-tuning the Heavy tail selection parameter, parametrical
mutation standard deviation, “Add connection” and “Add node” mutation probabili-
ties, Table 4.3 lists the parameters used for each version of MEPS as well as MPSAC
and MODQN. Further details of the performed fine-tuning are presented in Chapter
5.

Table 4.3: Parameter initialization values used by the algorithms in the microgrid
environment.

Description
MEPS

MPSAC MODQN
H1/S0 H1/S1 H0/S0 H0/S1

Population size 20
Initial fraction selected from first front 0.5 - -
End generation number of heavy tail survivor selection 250 - -
Heavy tail selection parameter 1.0 0.3 - - - -
“Add connection” mutation probability 0.6 0.3 0.6 0.4 - -
“Add node” mutation probability 0.6 0.5 0.5 0.3 - -
Parametrical mutation standard deviation 1.1 1.2 1.3 0.9 1.0 -
Learning rate - 0.001 0.001
Gamma - 0.99 0.99
Initial epsilion - - 0.1
Epsilon decay - - 3.7 · 10−5

Generations 500 250 + 250 500
Episode length 12

In order to assess the generalization ability of each algorithm, different load
scenarios were used in training and testing. The test scenario is depicted in Fig-
ure 4.5a as a black line, and the green area shows the range of the noise added to
the test scenario at each hour when generating training scenarios. During training,
five different load scenarios are randomly sampled from the green area as shown in
Figure 4.5b. The training rewards were the average of the rewards obtained from
each one of the five scenarios. Moreover, each algorithm was run 20 times with the
same initialization parameters as presented in Table 4.3 and started with ESS at
20% SoC, in state s1 = {0.2, 0.0, 0.0}. The reference point used for hypervolume
calculation was (600000, 65, 0.085).

The average hypervolume for the 20 runs of each algorithm’s training rewards
is presented in Figure 4.6. During training, HV values from MPSAC oscillated
in the first 250 generations and improved in the last 250, when the MO-CMA-
ES counterpart started. On the other hand, although the multi-objective DQNs
increased accross generations, it only presented a HV value higher than MPSAC in
the first 250 generations. After 250 generations, MODQN performance was below
the performances of all the other algorithms. MEPS shows the best performance
regarding HV, with H1/S1 and H0/S1 achieving the highest HV values at the end
of training.
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(a) Load demand scenarios. Black line represents the test scenario, and
the green area represent the range of the noise added to the test scenario
when generating training scenarios.

(b) Example of a week in autumn from five sampled training scenarios.

Figure 4.5: Train and test load scenarios generation.

Figure 4.6: Hypervolume average values of 20 executions of each algorithm during
training.
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Afterwards, each algorithm was evaluated on the test scenario to assess its gen-
eralization ability on a scenario never seen before. Table 4.4 details the test results
obtained. It can be seen that, although able to generalize to an unseen scenario,
MODQN mean results are not only worse than the results from MEPS and MP-
SAC, but also present a higher standard deviation. Comparing MPSAC with MEPS
versions, MPSAC results are very similar to H1/S0 results and very close to H0/S0
results. However, with respect to H1/S1 and H0/S1, MPSAC’s performance is worse
not only in terms of mean HV but also in terms of standard deviation. Moreover,
MPSAC’s best HV value is lower than worst HV values in both H1/S1 and H1/S0.
Among the MEPS versions, H1/S1 and H1/S0 show very similar performances and
present the best values with the smallest variation when compared to MODQN,
MPSAC and other MEPS versions.

Table 4.4: Performance of each algorithm regarding hypervolume when evaluated in
the test scenario.

Mean Std. Worst Median Best

MEPSH1/S0 23073.24 94.59 22896.73 23053.54 23295.62
MEPSH1/S1 23346.12 57.66 23249.00 23336.72 23470.91
MEPSH0/S0 23077.56 82.06 22935.55 23077.32 23241.86
MEPSH0/S1 23351.87 51.16 23265.61 23347.58 23440.45
MPSAC 23018.29 122.85 22735.94 23062.46 23202.51
MODQN 22311.92 59.24 22225.02 22339.06 22368.22

Nevertheless, two non-parametric tests were conducted to provide a robust eval-
uation of the results obtained. First, the boxplot behavior was analyzed, and then,
similar to Section 3.2.2, a two-fold analysis was carried out. This analysis consisted
of a Kruskal-Wallis test, followed by a Wilcoxon signed-rank posthoc test with the
Holm-Bonferroni correction. Boxplots are a useful tool for analyzing the range and
distribution of the data, and sometimes, obtain information about the true difference
among the means. If the notches in the boxplots do not overlap, it can be concluded,
with 95% confidence, that the true means do differ [82]. With this in mind, and by
analyzing Figure 4.7, it is possible to conclude that there are differences among the
means of the algorithms.
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Figure 4.7: Boxplot results of the average hypervolumes on test scenario for 20
executions of each algorithm.

To statistically determine the difference in performance of the evaluated algo-
rithms, a Kruskal-Wallis test with 1% significance level was applied. Thereafter, a
Wilcoxon signed-rank test with Holm-Bonferroni correction was applied to find out,
by pairwise comparisons, which specific group’s means were different. The results of
the Kruskal-Wallis test corroborated the boxplot analysis, and attested that, with a
higher confidence level of 99%, there are differences among the mean hypervolume
values. From the results of the posthoc tests, it is possible to rank the algorithms
as shown in Table 4.5.

Table 4.5: Ranking of algorithms based on Wilcoxon signed-rank test results using
mean hypervolumes in test scenario.

Rank
1 2 3

MEPSH1/S1 - -
MEPSH0/S1 - -

- MEPSH1/S0 -
- MEPSH0/S0 -
- MPSAC -
- - MODQN

Therefore, the experimental results have shown that MEPS networks are able to
provide feasible solutions to the proposed ESS control problem with performance
comparable to state-of-the-art MORL techniques. In particular, H1/S1 and H0/S1
outperformed Deep Q Networks as well as the combination of MO-CMA-ES and
Soft Actor-Critic in the proposed multi-objective ERM problem. Furthermore, both
H1/S1 and H0/S1 solutions are composed of ANNs with an average of 30 connections
and 15 nodes. Compared to MPSAC networks (75 nodes and 715 connections) and
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MODQN networks (131 nodes and 4936 connections), H1/S1 and H0/S1 solutions
consist of much lighter networks. These light networks are a suitable solution to
microgrids because they can be deployed as controllers in devices with low computing
power.

An important observation regarding MEPS configuration is that, contrary to the
preliminary validation results, the use of hypervolume contribution as the density
measure (S1) achieved higher hypervolume values than MEPS counterparts using
crowding distance (S0). This indicates that, although benchmarking algorithms
using test environments are necessary to validate new techniques, test environments
are not globally sufficient to attest a model’s performance. In fact, when it comes to
real-world problems such as energy management-based problems, some models are
better suited than others.

Next, an analysis of the microgrid functioning in both the H1/S1 and H0/S1
solutions is carried out. As the multi-objective approach provides alternatives for
a decision maker to select knowledge-based solutions, two multi-criteria decision
technique, namely Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) and Modified TOPSIS[18, 126], are employed to select a solution that
satisfies an equal preference among the three objectives. In standard TOPSIS and
its modified variant incorporate, the decision maker’s preferences are considered to
find the solution closest to the positive ideal solution and furthest from the negative
ideal solution. In this analysis, each objective was given an equal preference weight
value of 33.3%.

Due to the use of equal preferences for each objective, the solutions obtained by
both standard and modified TOPSIS were the same. Figure 4.8 illustrates the MG
behavior of the obtained solution in a year of operation using H1/S1 and H0/S1.
The total amount of wind and solar energy consumed per month is indicated by
Pwind and Ppv, respectively. The amount of energy purchased from the public grid
is indicated by Pgrid, and the total energy discharged from the battery per month is
denoted by Pdischarge.

Both solutions are nearly identical, with the only difference being in November
and December. Yet, this difference results in a significant change in terms of cost
and emissions. In November when there is less wind and solar radiation compared to
December, the H0/S1 solution uses a higher DoD. This leads to a cost of $518366.63,
CO2 emissions of 60.62 tons of CO2eq./kWh and an ESS degradation of 3.47% per
year. In contrast, the H1/S1 solution adopts a lower DoD in November and a higher
DoD value in December. This behavior change leads to a higher cost of $521748.77,
but also leads to a decrease in ESS degradation and CO2 emissions by 3.43% and
60.55 tons of CO2eq./kWh, respectively.
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(a) MG behavior of H1/S1 solution.

(b) MG behavior of H0/S1 solution.

Figure 4.8: MG behavior analysis of H1/S1 and H0/S1 solutions selected from
TOPSIS with equal preference over the three objectives.

4.2.3 Comparison between MEPS and SI-MEPS in the ERM

problem

This section presents an analysis comparing the results of standard MEPS and SI-
MEPS in the proposed multi-objective ERM problem of controlling the DoD of an
ESS in a microgrid, with both solar and wind generation. In terms of configurations,
both MEPS and SI-MEPS initialized the ANN population without any hidden layers
with 8 output neurons for the 8 actions as given in equation 4.20. Besides, SI-MEPS
employed the E1/V1/D1 version with a memory size equal to the population size.
For a fair comparison, SI-MEPS was also fine-tuned. This fine-tuning followed the
protocol described in Chapter 5, with the inclusion of MESH’s mutation and recom-
bination rates within the domains of [0.1, 0.9] and [0.1, 0.9], respectively. Finally,
Table 4.6 lists the parameters used for both algorithms.

68



Table 4.6: Parameter initialization values used by the algorithms in the microgrid
environment.

Description
MEPS SI-MEPS

H1/S0 H1/S1 H0/S0 H0/S1 H1/S0 H1/S1 H0/S0 H0/S1
Population size 20 20
Initial fraction selected from first front 0.5 0.5
End generation number of heavy tail survivor selection 250 250
Heavy tail selection parameter 1.0 0.3 - - 0.8 0.5 - -
“Add connection” mutation probability 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.4
“Add node” mutation probability 0.6 0.5 0.6 0.3 0.5 0.4 0.6 0.2
Parametrical mutation standard deviation 1.1 1.2 0.7 0.9 0.4 0.6 1.1 0.7
Mesh mutation rate - 0.3 0.4 0.8 0.9
Mesh recombination rate - 0.7 0.2 0.6 0.2
Personal guide size - 3
Adaptive Velocity γ - 0.2
Generations 500 100 + 400
Episode length 12 12

Similarly to Section 4.2.2, each algorithm was run 20 times with the same ini-
tialization parameters as presented in Table 4.6 and started with ESS at 20% SoC,
in state s1 = {0.2, 0.0, 0.0}. The reference point used for hypervolume calculation
was (600000, 65, 0.085). Table 4.7 details the results obtained on the test scenario
and Figure 4.9 shows the complexity of the solutions from each algorithm in terms
of number of nodes and number of connections.

Table 4.7: Performance of each algorithm regarding hypervolume when evaluated in
the test scenario.

Mean Std. Worst Median Best

MEPSH1/S0 23073.24 94.59 22896.73 23053.54 23295.62
SI-MEPSH1/S0 23037.79 58.43 22903.59 23032.61 23143.11
MEPSH1/S1 23346.12 57.66 23249.00 23336.72 23470.91
SI-MEPSH1/S1 23269.54 84.18 23076.46 23267.03 23417.45
MEPSH0/S0 23077.56 82.06 22935.55 23077.32 23241.86
SI-MEPSH0/S0 23079.68 92.60 22874.58 23075.48 23240.54
MEPSH0/S1 23351.87 51.16 23265.61 23347.58 23440.45
SI-MEPSH0/S1 23308.52 96.26 23098.38 23318.50 23439.75

Moreover, as done in the previous Section, a Kruskal-Wallis test with 1% sig-
nificance level was applied to assess if there are any statistical differences among
versions. Thereafter, a Wilcoxon signed-rank test with Holm-Bonferroni correction
was applied to find out, by pairwise comparisons, which specific group’s means were
different. The results of the Kruskal-Wallis test attested that, with a higher confi-
dence level of 99%, there are differences among the mean hypervolume values. From
the results of the posthoc tests, it is possible to rank the algorithms as shown in
Table 4.8.
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Table 4.8: Ranking of algorithms based on Wilcoxon signed-rank test results using
mean hypervolumes in the test scenario.

Rank
1 2

MEPSH1/S1 -
SI-MEPSH1/S1 -
MEPSH0/S1 -

SI-MEPSH0/S1 -
- MEPSH1/S0

- MEPSH0/S0

- SI-MEPSH1/S0

- SI-MEPSH0/S0

It can be seen that, despite the improvements of SI-MEPS in the benchmark
environments, only the H0/S0 SI-MEPS version was able to outperform the HV
value of its standard counterpart in this MG environment. Furthermore, Figure 4.9
shows that, even though both H1/S1 and H0/S1 versions of MEPS versions are not
statistically different, SI-MEPS solutions were composed by ANNs with more nodes
and connections than the ones in standard MEPS. However, these results do not
invalidate the proposed approach. By including MESH in the coupled approach,
several new hyperparameters are included, resulting in another layer of complexity
being added on top of MEPS. Moreover, different from the benchmark tests, there
were fewer available generations to run each algorithm of the coupled approach in
this MG environment. With respect to the parameters, SI-MEPS was fine-tuned as
a coupled algorithm considering both MESH and MEPS parameters. As a result,
future work may include a parameters analysis in which MEPS parameters are
fixed and MESH parameters are fine-tuned. Finally, despite SI-MEPS presenting a
promising approach, future research is necessary to both investigate the effects of
the new hyperparameters, and evaluate its performance in different environments.

Figure 4.9: Complexity of the networks obtained by both MEPS versions in the
proposed MG environment. Darker colors are used to indicate the complexities for
SI-MEPS, while lighter colors indicate the complexities for standard MEPS.
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Chapter 5

Hyperparameters Analysis of MEPS

Several machine learning algorithms are highly configurable through hyperparame-
ters. These parameters often significantly affect the the complexity, behavior, speed,
and most importantly, performance. Therefore, it is essential to carefully select an
algorithm’s hyperparameter values [14]. This chapter describes the analysis of hy-
perparameters performed on MEPS in the proposed MG environment.

Since MEPS features a set of hyperparameters that must be determined before
applying the algorithm to any kind of problem, a hyperparameter analysis has been
carried on using the MG environment presented in Section 4.2. In this analysis, a
uniform random search for a specific set of hyperparameters within a given domain
has been performed. The selected set of MEPS’ hyperparameters, along with their
domains, are the following:

• Heavy tail selection parameter α ∈ [0.1, 1.0];

• Parametrical mutation standard deviation σ ∈ [0.1, 1.5];

• “Add connection” mutation probability pac ∈ [0.1, 0.6];

• “Add node” mutation probability pan ∈ [0.1, 0.6];

The simulations have been conducted using the Optuna tool [3] in a computer
with an Intel(R) Core(TM) i9-10900X CPU@3.70GHz, 64GB RAM, and Windows
10 Pro. Moreover, a total of 50 search steps have been performed, in which each step
involves sampling a set of hyperparameters, and executing MEPS with the sampled
set of hyperparameters for 20 independent runs. Finally, each set of hyperparame-
ters was assigned a mean hypervolume value as well as a standard deviation value.
Figures 5.1, 5.2, 5.3, 5.4 show both the mean and standard deviation values for the
hypervolume obtained for each hyperparameter value using H1/S0, H1/S1, H0/S0,
and H0/S1, respectively.
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Figure 5.1: Performance associated with each hyperparameter value using H1/S0.
Solid lines indicate the mean hypervolume, light areas indicate the standard devia-
tion, and a circle marks the value that led to the highest mean hypervolume value.

Upon comparing the two versions that utilize the heavy tail selection parameter,
it can be noted that higher values for the “Add node” parametrical mutation have
resulted in higher mean HV values. However, the two versions differ in terms of
the heavy tail and “Add connection” parameters. In H1/S1, lower values for both
parameters are linked to higher HV values, whereas in H1/S0, the best performance
is associated with higher values for these two parameters. This behavior change
demonstrates how the values for the heavy tail selection parameter vary depending
on the density measure used.

Figure 5.2: Performance associated with each hyperparameter value using H1/S1.
Solid lines indicate the mean hypervolume, light areas indicate the standard devia-
tion, and a circle marks the value that led to the highest mean hypervolume value.

Then, the versions without the heavy tail parameter, H0/S0 and H0/S1, are
compared. Removing the heavy tail operator does not result in significant differences
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for the “Add connection” mutation parameter between these versions. However,
these versions differ in terms of the values of “Add node” and parametrical mutation
parameters. When using crowding distance in H0/S0, both a high value for “Add
node” mutation and a low value for parametrical mutation have led to the highest
mean HV value. In contrast, the H0/S1 version that employs the hypervolume
contribution as density measure has achieved the highest mean HV values with
a low value for the “Add node” mutation and a high value for the parametrical
mutation.

Figure 5.3: Performance associated with each hyperparameter value using H0/S0.
Solid lines indicate the mean hypervolume, light areas indicate the standard devia-
tion, and a circle marks the value that led to the highest mean hypervolume value.

Figure 5.4: Performance associated with each hyperparameter value using H0/S1.
Solid lines indicate the mean hypervolume, light areas indicate the standard devia-
tion, and a circle marks the value that led to the highest mean hypervolume value.

To recommend a MEPS version and its corresponding hyperparameters, we an-
alyzed only the best-performing sets. For each MEPS version, we calculated the
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95th percentile of the mean HV value and filtered out hyperparameter sets with a
mean HV value below this threshold. Table 5.1 details the hyperparameter values
and their corresponding mean HV values for each version.

Table 5.1: Hyperparameter values associated with the mean hypervolume values
above the 95th percentile per MEPS version. The values for the highest mean HV
are in bold.

Version Avg. HV α pac pan σ

H1/S0
23073.24 1.0 0.6 0.6 1.1
23067.15 0.4 0.3 0.5 1.1
23067.13 0.7 0.3 0.6 1.3

H1/S1
23346.12 0.3 0.3 0.5 1.2
23336.76 0.3 0.2 0.3 0.7

H0/S0
23077.56 - 0.5 0.6 0.7
23073.28 - 0.6 0.5 1.3

H0/S1
23351.87 - 0.4 0.3 0.9
23344.99 - 0.4 0.3 1.1

Among the different versions, it is worth noting the two versions that obtained
the highest HV values, H1/S1 and H0/S1. In H1/S1, it was possible to determine
a fixed value of 0.3 for the α parameter and ensure a performance superior to 95%
of the executions. Moreover, the attained bound for the other parameters is tighter
than the initial search bound. Although H0/S1 has one less parameter than its
H1/S1 counterpart, it was still possible to set both the pac and pan values to 0.4 and
0.3, respectively. As a result, the user is only required to define one parameter from
the evaluated set. Furthermore, a user that chooses to use H0/S1 in this problem
would need to determine a value for σ within the [0.9, 1.1] interval. Even though the
two versions are not statistically different from each other (as presented in Section
4.2.2), there are significant differences in the number of hyperparameters that need
to be determined by the user. In addition to not requiring the α parameter in H0/S1,
the analysis determined optimal values for two additional hyperparameters. Due to
requiring fewer hyperparameters to be set, we recommend using the H0/S1 version
to solve the proposed problem.
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Chapter 6

Conclusions

This thesis presented algorithmic solutions to energy resource management (ERM)
problems modeled as single-objective and multi-objective problems. First, an evolu-
tionary metaheuristic is enhanced with the addition of novel local search operators.
This improved algorithm, namely aC-DEEPSO was employed in solving a single-
objective risk-based ERM optimization problem in microgrids. Although presenting
a suitable solution for the problem, aC-DEEPSO uses more function evaluations per
generation than the other algorithms, due to the use of local search. This reduces
the number of available evolutionary cycles compared to standard C-DEEPSO.

Afterwards, a novel multi-objective ERM decision problem model was proposed,
which consider cost, CO2 emissions, and battery degradation. In this framework,
a learning agent controls the depth of discharge of a Lithium-Ion battery. Then,
a new multi-objective reinforcement learning algorithm was proposed to address
this decision problem. The proposed algorithm, dubbed Multi-Objective Evolu-
tionary Policy Search (MEPS), uses the NeuroEvolution of Augmenting Topologies
structure to evolve artificial neural networks for estimating action-preference values
considering multi-objective reward signals. The experimental results showed that
MEPS is competitive against standard deep reinforcement learning techniques in
both benchmark environments, and the proposed multi-objective ERM problem.

Lastly, this thesis evaluated the combination of MEPS with the Multi-objective
Swarm Evolutionary Hybrid (MESH), and the proposed adaptive velocity operator
from aC-DEEPSO. In this coupled approach, MESH acts as a depth initialization
strategy that performs an initial search in the weights space to initialize the popu-
lation. The MEPS then initializes using the obtained set of weights. The proposed
approach was validated on three different benchmarks environments, in which not
all MEPS versions achieved the maximum performance in terms of the hypervol-
ume of the solution set. The proposed coupled algorithm, namely Swarm-Intelligent
MEPS (SI-MEPS), not only improved the performance of MEPS but also achieved
solutions with fewer nodes and connections. In spite of the competitive results in
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the benchmark environments, SI-MEPS was not able to outperform standard MEPS
in the proposed multi-objective ERM problem.

Overall, the current results obtained in this thesis have indicated a potential in
providing algorithmic solutions to the problem of providing optimal control of micro-
grid systems with respect to either one or multiple objectives. Providing solutions
that ensure a reliable and profitable operation of a microgrid system contributes
towards society’s decabornization goal. Moreover, it also helps to popularize the
implementation of intelligent solutions in managing complex systems.

Since many real-world problems are inherently multi-objective, developing rein-
forcement learning algorithmic solutions for such problems is a current challenge.
In addition, evolving neural networks is a highly active and important research
topic that offers advantages over gradient-based optimization algorithms. There-
fore, efficient neuroevolutionary methods can lead to an automation in the process
of designing neural networks.

6.1 Contributions

This thesis demonstrated that coupling local search operators to an existing meta-
heuristic enhanced its performance in high-dimensional optimization problems. Fur-
thermore, this study showcased the efficacy of evolving the topology and weights of
artificial neural networks to address multi-objective reinforcement learning problems,
regardless of the dimensionality of the state space. As a result of this research, the
following works were published:

• Leite, G. M. C., Marcelino, C. G., Pedreira, C. E., Jiménez-Fernández,
S., & Salcedo-Sanz, S.. Evaluating the risk of uncertainty in smart
grids with electric vehicles using an evolutionary swarm-intelligent algo-
rithm. Journal of Cleaner Production, 401, 136775, 2023. doi:
https://doi.org/10.1016/j.knosys.2023.111027;

• Leite, G. M. C., Jiménez-Fernández, S., Salcedo-Sanz, S., Marcelino,
C. G., & Pedreira, C. E.. Solving an energy resource management
problem with a novel multi-objective evolutionary reinforcement learn-
ing method. Knowledge-Based Systems, 280, 111027, 2023. doi:
https://doi.org/10.1016/j.jclepro.2023.136775;

6.2 Future Work

MEPS is designed to evolve neural networks with one output node for each available
action. As the action space size increases, the network size also increases. However,
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for the extremal case of an infinite action space size, the current version of MEPS
cannot be used. To avoid discretization of continuous action spaces, a future research
may investigate how to update MEPS to enable its application to problems with
continuous action spaces.

The coupling of MESH and MEPS introduces several new hyperparameters and
adds another layer of complexity on top of MEPS. Furthermore, there were fewer
available generations to run each algorithm of the coupled approach in this MG envi-
ronment, in contrast to the benchmark tests. Therefore, although SI-MEPS presents
a promising approach, further research is necessary to investigate the effects of the
new hyperparameters and evaluate their performance in different environments.

Regarding the crossover operator in neuroevolution, MESH addresses this issue
by encoding weights and biases into vectors and performing crossover on them.
However, the initial population is initialized with the same topology, meaning that
every weight-encoded vector in MESH lies in the same dimension. A future research
should investigate how to employ MESH for chromosomes with different lengths.

Finally, SI-MEPS was fine-tuned as a coupled algorithm considering both MESH
and MEPS parameters. However, further studies are necessary to assess whether
fine-tuning each part of SI-MEPS individually would lead to improved performance.
Thus, a future work should examine the performance impacts of fixing SI-MEPS
parameters to standard MEPS fine-tuned values, and uniformly searching MESH
parameters.
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