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As redes reguladoras de genes booleanos permitem a análise dinâmica de 

sistemas biológicos característicos do funcionamento celular. Sua abstração de alto 

nível do sistema biológico em estudo é compensada por sua capacidade de fornecer 

informações úteis sobre sistemas dinâmicos de tamanho considerável. 

Esta tese propõe o uso de redes booleanas para modelar uma rede reguladora de 

genes relacionada ao câncer de mama. Por meio da modelagem dinâmica da rede 

analisada, foi possível identificar os elementos mais críticos do sistema para a definição 

de um determinado fenótipo celular relacionado ao câncer. 

Além disso, esta dissertação apresenta uma metodologia capaz de otimizar, em 

nível computacional, o número de alvos identificados na experimentação celular in 

vitro. As simulações computacionais indicam que ela poderia induzir a morte celular em 

uma célula cancerosa inibindo um conjunto reduzido de genes-alvo. 
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Boolean gene regulatory networks allow for the dynamic analysis of biological 

systems characteristic of cellular functioning. Their high-level abstraction of the 

biological system under study is compensated by their ability to provide helpful 

information on dynamic systems of considerable size. 

This thesis proposes using Boolean networks to model a gene regulatory 

network related to breast cancer. Through the dynamic modeling of the analyzed 

network, it was possible to identify the most critical elements of the system for the 

definition of a particular cellular phenotype related to cancer. 

In addition, this dissertation presents a methodology capable of optimizing, at a 

computational level, the number of targets identified in cell experimentation in vitro. 

Computational simulations indicate that it could induce cell death in a cancer cell by 

inhibiting a reduced set of target genes. 
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CHAPTER 1 

                                 INTRODUCTION 

 

The objective of this study is to model a specific computational system related to 

breast cancer and, consequently, its dynamics. It will also provide useful insights that 

can be used in a potential therapeutic approach. To this end, this introductory chapter 

will provide all the conceptual elements used in this research that will allow for easy 

reading and interpretation of the choices and techniques used throughout the path 

followed in realizing this thesis. 

 

1.1  PART I – Biological Concepts 

1.1.1 - Pathology  

The pathology on which the modeling of this research is applied is cancer. It is a 

group of diseases characterized by unregulated cell growth and the invasion and spread 

of cells from the site of origin to other sites in the body. Cancer is a genetic disease [ 

Volgestein and  Kinzler, 2004]. It is caused by gene changes that control how cells grow 

and multiply.  

The type of cancer investigated in this study is breast cancer, the most commonly 

occurring cancer in women worldwide [Sung Hyuna et al., 2021]. It is a group of 

biologically and molecularly heterogeneous diseases originating from the breast. It 

comprises several biological subtypes with distinct behaviors and responses to therapy. 

These molecular subtypes are usually divided into five categories [Feng et al., 2018]: 

 

1- Luminal A breast cancer:  estrogen receptor (ER) and progesterone-receptor 

(PR). It accounts for about 40% of all breast cancer. 

2- Luminal B breast cancer: Accounting for  < 20% of all breast cancer. Luminal B 

cancer grows slightly faster than luminal A. 

3- HER-enriched breast cancer: Accounting for 10%-15% of breast cancer and is 

characterized by the absence of ER and PR expression. 

4- Triple-negative/basal-like breast cancer (TNBC): Accounting for approximately 

20% of all breast cancer and is characterized as ER-negative, PR-negative, and 
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HER2-negative. TNBC usually behaves more aggressively than other types of 

breast cancer, making it a high-grade breast cancer. 

     5- Normal-like breast cancer: It is similar to luminal A disease. It is ER and/or PR   

          positive and HER2 negative. 

 

 1.1.2 – Hallmarks of cancer 

 

The large number of genes involved in cancer can be organized into a limited 

number of biological functions, termed Hallmarks of cancer [Hanahan., 2022].  

These hallmarks have been proposed as capabilities acquired by human cells in 

their transition phase from normal to neoplastic growth states, with the aim of providing 

knowledge capable of rationalizing the complex phenotypes of different human tumor 

types into a common set of cellular parameters. The hallmarks comprise the capability 

for sustaining proliferative signaling, evading growth suppression, enabling re plicative 

immortality, tumor-promoting inflammation, activating invasion and metastasis, 

inducing or accessing vasculature, genome instability, and mutation, resisting cell death, 

deregulating cellular metabolism, and avoiding immune destruction. With a view to 

constant progress in understanding the mechanisms underlying the nature of cancer, 

new emerging hallmarks have been proposed: unlocking phenotypic plasticity, which is 

a capability that enables disruptions of cellular differentiation; non mutational 

epigenetic reprogramming, which involves purely epigenetically regulated changes in 

gene expression  that like DNA mutations, can contribute to the acquisition of hallmarks 

capabilities during tumor development; polymorphic microbiomes, for which the 

polymorphic variability in the microbiomes can have a profound impact on cancer 

phenotypes [Dzutsev et al., 2017] ; senescent cells, seen until now as a protective 

mechanism against neoplasia, but for which a growing body of evidence instead reveals 

its ability to stimulate tumor development in certain contexts [Koward et al., 2020] 

These common features  for each type of cancer are crucial capabilities of a cell in 

the formation of a malignant tumor. Cancer is daunting in the breadth and scope of its  

diversity. The concept embodied in these hallmarks is helping to tackle this complexity 

with the perspective  to understand mechanisms of cancer. They constitute an 

organizing principle for rationalizing the complexities of neoplastic disease. 
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1.1.3 – Cellular apoptosis 

 

Apoptosis is a highly regulated process of programmed cell death that plays in 

developmental cells but also controls cell numbers and gets rid of  damaged cells 

[Pecorino, 2012]. It is a type of cell suicide that is intrinsic to the cell, and these 

characteristics make it an important factor in tumor suppression. In fact, if the apoptotic 

capacity of a cell is damaged, for example, due to a mutation, this cell will continue to 

divide without limit, turning into a cancerous cell. Cells can be induced into the process 

of apoptosis by extracellular signals, also called "death factors," which trigger a series 

of chain reactions in the cell referred to as “extrinsic pathways”, or by internal physical-

chemical causes such as DNA damage or oxidative stress. In this case, the resulting 

reaction triggered within the cell is commonly  called the "Intrinsic pathway". 

A group of proteins called caspases plays a central role in both apoptotic pathways in a 

cascade activation mode, where one caspase activates another in a chain reaction. 

Another group of proteins, Bcl2 family, turns out to be crucial in the induction of the 

intrinsic pathway. Some genes in this group promotes apoptosis and others instead  

inhibits it :[Pecorino, 2012]  . The correct balance of these different functions enables 

the functioning of this essential cellular process. 

 

1.1.4 – Cellular reprogramming 

 

Cellular reprogramming aims to artificially induce changes in a cell phenotype 

through perturbation of specific genes.  

For a long time, biological processes such as differentiation, tumorigenesis, and 

cellular aging have been thought irreversible. This means that the transition of a cell 

from one state to another based on genetic or epigenetic mutations has always been seen 

as a unidirectional phenomenon. Through recent studies [Yamanaka and Blau., 2010], 

however, it has been shown how this process can become bidirectional, that is, how it is 

possible to allow the cell to move out of a given phenotype to acquire different 

functional characteristics. Now, let us contextualize this concept in a carcinogenic 

context. 
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Cancer is generally caused by  genetic and epigenetic alterations considered 

irreversible. Experimental evidence [Cho et al., 2017] supports a strategy of reverting 

cancer cells into normal cells by inducing permanent differentiation. 

Cancer reversion involves a cellular reprogramming methodology by which cancer cells 

lose their malignant properties and acquire the phenotypic characteristic of normal cells,  

suppressing malignancy [Shin and Cho., 2023]. 

 

1.2  PART II – MODELING CONCEPTS 

 

1.2.1 – Network construction 

 

The starting point of the modeling  was to find the constituent elements of the 

adopted network representing the interactions between certain genes. Gene regulatory 

networks regulate the expression of genes in any given developmental process 

[Davidson and Levin., 2005]. In this control system, each node in the network receives 

and integrates multiple  inputs in the form of regulatory proteins that may be activating 

or repressing gene expression, providing as output the transcript value associated with 

the gene target.   This result was achieved through the use of the public repository 

MSigDB [Liberzon et al., 2015], through which four lists of genes linked with two 

hallmarks of cancer, "Evasion of cell death" and "Unlimited replicative potential"  were 

taken. This group of genes was then compared with the differentially expressed genes of 

the MB231 triple-negative breast cancer cell line. This difference was obtained by 

comparing the expression level of the MB231 cell line with the MCF10 type cell line, 

representing a noncancer cell line.  The choice of the triple negative cancer type was 

due to its therapeutic difficulty in treating this disease.  At the end of this operation, 

only those genes obtained through the MSigDB repository that were also differentially 

expressed in the MB231 line were retained.   Using the human interactome from the 

intact-micluster.txt file, the existing interactions between the component genes of the 

above-selected group were found. An interactome is the total set of molecular 

interactions in a particular cell. It specifically refers to physical interactions between 

molecules but also describes sets of indirect interactions between genes [Caldera et al., 

2017]. From the interactions found, genes with a number of connections greater than 50 

were chosen, considering the greater connectivity of a node within a network as an 

indicator of its greater influence on the dynamics of the system [Albert, 2005]. Having 
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performed this filtering operation, transcription factors were associated with these 

remaining vertices through the use of the online tool TRRUST [Han et al., 2015]. 

Having defined the relationships existing between the vertices of the gene 

regulatory network, it was necessary to determine the type of relationship existing 

between neighboring genes. This means knowing the type of influence exerted by a 

gene, which can be activation or inhibition of gene expression on its neighbor in which 

a direct linkage is present. This type of information can be obtained through 

considerable consultation of existing literature, when it exists, specifically related to 

verified interactions between two or more genes. The tool through which this curation 

process was carried out is the Metacore database [Ekins et al., 2007].  Metacore made it 

possible to identify the type of interaction between the various genes in the network. 

Each identified interaction is correlated with an indication of the specific existing 

literature justifying the type of interaction assigned to the analyzed gene pair. 

The procedure described above led to the creation of the model related to the 

investigated pathology, a model represented by a gene regulatory network, which shows 

the causal nature of the interactions present between the vertices of the network.  

This search for causality guided the entire process of building the model. 

 

1.2.2 – Boolean network model construction 

 

The study of the dynamics of a gene regulatory network system can be done from 

a quantitative or qualitative point of view. In the former case, the tool used is 

differential equations that offer considerable detail in the description of the phenomenon 

under investigation but require knowledge of a large number of parameters, making it 

prohibitive in networks with a large number of nodes. 

In the research described in this thesis, we opted for a qualitative investigation of 

the system dynamics using Boolean networks [Thomas, 1973]. It is an approach based 

an abstract representation of the system, where every node can take two possible values: 

zero for inactive and one for active. Inactive or active is indicated as an approximation 

of the gene expression level of the genes that make up the network at a given time 

[Schwab et al., 2020]. 
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Fig. 1.1  Representation of the network nodes through logical gates of type AND, OR 

and NOT. Figure adapted from [Schwab et al., 2020]. 

 

Figure 1.1 shows how network nodes in the formalism of Boolean networks are 

equivalent to logical gates of type AND, OR, and NOT. The only output of each port, 

which is equal to a Boolean value, is the result of the processing implemented by the 

port on several Boolean input values.  

The choice of the type of Boolean function to apply to each node in the network 

represents a complex task crucial to the result produced by the system.  The question 

sought to be answered is: how can we choose the set of appropriate Boolean functions 

such that the ensuing network dynamics mimic cell fate behavior? In this work, we 

choose to use functions of type Nested Canalizing Function. The characteristic feature 

of this type of function is that a single input or a group of inputs determines the 

corresponding output [Schwab et al., 2020].  

An important aspect of complex  dynamical systems, like our Boolean network, is 

the existence of two dynamical regimes, order and chaotic, and a critical phase 

transition boundary between the two [Nykter et al., 2008]. Ordered regimes are 

intrinsically robust with simple dynamics. Contrary to this, networks in chaotic regimes 

are very sensitive in front of small perturbations, which can propagate on the whole 

system, preventing the necessary relative robustness for cellular homeostasis. Between 

these two regimes, there is a third regime named phase transition, which represents a 

trade-off between the need for stability and the need to have a range of dynamic 

behavior to respond to a variable environment. Kauffman [Zhou et al., 2013] showed 

that the Boolean functions that belong to the canalizing functions shift the dynamics of 

the network from the chaotic to the phase transition. This is because every genes have 
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less effective upstream regulators than it appears on the network diagram, which 

improves the robustness of the networks. 

Having defined the type of Boolean function to be applied to each node in the 

network, it remains to determine the method of evolution of the system as time passes. 

The choice was to allow the system to employ a synchronous evolution mode, in which 

all nodes in the network are updated simultaneously with each temporal evolution of the 

system. 

 

 

1.2.3 – Attractor definition 

 

The model simulated with the Boolean network can reach a stable dynamic 

behaviour, called attractor, that is interpreted as a physiological endpoint [Wang et al., 

2012]. 

 

                       

 

Fig. 1.2   A: Steady-state attractor    B: Simple-cycle attractor. Figure adapted from 

[Mori and Akutsu., 2022]. 

 

As shown in Figure 1.2, an attractor is a state of a Boolean network with no 

outgoing edges in the state transition graph. Steady-state attractors comprise only one 

state, while cycle attractor is formed by a sequence of states that are periodically 

repeated. They represent the long -term behavior of the Boolean network, and once they 

are reached, they cannot be left unless an external perturbation occurs. 
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The basin of attraction comprises all states which lead to a corresponding 

attractor. 

Now, we can use the Boolean network's attractor concept to represent a specific 

cellular state. Considering the space state of the constructed gene regulatory network as 

the space that contains all theoretically possible gene expression patterns of this 

network, each point in the state space represents the combination of gene expression of 

all component genes in the system. The attractor state is a set of points in the state space 

with a particular property: a stable equilibrium. Based on this statement, Kauffman 

[Kauffman, 1969] proposed that attractor states correspond to the gene expression 

profiles associated with each cell type. Consequently, if cell types are attractors and 

cancer cells are viewed as abnormal cells , then cancer cells should also be represented 

by attractors [Huang et al., 2009].  

Based on these considerations, it is possible to define common characteristics 

between a cellular state and a Boolean-type attractor. Both are:  

- Discrete 

- Dynamically stable 

- Mutually exclusive 

These statements provide a basis for  using Boolean networks in dynamic modeling of a 

cellular state geared toward the goal of cellular reprogramming. 

 

1.3  PART III   – STRUCTURE OF THE THESIS  

 

1.3.1 – General overview  

 

The strategy adopted in the work presented in this thesis is schematically depicted in the 

following figure 1.3 
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Fig. 1.3   The three implementation phases of this research. 

 

In Stage 1 [Sgariglia et al., 2018], contained in Chapter 2 of the thesis, we provide 

an overview of cellular reprogramming. The possibility of being able to produce a 

guided mutation of a cell's evolutionary fate conceptually realized on the epigenetic 

landscape [Baedke, 2013] that describes its dynamic evolution is the conceptual premise 

on which the following two stages constituting the research described here are based. 

Boolean networks allowed the representation of this epigenetic landscape and the 

possibility of modeling the action on it to guide, in silico, the evolution of a cell's state 

within this landscape.  

In stage 2, the  breast cancer  gene regulatory network was constructed, RNA-seq 

data were binarized, and specific attractors related to particular patients were found, 

identifying the peculiar elements in the system that characterize these attractors.  

Finally, stage 3 [Sgariglia et al., 2024] tested the validity of the implemented model 

against a n actual biological process carried out in vitro and optimized the results 

obtained in this research [Tilli et al., 2016]. 
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Note the close correlation of the three sections shown in Figure 1.3. Stage 1 

represents the theoretical premise on which the following two steps rest, and the starting 

point of stage 3 is represented by a well-defined step in stage 2. 

 

1.3.2 – Binarization process 

 

RNA, or ribonucleic acid, is a biological macromolecule that plays a central role 

in protein generation from DNA. Since DNA cannot leave the cell nucleus, it cannot 

generate a protein. This occurs via the transcription of RNA molecules that code for 

protein. This quantitative information can be obtained through RNA-seq, which is a 

technique that uses next-generation sequencing to detect the presence and amount of 

RNA molecules in a biological sample, providing a snapshot of gene expression in the 

sample, also called transcriptome [Chaffey et al., 2003]. 

The breast cancer-related RNA-seq data used in this thesis are Single cell RNA-

seq (scRNA-seq) from tumor cells (Stage 2 of figure 1.3) and bulk RNA-seq from in 

vitro cell culture (Stage 3). The scRNA-seq examines the gene expression level of 

individual cells in a given population by simultaneously measuring the RNA 

concentration of hundreds to thousands of genes. It can reveal complex and rare cell 

populations, uncover regulatory relationships between genes, and track the trajectories 

of distinct cell lineages [Hwang et al., 2018]. The in vitro cell culture is a biological 

process reproduced in the laboratory outside the organism. In this case, transcript values 

are obtained by Bulk RNA sequencing, which is a method of choice for transcriptomic 

analysis of pooled cell populations. It measures the average expression level of 

individual genes across hundreds to millions of input cells. 

 Translating a given gene expression value into its corresponding dichotomous 

value represents one of the most critical steps in this type of modeling, in which the 

interpretive component of an observed quantitative phenomenon has a significant 

bearing on the quality of the final result. In stage 2 we  used the BASC algorithm 

[Hopfensitz et al., 2012], which detects the discriminating thresholds on the data for the 

attribution of the corresponding dichotomous value. 

 

In this algorithm, there are two approaches, named  BASC A and BASC B, which 

have the following steps in common: 
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- definition of a step function in which the analyzed data is reorganized in 

ascending order. 

- find the highest discontinuity in the step function. 

- estimate the location and variation of the strongest discontinuities. 

In BASC A, the step function is calculated to minimize the Euclidean distance 

from the initial step function. BASC B obtains step functions from smoothened versions 

of the input function. 

In this work, we used the BASC B,  due to the best performance shown on the 

analyzed data. 

Having assigned the RNA-seq value to the corresponding gene in the network and 

transformed it into a Boolean value, the remaining action was to find the attractors 

related to the specific individual cells of a given patient suffering from the disease under 

study. 

In stage 3, Bulk  RNA-seq values assigned to the corresponding genes in the network 

are derived from cancer cell lines cultured in vitro. The following figure shows 

schematically how these data were organized and binarized for subsequent dynamic 

system analysis. Since the data we processed in stage 3 is different from stage 2, we 

used a different binarization process. 
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Fig. 1.4  Organization and binarization of gene expression values for stage 3. Part A of 

the figure represents the original data format, and part B shows the final format after 

appropriate interventions. 

 

As shown in Section A of Figure 1.5, the gene expression data from in vitro cell 

cultivation consists of two cancer cell phenotypes, B and P, and one noncancer cell 

phenotype, C. Subtracting the RNA-seq value of each line C from each line B and P 

yielded 20 columns (section B) representing the gene expression difference values 

between a tumor and a nontumor phenotype for each gene in the implemented network. 

Through appropriate statistical calculation techniques, a discriminating threshold value 

was assigned to each column. Comparison of the value of the difference in gene 

expression present in each column position with the corresponding threshold value 

determines the  Boolean value attributed to the specific position relative to the gene and 

column. 

This process resulted in twenty columns representing twenty initial network 

configurations on which to perform dynamic analysis in search of attractors. 
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1.3.3 - Search for attractors 

 

Having assigned the RNA-seq value to the corresponding gene in the network and 

transformed it into a Boolean value, the remaining action was to find the attractors 

related to the specific individual cells of a given patient suffering from the disease under 

study. 

Finding the attractors of a Boolean network for all possible initial combinations of 

node values can be a computationally prohibitive task, especially in networks of similar 

size to the one used in this research. For the search of attractors in this work, an initial 

configuration of Boolean values representing the analyzed cell state was assigned to the 

network, which allowed the system to be placed at a point in a basin of attraction of a 

given attractor. Under these conditions, it was sufficient to calculate the trajectory 

followed by the system from this initial point to the specific attractor to which it 

belongs. This methodology allows the search for attractors without excessive 

computational resources. 
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Fig. 1.5   Procedure adopted for the identification of the attractors attributable to each 

patient, and the specific genes related to this specific patient that characterize the 

dynamics of his attractors.   

 

Figure 1.4 schematically shows the procedure adopted in stage 2 for identifying 

attractors and peculiar elements related to them in three separate procedural sections.  

 In Section 1, lists equal to the number of single cells of the specific patient are 

created for each patient. In these lists are the Boolean scRNA-seq values assigned to 

each gene in the network. The attractors of each initial configuration of the network 

represented by each list are calculated. 

In  Section 2, genes that show consistent behavior in their expression level in all 

attractors attributed to a given patient are identified. 

In Section 3, the results consist of assigning genes in the network to each patient 

with a peculiar behavior in each attractor. 

This procedure made it possible to study data from different patients with the same 

disease by focusing the search on the specific elements that could potentially 

characterize the evolution of the disease differently. 

 

1.3.4 – Validation and optimization 

 

The inspiring principle of stage 3 [Sgariglia et al., 2024] is the result obtained in 

an in vitro experiment [Tilli et al., 2016] by which a decrease in the proliferation of a 

breast cancer cell was achieved  by inhibiting specific genes. The objective of the 

research at this stage was to emulate the experiment performed in vitro through a 

computational model by obtaining the same biologically significant results and trying to 

improve its performance at the quantitative and qualitative levels. The idea is to guide 

our biological model in silicon to assume a configuration in attractors and attain a state 

of cell death. 

 To reproduce in the model a process of cell apoptosis, a group of genes with a 

specifically biologically relevant role in the process of cell apoptosis were added to the 

gene regulatory network developed in stage 2, highlighting how this step represents a 

point of continuity, as highlighted in Figure 1.3, between the work carried out in stage 2 

and the research pursued in stage 3. The functional specificity related to apoptosis of the 
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group of genes integrated into the model results from a thorough literature search on the 

topic. 

This integration action aims to use these new elements added to the system as 

indicators of the modeled cellular phenotype once the system dynamics reach a stable 

state. They represent the role that direct visual verification on the ongoing process can 

have in the laboratory, in a biological process in silicon, allowing localization within a 

state space representing the epigenetic landscape. 

The configuration in terms of Boolean values of the group of apoptosis-specific 

genes in the attractors detected as a result of appropriate interventions on the 

computational model designed to reproduce the methodology adopted in the in vitro 

experiment [Tilli et al., 2016] allowed verification of the biological compatibility of our 

model. 

Having reproduced the in vitro experiment in terms of biologically relevant 

results, optimization of these results was sought in terms of fewer  genes inhibited in 

vitro essential for a reduction of cancer cell proliferation and possibly a better 

configuration of the cancer gene expression group of genes related to apoptosis, 

expressed with Boolean values in the attractors found.  

The strategy adopted to pursue this result is summarized in these two steps: 

 

step 1:  Network modularity check 

step 2: Apply a specific analysis on the network structure. 

 

The first step was to verify the implemented network's modularity by whether the 

apoptosis-related genes inserted into the system are concentrated in a single or two 

modules of the network rather than scattered throughout it. Modules, also known n as 

communities, essentially are groups of nodes more closely connected than the rest of the 

network [Raman., 2021]. This property of the network was investigated by the Clauset-

Newman-More greedy modularity maximization algorithm [Clauset et al., 2004]. The 

steps performed by the algorithm are: 

 

 1: Assign each node to a community of its own. Therefore, we start with a number of 

communities equal to the number of nodes in the network. 

 2: Inspect each pair of communities connected by at least one link and compute the 

modularity variation obtained if we merge these two communities. 
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 3: Identify the community pairs for which M, the value the algorithm gives to each 

detected community, is the largest, and merge them. 

 4: Repeat step 2 until all nodes are merged into a single community 

 5 : Record for each step and select the partition for which the modularity is maximal. 

 

The result obtained through the network modularization procedure, i.e., 

verification that the genes constituting the apoptosis-related group are concentrated in 

specific clusters, is the prerequisite for implementing the method to improve the results 

obtained in in vitro experimentation, above defined as step 2. 

 

 

 

Fig 1.6  Schematization of the objective pursued. Cluster A represents the group of 

network nodes researched. Clusters B and C are the communities in which apoptosis-

related genes are concentrated. 

 

- Detect all shortest paths between each inhibited gene in the laboratory (blue 

nodes on the left of the figure) and all nodes related to apoptosis, shown in 

groups B and C. 

- Create a list for each inhibited gene in the laboratory (blue nodes in the figure) 

in which the network nodes participating in at least one shortest path of this 

inhibited gene are included. 
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- Assign a score to each node of the network based on the number of lists linked 

to the inhibited gene (blue node in the figure) in which it is present. 

At the end of this procedure, the nodes in the network with the highest score are the 

genes sought to be inhibited in the computational model instead of the group inhibited 

in the laboratory. 

 

1.4  PART IV – OBJECTIVE OF THE THESIS 

 

1.4.1  Primary objective 

 

Identification of gene regulatory network vertices as potential therapeutic targets. These 

potential targets may enable the transition from a given pathological cell phenotype to a 

nonpathological one. 

 

1.4.2   Complementary objectives 

 

 -  Identify specific data to build a gene regulatory network related to breast cancer 

 - Finding specific system attractors through Boolean  network modeling and detecting 

these stable states' peculiar elements. 

- Verify the biological compatibility of the constructed model. 
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  CHAPTER 2                                                                             [Sgariglia et al.,2018]      

                                                    

                                             Cellular Reprogramming                                          

 
With cellular reprogramming, it is possible to convert a cell from one phenotype 

to another without necessarily passing through a pluripotent state. This perspective is 

opening many interesting fields in the world of research and biomedical applications. 

This essay provides a concise description of the purpose of this technique, its evolution, 

mathematical models used, and applied methodologies. As examples, four areas in the 

biomedical field where cellular reprogramming can be applied with interesting 

perspectives are illustrated: diseases modeling, drug discovery, precision medicine, and 

regenerative medicine. Furthermore, the use of ordinary differential equations, Bayesian 

network, and Boolean network is described in these contexts. These strategies of 

mathematical modeling are the three main types that are applied in gene regulatory 

networks to analyze the dynamic interactions between their nodes. Ultimately, their 

application in disease research is discussed considering their benefits and limitations. 

The concept of cellular reprogramming began in the 1960s with the idea of 

reversing the direction of cell differentiation, which was so far conceived only as 

occurring in a single irreversible direction. The differentiation of cellular state was 

schematically described through theWaddington epigenetic landscape [Waddington, 

1957; Waddington, 1940], where the metaphorical valleys represent states of cellular 

stability, and the hills around them represent the epigenetics barriers that prevent the 

transition from one state to another. The goal of cellular reprogramming is to induce 

cells to overcome these barriers and move from one stable state (attractor) to another 

according to the simulations described in this chapter. Among the various scientific 

advances in this field, one may quote the work done by Takahashi and Yamanaka 

[Takahashi and Yamanaka, 2006], concerning the generation of induced pluripotent 

stem cells (PSC), as an important reference in the progress of cellular reprogramming.    

The ability of a cell to reprogram itself from one attractor to another in the epigenetic 

landscape according to external and internal perturbations, or the overexpression of 

some key genes, has opened a huge field of investigation in the world of scientific 

research. Different strategies were followed with the aim of inducing phenotypic cell  

changes using the different mathematical and biological modeling techniques available.    
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Technological integration in different scientific areas such as biology, mathematics, 

statistics, and computational sciences is essential for the success in the simulation of 

cellular reprogramming. For this reason, the contribution of systems biology is 

determinant for the success of this emerging field. This chapter first defines cellular 

reprogramming and its objective. Next, it provides a review of the methods used to 

achieve cellular reprogramming and the approaches to build the network models 

analyzed. Lastly, we discuss the applications of cellular reprogramming to diseases, 

highlighting the benefits and limitations of this technique and its potential application in 

different areas. 

   

 

2.1                            What is cellular reprogramming? 

 

 

2.1.1                         Premise 

 

 

We define cellular reprogramming as the conversion of one specific cell type to 

another one. Eukaryote cells transit from one state to another through changes in 

geneexpression and, consequently, protein levels in response to signals coming from the 

extracellular environment. The goal of cellular reprogramming is to artificially induce 

changes in a cell phenotype through perturbation of specific genes. 

Until few years ago, cellular differentiation has long been thought of as “one-way 

traffic,” without any possibility of returning to a previous cellular state. The idea that a 

cell could be induced to reverse its differentiated state toward a less specialized one was 

not even imagined. 

The demonstration in 1963 [Siminovitch et al., 1963] of cell dedifferentiation in 

culture of adult fibroblast through interaction with stem cells of a mouse 

teratocarcinoma [Martin GR, 1981] was a great step toward the concept that cellular 

differentiation is, indeed, reversible. 

In 2006, Takahashi and Yamanaka induced PSCs from adult fibroblast cultures of 

mouse under the incubation with the transcriptional factors POU5F1, SOX2, KLF4, and 

MYC [Takahashi and Yamanaka , 2006].  

This remarkable discovery was a milestone for further advances and 

developments in the cellular reprogramming field. For the first time, it was shown to the 

scientific community that reversibility in the cell differentiation process was possible. 
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Mature cells could be reverted to a previous pluripotent state, and it was possible to 

control the gene expression pattern with few transcription factors. 

 

 

2.1.2         Meaning of cellular reprogramming 

 

 

We begin with the mechanism of cell reprogramming by the definition of 

epigenetic given by Conrad Waddington (Fig. 1): “Epigenetic is the branch of biology 

that studies the causal interactions between genes and their products, which bring the 

phenotype into being” [Waddington , 1968]. He conceived the epigenetic landscape as 

an inclined surface with a cascade of branches ridges, and valleys [Waddington ,1939; 

Waddington ,1940; Waddington ,1957]. 

The goal of cellular reprogramming is to bring a cell (the ball of Fig. 1) from a 

valley of differentiation back to a state of pluripotency or to another differentiated state 

into a different valley passing a ridge. Following the same logic, it becomes clear that 

inducing a cell to move from one specialized cell state to another without necessarily 

passing through the pluripotent state is also possible. Indeed, the transition from a 

differentiated state toward a progenitor state is referred to as dedifferentiation, while the 

transition between two differentiated states is called transdifferentiation. 

 

                                    
 

Fig. 2.1 Waddington landscape representation of epigenetic space where the ball that 

can roll down from an undifferentiated cell state into a specialized state. The branches 

are the different potential states, and the ridges are the epigenetic barriers that prevent a 
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cell from taking a different differentiation trajectory than the one in which it is already 

engaged. 

 

Keeping in mind the Waddington landscape representation described above, we 

might answer the following two questions: 

 

(a) What are the barriers we must overcome to move from one cellular state to 

another? 

(b) How can we induce cellular state transitions? 

 

Answering the first question, we know that a stable cell state can be seen as a 

high-dimensional attractor of the gene regulatory network [Huang et al., 2005]. 

Attractors correspond to stable states associated with specific cell types [Huang  et al., 

2009]. 

In this context, cell fates are determined by gene expression and epigenetic 

patterns controlled by multiple factors [Lang et al., 2014], such as DNA methylation 

and histone modifications [Seah et al., 2015]. Both modifications can affect gene 

expression without inducing changes in DNA. DNA methylation involves the addition 

of methyl groups to the DNA molecule that usually results in the inhibition of 

eukaryotic gene transcription. 

Histone modifications are posttranslational processes that occur in the histone 

tails, which inhibit or induce local gene expression depending on the modification type 

[Goldberg et al., 2007].  

After illustrating the role of the epigenetic activity that controls cellular states, the 

second question can be answered: How can we induce state transitions? as outlined 

above, there are attractors corresponding to different cell fates and different epigenetic 

barriers that prevent transitions from one cell state to another. A stable cellular state is 

characterized by a given gene expression pattern. The perturbation of this pattern can 

induce cells to overcome these barriers by changing their steady state from one attractor 

to another in the epigenetic space [Ding and Wang, 2011]. This transition has the 

consequence of changing the cell phenotype. As an example, we can cite the positive 

regulation of transcription factors responsible for the regulation of a gene expression 

pattern. The scheme of Fig. 2 may represent both dedifferentiation and 

transdifferentiation processes. In general, we can think at epigenetic landscape as an 
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energy configuration, where the cellular state is defined by the underlying 

transcriptional and epigenetic regulation [del Sol and  Buckley , 2014]. 

 

                               
 

Fig. 2.2 Schematic representation of the cellular transition from one attractor to another 

by  overcoming an epigenetic barrier between two cell states as result of a specific 

perturbation. 

 

 

2.1.3         Applications 

 

 

Basically there are four main areas where cellular reprogramming are or could be 

applied in the biomedical research [Mall  and Wernig , 2017]: 

 

   (a) Disease modeling 

   (b) Drug discovery 

   (c) Precision medicine 

   (d) Regenerative medicine 

 

With disease modeling (a), we may think about transforming a cell pathology into 

another desired cell condition, such as healthy, less aggressive phenotypes or even cell 

death. 
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The benefit of this approach is to work with a human-specific representation that 

may not be available through cells coming from animal models. As an example, 

astrocytes dysfunction is related to several neurological and degenerative diseases, and 

their cellular reprogramming provides potential for the investigation of developmental 

and evolutionary features of the human brain. Exploring such potentialities, Dezonne et 

al. [Dezonne et al., 2017] successfully generated astrocytes from human cerebral 

organoids. 

Concerning drug discovery (b), new drug targets can be inferred from a model 

representation and tested for cell reprogramming in vitro and in vivo before they reach 

clinical trials. For example, induced PSCs can be reprogramed into insulinsecreting 

pancreatic β cells, and their determinant genes could serve as targets for drug 

development. Also, induced PSCs from diabetes patients are being used to perform drug 

screening for new therapies against diabetes mellitus (DM) [Kawser Hossain  et al., 

2016]. 

Precision medicine (c) aims to provide an individual treatment to patients and 

diseases. A key factor in this context is the pharmacogenomics that studies the  

influence of an individual’s genetic characteristics in relation to its body’s response to a 

drug. Succeeding in reprogramming a cell to a pluripotent state gives a chance to better 

understand the gentype-phenotype relationship at the individual level, which should 

allow the improvement of therapeutic efficacy [Hamazaki  et al., 2017]. 

Regenerative medicine (d) is the process of replacing, engineering, or 

regenerating human cells, tissues, or organs to restore or establish normal function 

[Mason  and Dunnill , 2008]. In therapies of cell replacement, the use of reprogrammed 

autologous cellscan theoretically be a solution against the risk of graft rejection, due to 

cellular mismatch between the host and donor. In order to implement this idea in 

humans, nonhuman primates were studied regarding their potential to generate PSC 

cells through different cellular reprogramming techniques [ Hemmi JJ et al., 2017]. 
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2.2     Reprogramming methods 

 

 

By cell state, one means the phenotype features of a cell as determined by the 

expression pattern of some of its key genes. Based on this definition, it is necessary to 

act on the expression of key genes to change a cell’s phenotype features, which is the 

main purpose of cellular reprogramming. Consequently, one way to achieve such 

purpose is to modulate the regulation of the transcription factors that are responsible for 

the expression of those key genes. This method will be discussed below, together with 

other cellular reprogramming techniques that were also used [Halley-Stott RP et al., 

2013]. 

 

 

2.2.1      Cellular reprogramming through the overexpression 

           of transcription factors 
 

 

The discovery that it is possible to change cellular fate by overexpressing just four 

transcription factors [Takahashi  and Yamanaka , 2006] boosted the field of cellular 

reprogramming. After transfection, the cell was induced to a pluripotent state very much 

similar to that of embryonic stem cells; this similarity concerned morphology, 

phenotype, and epigenetics. 

The switch from a somatic cell phenotype to induced PSCs through the 

modulation of transcription factor expression has an efficiency lower than 1% 

[Takahashi K, 2014]. Once the genomic sequences of the original and reprogrammed 

cells are mostly identical, the reason for the low performance of cell reprogramming 

may be related to cell epigenetic factors, which indicates that induced PSCs have an 

epigenetic memory inherited from the previous cellular state [D’urso  and Brickner , 

2014 ]. 

Lineage reprogramming can also be obtained by cell reprogramming. As an 

example, Takahashi and Yamanaka [Takahashi and Yamanaka, 2006 ] performed 

random gene integration at multiple DNA sites to obtain the overexpression of Oct4, 

Sox2, Klf4, and c-Myc transcription factors in adult fibroblasts, which caused their 

return to a pluripotent state. This transformation with retroviral vectors was performed 

for experimental purposes since the DNA integrates randomly at multiple sites and 

might promote the knockdown of essential genes and entail oncogenicity. To avoid such 
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noxious risk, alternative transformation techniques were used, such as the combination 

of seven drug-like compounds that were able to generate iPSCs without the insertion of 

exogenous genes [Hou et al., 2013]. In addition to drug-like treatment, the repeated 

transfection of plasmids for transcriptional factor expression into mouse embryogenic 

fibroblast was also performed, but without any evidence of their genomic integration 

[Okita et al., 2008]. 

 

 

 

2.2.2         Somatic cell nuclear transfer 

 

 

Somatic cell nuclear transfer (SCNT) is a technique in which the nucleus of a 

donor  somatic cell is transferred to another enucleated one called egg cell. After 

insertion, the somatic cell nucleus is reprogrammed by the egg cell. With this method it 

is possible to obtain embryonic stem cell (ESCs) [Byrne et al., 2007] as well as to 

induce the differentiation of a cell phenotype into a different one [Wakayama et al., 

2001]. 

 

 

2.2.3      Cell fusion 

 

 

It is possible to combine two nuclei within a same cell by the fusion of two cells. 

The dominant nucleus, the larger and more active one, imposes its pattern and 

consequently reprograms the somatic hybrid cell according to its dominant 

characteristics [Yamanaka and Blau, 2010]. It is worth noting here that the cell fusing 

technique is not always efficient in achieving the desired result and the reprogramming 

is often incomplete. 

 

 

2.3      Modeling cellular reprogramming 

 

 
Reprogramming is obtained by resetting the regulation of gene expression in 

somatic cells, which depends on the knowledge of the key genes and proteins that may 

serve as target to induce this process, and the interactions between them. 
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The intracellular environment is continually subjected to stimuli from 

extracellular environment, such as nutrient availability, mechanical injury, cell 

competition, cooperation, etc. This type of stimulation affects the intracellular 

environment by changing the gene expression pattern in response to each stimulus. In 

this context, transcription factors are activated by external signals through transduction 

and promote the expression of specific genes and their respective pathways to set up a 

cellular response. This regulation process can be extended and include the induction of 

specific cell phenotypes. 

Therefore, modeling the interaction between proteins in a living system and the 

transcription factors that regulate their expression is essential to carry out cellular 

reprogramming. As an approach to model such cellular systems, we may consider genes 

as variables and their activation state as “on” or “off.”With these observations in mind, 

we may address some mathematical methodologies to represent the relationship 

between these state variables. 

 

 

 

2.3.1           A Data-Oriented approach 

 

 

 

The development of new high-throughput technologies along with the growing 

amount of available data did promote computational frameworks based on protein 

interaction networks [Rackham et al., 2016] integrated to different databases, such as (i) 

FANTOM consortium [Forrest et al., 2014], which contains data on promoter 

characterization; (ii) STRING[Franceschini et al., 2012], which provides protein-protein 

interactions (PPI); and (iii) MARA (Motif Activity Response Analysis) [Suzuki et al., 

2009], which provides interactions between proteins and DNA, to predict the 

reprogramming factors necessary to induce cell conversion. 

In this context, Mogrify [Rackham et al., 2016] is a predictive system that 

integrates gene expression data and regulatory network information. It searches for 

differentially expressed transcriptional factors that regulate most of the differentially 

espresse genes between two cell types. This methodology has been validated in vitro by 

inducing the transdifferentiations of dermal fibroblasts into keratinocytes and of 

keratinocytes into microvascular endothelial cells. 
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Basically, one may model a biological system through three different strategies 

(Fig. 3).  

 

 

                         

 
 
Fig. 2.3 Schematic representation showing the interpretation of an edge between two 

nodes by three different modeling methods: (i) ODE gives a quantitative description of 

the state of the connection by differential equation modeling, (ii) Boolean network gives 

a qualitative interpretation in terms of a connection being activated or not, and (iii) 

Bayesian network gives a probabilistic assessment of the connection state. 

 

 

2.3.2         Ordinary differential equation 

 

In the context of a gene regulatory network, ordinary differential equations 

(ODEs) are used to describe the existing quantitative relationship between variables, 

i.e., nodes [Cao et al., 2012]. Theoretically, the use of ODE can provide a very accurate 

description of the existing interactions between system elements. In practice, the use of 

this technique, especially in complex networks, is difficult due to the high number of 

data and parameters involved in the process. The differential equation (formula 2.1) for 

each variable in the network is 

 

 

                                                   
   

  
                                                            (2.1)                                                               
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where the right side of the equation represent all variable function linked to the gene   , 

and the left side is the variation in the gene    expression. ODE can be used to model 

cellular reprogramming by determining the rate of change of a given substance 

concentration within the cell that determines a precise cellular state in response to some 

kind of cellular perturbation. For example, Mitra  [Mitra et al., 2014] used ordinary 

differential equations to prove that time delays from chemical reactions are of crucial 

importance to understand cell differentiation and that it allows the introduction of a new 

system regime between two admissible steady states with sustained oscillations due to 

feedback loops in gene regulation circuits. 

 

 

   2.3.3           Bayesian network        
 

 

Bayesian network is an example of network analysis that takes into consideration 

the random behavior inherent to biological networks. Bayesian networks are acyclic 

graphs        , where   represents the network nodes and E the directed edges that 

represent the probabilistic relationship dependence between nodes. The relationship 

between the network’s nodes is regulated by a conditional probability distribution 

(formula 2.2):    

 

                                                  

                                                                                                                          (2.2)                                                                              

 

 

where Pa(  ) represent the antecessor nodes of the node   . A Bayesian network is a 

representation of a join probability distribution (formula 2.3):    

 

 

                                                      
 
                                              (2.3)                                                       

 

 

 It allows an intuitive visualization of the network conditional structural 

dependences between variables [Friedman et al., 2000]. 

Bayesian networks that model sequences of variables varying over time are called 

dinamica Bayesian networks (DBNs). As proposed above, one may consider each 

protein in the network as being active or inactive. In this context, DBN allows the 

inference of the likelihood of each network node state, which is necessary to calculate 
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the probability of each cell state [Chang et al., 2011] (an essential feature of cellular 

reprogramming). As an example, Chang et al. [Chang et al., 2011] established a cellstate 

landscape that allowed the search for optimal reprogramming combinations in human 

embryogenic stem cell (hESC) through the use of DBN.    

 

 

   2.3.4            Boolean network    

 

 

An alternative to differential equations and Bayesian network to describe 

variables’ relationships in a gene regulatory network is the use of Boolean network. It is 

a qualitative dynamical model, describing a system change over time, which each 

network node being either “on” or “off.” Its representation of the system is easier to 

derive that the one based on ordinary differential equations, since it does not require the 

inference of kinetic parameters and, consequently, it can process gene networks with a 

higher number of nodes. 

A Boolean network is a directed graph        where   represent the nodes ofthe 

network and   are the edges between them. The vector of formula (2.4) 

 

                                        

                                                                                                           (2.4)                                                     

 

 

describes the state of the network at any given time. The Boolean value, 1 or 0, of a 

node represents the state “on” or “off” of the gene considered, i.e., active or inactive, 

respectively. 

The Boolean model is suitable to represent the evolution of biological systems 

over time and is relatively simple to implement and interpret. The greatest limitation of 

this type of network is that the state, 0 or 1, of a node is just an approximation of the 

reality. The state updating of all nodes across the entire system can be synchronous, 

asynchronous, or probabilistic depending on the modeling purpose and parameter’s 

availability [Xiao, 2009]. 
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2.4     Cellular reprogramming using a Boolean network 

 

 

 

To address the problem of cellular reprogramming using the Boolean network in 

practice, one may use a modeling strategy of gene regulatory network (GRN) that 

warrants a relative simplicity in finding attractors. It should be noticed, however, that 

detailed information on the interactions within the elements of the network is not taken 

into account by this approach, since kinetic parameters or affinity terms may take 

different values according to different components of the network.  

As seen above, gene interactions can be modeled based on the knowledge of the 

relationships between the genes of a set that should be modulated, activated, or 

inactivated, to achieve cellular reprogramming. Therefore, it is crucial to identify 

specific transcription factors that regulate these genes in order to enable a cell to 

perform a transition between its actual state and the wanted state. 

Different cell types are defined as stable states, and a stable steady state is called 

an attractor. An attractor is characterized by a gene expression pattern that is specific of 

that attractor and whose perturbation can induce a transition from a stable cellular state 

to another [Crespo et al., 2013]. It was shown that the number of genes to be modulated 

to reach attractor reprograming is relatively low, compared to the high number of genes 

differently expressed between two different cellular states [Lukk et al., 2010]. 

Considering that the complexity of a gene regulatory network increases together 

with its number of nodes and that a phenotypic transition requires a low number of 

genes to be perturbed [Crespo and del Sol, 2013],different strategies are being used to 

reduce the number of network nodes to be analyzed. An iterative network pruning can 

be used to contextualize the network to the biological condition under which the 

expression data were obtained [Crespo et al., 2013]. Pruning algorithms compare lists of 

genes and interactions from literature-based network with lists of genes differentially 

expressed from a bench experiment in two cellular phenotypes and then search for 

compatibilità between both data sets. This comparison produces a score for each sample 

of pruned network in order to identify the genes to be perturbed according to the data 

pair that best matches the cell steady state regarded as a phenotype. 

The topological relationship between the elements of a specific attractor in a 

network can be used to construct a protocol of cell reprogramming [Crespo and del Sol, 

2013]. Based on data of topological configuration, it is possible to establish a 
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hierarchical organization of strongly connected components (SCC), identify their 

respective differentially expressed positive circuits (DEPCs), and identify determinant 

genes able of promoting the transition from one stable cellular state to another. 

The choice of genes to be perturbed can also be done based on dynamic 

simulation [Crespo et al., 2013] through the combination of transcriptomic profiling and 

analyses of network stability in order to find the minimum number of DEPCs that needs 

to be perturbed to complete cellular transition. 

 

 

2.5       Application of cellular reprogramming to disease control 
 

 

All human diseases are intrinsic multifactorial and characterized by dysregulated 

processes in gene regulatory networks. The knowledge of GRN is important to 

understand how a molecular network robustness may lead malignant cells to overcome 

the inactivation of single protein targets by therapeutic treatment through alternative 

pathways or network propagation until a system accustoms to a new equilibrium 

[Cornelius et al., 2013]. Thus, network pharmacology and cellular reprogramming are 

promising methods for the identification of protein combinations with potential to 

disarticulate a key subnetwork that correlates with a disease and achieve an efficient 

therapeutic result [Crespo and del Sol, 2013;  Zickenrott et al., 2016]. 

A very common problem is the bias in the modeling representation induced by 

reference to well-known pathways already described for the disease and the use of 

generic models that do not consider the specific features of the cell or tissue under 

consideration. The methods described in the previous section overcome this problem 

through the integration of gene expression data and regulatory networks, which allows 

the reconstruction of a network specific to the case under consideration. This specific 

network is more accurate, indicates specific aspects of the diseased cell or tissue, and 

may indicate genes related to dysregulated pathways responsible for the disease 

development [Rackham et al., 2016; Crespo et al., 2013;  Crespo and del Sol, 2013]. 

The use of gene expression data from both ill and healthy cells is also important to 

identify the differentially expressed genes and target the ones preferentially expressed in 

ill cells in order to minimize the negative side effects of target inactivation to healthy 

cells. 
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The Mogrify methodology [Rackham et al., 2016] considers all these features. 

However, it potentially may cause two types of negative effects if applied to patients in 

the context of a therapeutic treatment. First, with this methodology, one searches for 

differentially expressed transcription factors responsible for the regulation of genes 

related to the establishment of the disease phenotype. The problem is that transcription 

factors might be responsible for the regulation of hundreds of genes, and probably they 

are not all significantly more expressed in ill than in healthy cells. The 

perturbation of hundreds of genes, even if they are mostly differentially expressed in 

disease cells, may affect genes that are essential to cell maintenance and cause serious 

side effects.  Second, this methodology requires the induction of gene expression 

through cell transfection. As already discussed above, the insertion of a plasmid into 

DNA occurs randomly and might knockdown some key genes, which increases the risk 

of oncogenicity. The most common approach applied in patients is the inhibition of a 

protein target with drugs. Even new innovative alternative patient therapies based on 

biopharmaceuticals as RNA interference, aptamer, peptides, or antibodies also target 

proteins with the aim to inactivate their function [Tabernero et al., 2013]. 

These limitations need to be considered when applying cellular reprogramming 

strategies in a disease context because they may exclude a number of possible 

alternative solutions. Once attractors for cell reprogramming have been considered, it is 

important to emphasize that focusing on the full reprogramming of a cell in order to 

reach a given steady state is not necessary. All stable attractors have a basin of 

attraction, in which trajectories spontaneously converge to the steady-state attractor 

[Zickenrott et al., 2016]. The concept of basin of attraction should simplify the 

application of cellular reprogramming in diseases, since it reduces the number of requie 

perturbations needed to achieve the desired stable state. 

The perturbation capable of overcoming an epigenetic barrier and bringing a cell 

from a disease attractor to another desired one considered to match a healthy, or at least 

a less aggressive, condition for the patient needs to be carried out in a subspace where 

therapeutic options overlap with the basin of attraction. 

As examples, we now propose putative applications of cellular reprogramming in 

two different diseases, cancer (cell disease) and malaria (infection disease). 

Cancer cells accumulate malignant mutations during their development and, as 

result, present a different network topology if compared to healthy cells [Jonsson and 

Bates, 2006]. 
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Due to mutations accumulation and its consequences on genome dysregulation, it 

would be impossible to control a cell in order to bring it back from its malignant 

attractor toward its healthy one. However, the key genes involved in the malignant 

attractor can be analyzed at the light of malignant features, such as continuous 

proliferation and escape from apoptosis or cell death. In addition, both malignant and 

healthy conditions can be analyzed in terms of differences according to their attractor 

phenotypes. This would allow the identification of key genes able to reprogram 

dysregulated cellular processes and achieve proliferation control and/or the induction of 

malignant cells to apoptosis. 

The vaccines used against malaria uses live attenuated salivary gland sporozoites 

(SPZ) [Phillips et al., 2017], and cannot be produced in large scale due to hurdles 

associated with SPZ obtainment. It is known that SPZ development occurs following 

three main stages according to the mosquito organs that are infected: midgut, 

hemolymph, and/or salivary gland. Therefore, if considering the salivary gland tissue, 

the cellular reprogramming analysis should allow the identification of key genes related 

to this tissue by comparison to the others two stages. The understanding of salivary 

gland SPZ genesis and maturation is crucial to develop a culture system in laboratory 

and produce SPZs in vitro for large-scale vaccine production. Many advances were 

already made toward cell reprogramming, and it is effective for a number of purposes. 

However, much still need to be done in regard to diseases and patient treatment. A clear 

example is that, unfortunately, an efficient general method for identifying basins of 

attraction is still lacking [Cornelius et al., 2013]. 

 

 

2.6         Chapter  conclusion 

 

 
The concept of cell reprogramming has evolved a lot during the last decade. The 

development of high-throughput technologies has also promoted more accurate 

applications of cell reprogramming through its integration with gene expression data. 

Currently, there is a great perspective of its application in multiple biomedical areas, 

such as drug screening and regenerative medicine. Nevertheless, there is still much to 

do in order to understand and predict the behavior of complex systems such as the 

biological ones. 
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  CHAPTER 3                                                                         [Sgariglia et al., 2021] 

 

Data-Driven Modeling of Breast Cancer  Using Boolean 

Network                                                                       
                                                                              
  

Cancer is a genomic disease involving various intertwined pathways with 

complex cross-communication links. Conceptually, this complex interconnected system 

forms a network, which allows one to model the dynamic behavior of the elements that 

characterize it to describe the entire system's development in its various evolutionary 

stages of carcinogenesis. Knowing the activation or inhibition status of the genes that 

make up the network during its temporal evolution is necessary for the rational 

intervention on the critical factors for controlling the system's dynamic evolution. In this 

report, we proposed a methodology for building data-driven boolean networks that 

model breast cancer tumors. We defined the network components and topology based 

on gene expression data from RNA-seq of breast cancer cell lines. We used a Boolean 

logic formalism to describe the network dynamics. The combination of single-cell 

RNA-seq and interactome data enabled us to study the dynamics of malignant 

subnetworks of up-regulated genes. First, we used the same Boolean function 

construction scheme for each network node, based on canalyzing functions. Using 

single-cell breast cancer datasets from The Cancer Genome Atlas, we applied a 

binarization algorithm. The binarized version of scRNA-seq data allowed identifying 

attractors specific to patients and critical genes related to each breast cancer subtype. 

The model proposed in this report may serve as a basis for a methodology to detect 

critical genes involved in malignant attractor stability, whose inhibition could have 

potential applications in cancer theranostics. 

Cancer is a multifactorial disease resulting in uncontrolled cell growth and the 

spread of cancer cells from the original site to other body areas. The modification of 

cellular homeostasis through various processes identifies and characterizes the 

Hallmarks of cancer[Hanahan and Weinberg, 2011], typical to all types of tumors. Cell 

survival, proliferation, and metastatic dissemination are driven by different cellular 

pathways, with many genes involved. These highly complex interconnections modify 

the linearity of the pathways allowing the conceptualization of a reticular structure made 
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up of genes, proteins and other molecules, characterizing cancer as a network disease.  

This structure defines a robust state of endogenous networks [Yuan et al., 2017; Su et 

al., 2017], which dynamically describes the cellular network as composed of oncogenic 

factors, tumor suppressors, and other acting agents, which modulate the main molecular 

functions. 

 Breast cancer, which is the type of cancer addressed in this report, is the leading 

cause of death due to cancer of the world's female population. It accounts for 23% of all 

cancer deaths of postmenopausal women[Akram et al., 2017]. Current therapies used to 

combat this disease frequently produce harmful side effects. In patients undergoing 

chemotherapy, 38 symptoms were identified, classified into 5 clusters characterizing the 

symptomatology [Chan et al., 2017].Therefore new therapeutic strategies aiming to 

decrease the undesirable effects produced by current treatment approaches, together 

with improved therapeutic efficacy, are needed. Personalized medicine seems to 

increasingly gain importance in patient care. The purpose of this therapeutic approach is 

to adapt the treatment to the unique characteristics of the individual patient's disease 

[Sabatier et al., 2014], which are based not only on the site of the tumor but also on 

genetic characteristics such as mutations and gene expression profiles. There are 

different methodologies to model gene regulatory networks. The ordinary differential 

equations (ODE) and stochastic differential equations (SDE) are quantitative 

approaches that allow an instrumental and detailed description of the system's dynamic 

functioning when the exact mechanisms and kinetic parameters are well known. Given 

the noise level of cellular processes, the precise determination of ODE and SDE 

parameters is challenging [(Nasti, 2020]. A qualitative approach would help avoid ODE 

and SDE limitations while providing useful information on the system under study. 

Boolean network Modeling is an example of this methodology [Somogyi and Sniegoski, 

1996]. It is composed of Boolean variables representing the nodes (which corresponds 

to vertices in a graph) making up the network, whose values are periodically updated 

synchronously (i.e., all nodes are updated simultaneously) or asynchronously. These 

updated values represent the activation/inhibition status of the genes that make up the 

studied system [Barbuti et al., 2020]. The dynamic simulation of the network, guided by 

the Boolean functions that regulate the relations between the various vertices, reaches a 

set of final stable states, which can be cyclic or not. These repetitive states compose 

network attractors. The formulation of the concept of "Epigenetic Landscape" by 

Waddington [Waddington, 1957] offers the opportunity for modeling cellular 
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functioning through attractor theory [Huang et al., 2009]. The Boolean paradigm allows 

the processing and analysis of vast gene regulatory networks, resulting in an improved 

capacity to model the complexity of cancer since no parameters are required. This report 

analyzed a gene regulatory network specifically adapted to breast cancer through a 

qualitative dynamic analysis using Boolean network modeling.  From the choice of the 

network vertices (genes), the network topology, and the definition of the functional 

relationships at each vertex, one may found the attractors within the system through the 

assignment of binary gene expression values. We adopted a step-by-step network 

pruning approach to identify the genes being key determinants of specific basins of 

attraction with therapeutic relevance. Generally, when looking for attractors in a 

Boolean network, one considers every possible vertex configuration [Barbuti et al., 

2020]. On the other hand, in our approach, we identify biologically relevant attractors 

through trajectories. The initial point of these trajectories is the binarization of the 

cellular data of specific gene expression of a given tumor belonging to a given 

individual, enabling different and specific outcomes for different patients.  

The network's basins of attraction that emerged from the single-cell RNA-seq 

(scRNA-seq) data [Saliba et al., 2014] represent this research's culmination. The 

essential genes that contribute to the stability of a basin of attraction can be considered 

potential therapeutic targets since they may modify the epigenetic landscape in which 

they are involved. The results described in this work show a difference between the 

various basins of attraction related to cancer and control cells, therefore confirming the 

relevance of the data-driven customization procedure based on patients' transcriptional 

data. This work also describes methods for identifying potential therapeutic targets 

specific to each patient using boolean network modeling. 

 

 

 

3.1            Materials and methods 

 

 

 3.1.1         Overhead description of the method 

 

 

The main steps of the method adopted in this report are as follows: 
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1)  Selection of breast cancer-related genes and subsequent gene regulatory 

network construction based on this gene set. 

         

2) Adoption of the Boolean formalism for the dynamic modeling of the system and 

assignment of a specific type of Boolean function (i.e. canalyzing functions) to 

all nodes of the network. 

 

3) Selection of single-cell RNA-seq (scRNA-seq) data relating to breast cancer, 

assigning expression values to the gene regulatory network’s corresponding 

nodes 

 

4) Binarization, for the set of cells in the dataset of step 3, of the expression values 

assigned to each gene. 

 

5) Search for attractors in each cell provided in the dataset. We use the binarized 

values assigned to the network genes for each cell (step 4) as the initial value for 

a trajectory simulation. The set of states that compose the final cycle of the 

trajectory corresponds to the cell’s attractor. 

 

This procedure allowed us to highlight attractors and related genes constantly 

expressed in the dataset of different patients. 

          In subsection 3.1.2, we describe the procedure by which we selected the 

constituent elements of the gene regulatory network used in this report .  The 

description of Boolean formalism used to model the network dynamic is in subsection 

3.1.3.In subsection 3.1.4 we describe the scRNA-seq data used to quantify the network 

genes. In subsection 3.1.5, we illustrate the method by which the scRNA-seq values 

assigned to the constituent elements of the gene network have been binarized, and 

descrive the tool used in this report to obtain this result. The last subsection 3.1.6 

describes the essential characteristics of the network’s attractors and the procedure, 

through an appropriate software tool, of its identification by simulating trajectory 

dynamics.  
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Fig. 3.1: Workflow illustrating the various stages of the method used in this work 

 

 

The following subsections detail the steps shown in Figure 3.1.      

                                                  

                                                  

 3.1.2      Choice of the elements of the gene regulatory network 

 

  

Hallmarks of cancer represent groups of acquired biological features that are 

critical for its development [Hanahan and Weinberg, 2011]. We considered two of these 

hallmarks, UNLIMITED REPLICATIVE POTENTIAL, and EVASION OF CELL 

DEATH, as starting points for constructing a representative gene regulatory network of 

cancer. This modeling strategy was chosen to reduce cancer cell proliferation and 

promote their death. We then obtained four lists of genes from the MSigDB repository 

(http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) based on the two hallmarks 
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previously considered, each list representing a specific cellular pathway. The gene lists 

related to Apoptosis and TP53 represent the "Evasion of cell death" hallmark [Wong, 

2011], while Kras pathway (up and down-regulated genes) is indicative of the 

“Unlimited replicative potential” hallmark [Jančík et al., 2010; Aubrey et al., 2016]. 

These choices are justified by the importance of those Hallmarks and pathways in Brest 

Cancer’s formation and evolution. We retained only the genes that were significantly 

differentially expressed (DE) in these two lists from RNA-seq data of the MDA-MB-

231 cell line, a metastatic triple-negative breast cancer subtype (TNBC), and MCF10A 

cell line, used as control [Carels et al., 2015]. 

The selected genes were analyzed considering the number of interactions (edges) 

of their respective proteins (vertices) in the interactome. The human interactome used in 

this report is from the intact-micluster.txt file (IntAct database, version updated 

December 2017 accessed on January 11, 2018, at 

ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact-micluster.txt). Proteins 

with edge numbers equal to or greater than 50 were selected as seeds to build the gene 

regulatory network. Those proteins are potential hubs, for which inhibition has been 

widely associated with regulatory network disruption [Carels et al., 2015].  

We also added five genes to the analysis (HSP90AB1, YWHAB, VIM, CSNK2B, 

and TK1) [Carels et al., 2015] whose knockdown was shown to inihibit the cell growth 

and promote the cell death of  MDA-MB-231 in vitro [Tilli et al., 2016]. 

 We used the human interactome to define the connections between the proteins 

coded by the selected genes (network vertices). In case of a lack of a direct relationship 

between two vertices, we looked for possible intermediary vertices (up to three). We 

excluded intermediary vertices absent in the gene expression data or with low 

expression values in MDA-MB-231.  

We enriched this network with transcriptional factors that regulate the selected 

vertices, i.e., differentially expressed hubs and intermediary proteins.  We performed 

this analysis with the online tool TRRUST [Han et al., 2015].  

The human interactome from IntAct defines the direction of the interactions (node 

A regulates node B), but not their function (activation or inhibition). For the definition 

of interaction functions, we used the  Metacore algorithm [Ekins et al., 2007]. 
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3.1.3     Construction of the Boolean network model 
 

 

We constructed a directed graph model based on Boolean logic from scRNA-seq 

data. The vertices represent the constituent elements of the dynamic cellular model, and 

their connections are for the functional regulations acting between them [Emmert-Streib 

et al., 2014]. Boolean network modeling is among the simplest methods for dynamic 

modeling [Thomas, 1973], but at the same time with characteristics of reliability in 

providing insights into the dynamics of a system [Herrmann et al., 2012;Siegle et al., 

2018]. We have translated the gene expression status of a gene into the value of a 

Boolean variable (  , which can be True or False (1 or 0) based on RNA-seq data. 

Thus, for the n vertices of our network, we have: 

 

                                                                                              (3.1)   

                                        

 

This formalization finds its justification considering that one can describe many 

biological processes, such as concentration levels, through the Hill-Function. For most 

of the Hill function coefficient values, the resulting curve is a sigmoidal curve, which 

can be approximated by a dichotomous step-function [Schwab et al., 2020]. 

The representation of this network's state in the discrete-state flow of time is a 

vector whose components are the network's vertices. 

 

                                        (t),…….,  (t))                                                     (3.2)  

                                                       

 

and the passage from a certain point of the state space of the system to another is due to 

the regulatory action of the corresponding Boolean functions: 

 

                                                                  
                                 (3.3)      

                                                

for n nodes of the network.                            

We decided to adopt a synchronous update mode, where all genes update their 

values simultaneously at consecutive time points: 

 

                                       
        

          
    

             
    

                         (3.4) 
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In the equation (3.4) where         
        

     represents the transition function of the 

state of the network, all the genes in the network simultaneously make the transition 

from the state      
  to the next state       

    in transitions            occorring in the 

system. Some reports state that asynchronous updating seems better to model biological 

systems [Schwab et al., 2020]. Nevertheless, synchronous dynamic evolution is 

computationally more efficient for the type of network used in this report and seems to 

represent the network's dynamic behavior in a very similar way [Schwab et al., 2020]. 

         Identifying the rules of interaction among the different entities of the network is 

usually one of the most challenging tasks in studying gene regulatory network systems.    

Our choice was oriented towards the nested canalyzing functions [Hinkelmann and 

Jarrah, 2012], where multiple variables act simultaneously on the function, determining 

a mechanism of domination of one or a group of variables concerning the others based 

on their Boolean state. For example, in the expression (A   B) ⋁ (C   D), if A   B = 1, 

the first two variables dominate and determine the expression value. If (A   B) = 0, the 

expression value is defined by (C   D). Furthermore, it has been shown that nested 

canalizing functions are a good representation of biological regulations [Nikolajewa et 

al., 2007; Harris et al., 2002]. 

         

 

3.1.4          Single-cell RNA-seq data 

 

 

 

The scRNA-seq data were obtained from the NCBI Gene Expression Omnibus 

database (accession number GSE 75688, accessed in March 2020). These data refer to 

the genomic expression profile of 11 patients with 549 cells analyzed.  Most of those 

cells were malignants, while others were not. A large part of the latter were immune T-

cells, immune B-cells, and myeloid immune cells. The cancer cells analyzed represented 

the four subtypes of breast cancer: luminal A, luminal B, HER2, and TNBC [Chung et 

al., 2017]. We used single-cell data for the analyzed network's corresponding genes, 

excluding data related to pooled samples (bulk RNA-seq). (Supplementary material 

1). The four subtypes of breast cancer were present among the samples of the 11 

patients: BC01_X and BC02_X for luminal A, BC03_X for luminal B, BC04_X, 
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BC05_X and BC06_X for HER2, BC07_X, BC08_X, BC09_X, BC10_X and BC11_X 

for TNBC. For BC03_X and BC07_X patients, there were metastatic lymph datasets 

corresponding to BC03lN and BC07LN. For the patient BC09_X, there was another 

single-cell RNA-seq (BC09Re_X). Note that patient BC05 is the only patient who 

received prior treatment (neoadjuvant chemotherapy and Herceptin). 

As specified in the above description, the different types of breast cancer 

encountered in this report have already been identified in the dataset. 

It is worth pointing out that for each patient, the model is associated with a 

specific group of cells. This approach can be conceptually made equivalent to the one 

defined as multi-cell pathway, and that the relatively high number of available cells 

analyzed allowed a correct use of the R “Binarize” application, used in this report for 

the extraction of the Boolean value. 

 

 

3.1.5         Binarization of scRNA-seq data 

 

 

 Once the genes making up the network were found and its topology defined, and 

finally assigned the corresponding scRNA-seq values to each element of the network, 

the next operation necessary for the Boolean network modeling of the system was  to 

binarize the gene expression values assigned to each single node, such as   

       using 

 

                                           
      
      

                                                         (3.5) 

 

where   is the separation threshold. This result was achieved through the use of the 

BASC-B algorithm (Binarization Across multiple SCales) [Hopfensitz et al., 2012]. The 

BASC algorithm considers as input values a sorted vector in ascending order 

           , and based on it, BASC defines a discrete, monotonically increasing 

step function f(x) with N steps and N - 1 discontinuities:  

 

                                                     
 
                                                         (3.6)     

                                         

 

with          . Defining        as discontinuities, we have    as intervals 

defined as follow       
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                                     (3.7)    

 

 

and    as 

 

                                                    
                     
                    

                                        (3.8)   

                                       

 

Once the step function f(x) is obtained using the output vector ordered in 

increasing order, the algorithm calculates additional step functions that approximate this 

function with a smaller number of discontinuities. The algorithm then finds the 

strongest discontinuity in each step function and estimates the strongest discontinuities' 

location and variation. This algorithm was implemented through the R Software 

package BiTrinA [Müssel et al., 2016]. 

 

3.1.6         Search for attractors 

 

          
After defining the binarized RNA-seq values on each node of the network and 

establishing the rules that determine its dynamics, we sought the network's stable 

equilibrium state, i.e., the attractors, which can be either singleton (composed of a 

single state) or cyclic (composed of multiple states) [Huang et al., 2009]. The 

hypothesis under which one may consider the malignant state as a particular type of 

attractor [Huang et al., 2009; Creixell et al., 2012; Yu and Wang, 2016; Poret and 

Guziolowski, 2018] has oriented our investigations towards the localization and 

characterization of attractors in Boolean networks. Furthermore, basins of attraction 

include all the system states that evolve into a given attractor. They conceptually 

represent the epigenetic barriers that delimit the basin of attraction[Conforte et al., 

2020]. We obtained the corresponding attractors matching a given gene network for 

each scRNA-seq dataset of the eleven patients with breast cancer [Chung et al., 2017]. 

Attractor analysis allowed us to highlight the key genes in each basin of attraction and 

how their inhibition could determine a change in cell fate by using the python Open 

Source software application "BooleanNet" [Albert et al., 2008]. 
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         We performed the following procedure to search for attractors from the available 

data: 

• We used BooleanNet [Albert et al., 2008] to assess the logic functions 

assigned to each gene of our regulatory network and search for Boolean 

attractors. 

 

• The Boolean values of the 103 genes making up the network were obtained 

by the binarization of scRNA-seq relative to each patient sample. This 

setting was the initial state of a trajectory that eventually evolved to a cyclic 

attractor. 

 

• Considering that all the attractors obtained were cyclical for each cell 

analyzed, we assessed the behavior of every single gene in the network by 

noting whether they varied in their boolean value during the attractor cycle 

or if they kept a fixed Boolean value for the entire attractor cycle. In the first 

case, we indicated genes in each particular cell with an "X," in the second 

case with its Boolean value True or False. 

 

• By grouping all cells according to their batch samples (BCXX_X) and their 

carcinogenic features for each patient, we selected only the genes that did not 

show variations in boolean values in any of the attractors for all cells, i.e., we 

kept their Boolean value True or False in most states of the attractor cycle, 

for at least 95% of the number of cells making up the group under analysis. 

 

Figure 3.2 shows the pseudocode of the procedure described above 
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Fig. 3.2 Pseudocode of the procedure adopted for calculating the attractors of the single 

cells of each patient and the corresponding peculiar vertices. 

 

 

Figure 3.3 below shows an intuitive diagram of the adopted procedure detailed in Figure 

3.2 
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Fig 3.3: Procedure for identifying attractors. (A) we obtain a set of Boolean values for 

the cell samples of 11 patients considering a regulatory network of 103 genes. (B) Each 

patient’s Boolean data was processed individually in the gene network to search for cell 

attractors. (C) For each detected attractor, the genes that did not change their Boolean 

value for the set of states that compose the cyclic attractor received the value “True” or 

“False” (1 or 0). The marker “X,” on the other hand, highlights the genes that did not 

keep a single Boolean value in the set of states of the cyclic attractor. 

                                  

           

3.2        Results 

 

 

3.2.1       Breast cancer gene regulatory network 

 

The process of choosing the elements (genes) constituting the gene regulatory 

network adopted in this report produced the following results. 
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Fig. 3.4: Breast cancer gene regulatory network developed in this report. This network 

is composed by 103 nodes (genes). 

 

First, we obtained 761 genes derived from the Broad Institute repository, divided 

into four lists related to the two cancer hallmarks used to build the network. The 761 

genes were classified as follows (Supplementary material 2): 

 

 

• 161 related to the APOPTOSIS pathway.  

• 200 related to the TP53 pathway. 

• 200 related to the KRAS UP pathway. 

• 200 related to the KRAS DOWN pathway. 

 

         In order to retain only differentially expressed genes, we compared the lists 

obtained with the RNA-seq data of the MDA-MB-231 and MCF10A cell lines, 

obtaining the following results: 
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• Because they were neither present in the gene expression data of MDA-MB-

231 nor in the MCF10A one (i) 129 genes were excluded from the 

APOPTOSIS pathway list,  leaving 32 genes;  

• (ii) 191 genes were excluded from the KRAS_UP pathway list, leaving 9 

genes;  

• (iii) 192 genes were excluded from the KRAS_DN pathway list, leaving 8 

genes;  

• (iv) 164 genes were excluded from the TP53 pathway list, leaving 36 genes. 

      

      Among the genes retained, we selected only those that were differentially expressed, 

which resulted in a total of 51 genes (Supplementary material 3): 

 

• 18 genes of the APOPTOSIS group, 9 Up and 9 Down. 

• 7 genes of the KRAS_UP group, 3 Up and 4 Down. 

• 4 genes of the KRAS_DN group, 0 Up and 4 Down. 

• 22 genes of the TP53 group, 10 Up and 12 Down. 

 

 Based on the number of interactions in the interactome, 15 genes of the 51 were 

selected, from which 5 (HSP90AB1, YWHAB, VIM, CSNK2B, TK1), considered more 

relevant for the present research, have been added to the network [Carels et al., 2015]. 

As outlined above, (i) the vertice vertex connections obtained by comparison with 

IntAct human interactome, (ii) the inclusion of intermediate vertices, (iii) the 

enrichment of the network with transcriptional factors that regulate the selected vertices 

with the online tool TRRUST [Han et al., 2015], and (iv) the activation or inhibition of 

vertex inputs obtained with the Metacore algorithm [Karin, 2006](Supplementary 

material 4), allowed us to obtain a gene regulatory network consisting of 103 vertices 

(see Figure 3), and whose dynamics were regulated by nested canalyzing functions 

[Hinkelmann and Jarrah, 2012] (Supplementary material 5). 

                         

 

 3.2.2         Binarization of scRNA-seq values 

 

    The 14 groups of scRNA-seq binarization values from the 11 patients belong to 

4 types of breast cancer. They were divided and organized according to the following 

criterion: 26 single-cell datasets for the patient BC01_X, 56 for BC02_X, 37 and 55 for 
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BC03_X and BC03LN, 59 for BC04_X, 77 for BC05_X, 25 for BC06_X, 51 and 53 for 

BC07_X and BC07LN, 23 for BC08_X, 29 and 31 for BC09_X and BC09Re, 16 for 

BC10_X, 11 for BC11_X (see Figure 4). It is worth noting that the values relating to 

pooled single-cell present in each patient group were excluded from the count. 

 

The gene expression values of every single cell of each patient were matched to 

the corresponding 103 genes making up the gene regulatory network and subsequently 

binarized  using the BASC-B algorithm [Hopfensitz et al., 2012](Supplementary 

material 6). 

 

  

3.2.3          Attractors search 

 

        

  

For every single cell of the 14 groups representing the 11 patients of breast 

cancer, the 103 binarized values at each node of the gene regulatory network were 

processed by the previously described Boolean attractor search procedure [Albert et al., 

2008]. The attractors obtained for malignant cells, stromal cells, immune B and T-cells, 

and myeloid cells are thus summarized as follow: (i) BC01_X: 19 malignant attractors, 

2 stromal cell attractors, 5 no result; (ii) BC02_X: 49 malignant attractors, 7 no result; 

(iii) BC03_X: 15 malignant attractors, 7 immune B-cell attractors, 5 immune T-cell 

attractors, 10 no results; (iv) BC03LN_X: 6 malignant attractors, 35 immune B-cell 

attractors, 3 immune T-cell attractors, 11 no results; (v) BC04_X: 42 malignant 

attractors, 3 immune T-cell attractors, 2 immune Myeloid attractors, 12 no results; (vi) 

BC05_X: 74 malignant attractors, 3 no results; (vii) BC06_X: 6 malignant attractors, 2 

stromal cell attractors, 6 immune B-cell attractors, 11 no results; (viii) BC07_X: 24 

malignant attractors, 4 stromal cell attractors, 3 immune B-cell attractors, 4 immune T-

cell attractors, 8 immune myeloid attractors, 8 no results; (ix) BC07LN_X: 24 

malignant attractors, 19 immune B-cell attractors, 10 no results; (x) BC08_X: 15 

malignant attractors, 6 stromal cell attractors, 2 no results; (xi) BC09_X: 2 malignant 

cell attractors, 1 immune B-cell attractors, 7 immune T-cell attractors, 15 immune 

myeloid attractors, 4 no results; (xii) BC09Re_X: 2 stromal cell attractors, 1 immune B-

cell attractors, 20 immune T-cell attractors, 6 immune myeloid attractors, 2 no results; 
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(xiii) BC10_X: 11 malignant attractors, 2 stromal cell attractors, 2 immune myeloid 

attractors, 1 no results; and (xiv) BC11_X: 10 malignant attractors, 1 no results. 

 

                      
 

Fig 3.5: Distribution of the scRNA-seq data for each patient.  

 

 

Based on these results, we decided to exclude patient data BC09_X and BC09Re 

due to the lack of specific tumor cell attractors. (Supplementary material 7). 

The pie-charts in Figure 3.6 shows these results expressed as a percentage of the 

total Single-cell RNA-seq datasets available for each patient, highlighting the success 

rate in the search for specific attractors on tumor cells. 
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Fig 3.6: Specific categories of attractors representing a group of scRNA-seq data 

belonging to each patient’s breast cancer sample. Every diagram shows the percentages 

of attractors encountered based on the total number of cells analyzed for different cell 

types. The different colors refer to the type of cells analyzed: red for cancer, green for 

stromal cells, yellow for immune B-cells, violet for immune T-cells, cyan for myeloid 

immune cells. Gray indicates the percentage of cells in which it was not possible to find 

any attractors. The last two pie charts do not indicate tumor type attractors (absence of 

red color). 

 

 

We selected network genes based on tumor cells' attractors according to the 

following criterion: each patient's attractors kept their level of gene expression (or non-

expression) constant for a particular gene,  formalized respectively with the symbol 

"True" or "False".  This criterion allowed us to formulate the following considerations 

on the results obtained:  

 

• BAX is expressed in the attractors of all patients except BC03_X. 
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• EGFR is expressed in tumor cells' attractors for all patients except BC03_X 

and BC05_X. 

• ERBB2 is expressed in the attractors of all patients, except BC03_X. 

• ETV1 is expressed in the attractors of tumor cells for every patient, except 

BC03_X. 

• IKBKG is expressed in the tumor attractors of all patients. 

• MAP3K7 is expressed in the attractors of all patients except BC01_X. 

• ST14 is expressed in the attractors of all patients except BC01_X. 

• PLAT is expressed in patient attractors BC02_X, BC03_X, BC07_X, 

BC07LN_X, BC08_X, BC10_X, BC11_X. 

• DDR1 is expressed in the tumor attractor of patient BC04_X. 

 

     These results are summarized in Figure 3.7. 

      

    

   
 

Fig. 3.7: The 12 scRNA-seq groups of breast cancer samples of 10 patients, translated 

into attractors, are divided into four subtypes of tumor: Luminal A and B, HER+, and 
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TNBC. The green color indicates that the corresponding gene has a constant Boolean 

value (True or False) for all the patient’s attractors. The red color indicates that the state 

of the gene does not remain constant for all the attractors of a specific patient. 

 

 

 Interestingly, PLAT is never expressed in patients with breast cancer classified as 

TNBC. Unlike for patients of Luminal A and Luminal B in which the inactivity of 

PLAT affects 50% of patients, this characteristic covers all TNBC group cases (Figure 

3.7). 

 Further considerations concern the comparison between the attractors of 

malignant cells with other types of cells from the same patient. For example, in the 

BC07LN_ patient sample, it is interesting to compare EEF1G in malignant and immune 

B-cells. In the first case, the gene is expressed in only 4.2% of the attractors detected 

(1/24), while in the second case, it is expressed in 36.9% of the attractors detected 

(7/19). Considering DDR1, the attractor rate of expression was 60% (9/15) in the patient 

sample BC08_X. For stromal cells, the attractor level of expression for the same gene is 

100% (6/6). 

 

 

3.3        Discussion  

 

The widely spread use of Boolean networks to model gene regulatory network 

dynamics is well-established in the scientific community. Identifying attractors with this 

type of model enables the elucidation of long-term cell functioning, which corresponds 

to a particular phenotype in molecular biology. An attractor is a stable state of the cell. 

Starting from an initial point of the state space, the cell dynamics simulated by the 

model induce a sequence of states driven by the regulatory interaction established 

between the network nodes until reaching an equilibrium. This stable set of states 

manifests itself with the repetition of the configuration of the network in its Boolean 

values in a fixed or ciclica way. The initial point from where the trajectory started is 

part of the basin of attraction of a given attractor in which all the points (or state spaces) 

contained in it converge. 

This work's central hypothesis is the interpretation of cancer phenotypes as basins 

of attraction in the epigenetic landscape [Huang et al., 2009]. Another central 

assumption is that the perturbation of a subset of genes can produce the transition from 
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one basin of attraction to another, which corresponds to another phenotype [Crespo et 

al., 2013]. Therefore, we modeled the dynamics of breast cancer through the 

identification and description of the attractors associated with a specific gene regulatory 

network in such a way as to be able to find out the essential genes that determine the 

formation of the basin of attraction. These essential genes are potential therapeutic 

targets. 

In large gene regulatory networks (with more than 100 vertices, such as the one 

presented in this work), it is possible to adopt different approaches to define attractors to 

overcome the exponential growth of the state space size according to the increase in the 

number of network size. For example, one approach was to partition the network into 

small subnets, finding the attractors corresponding to these partitions and then 

combining them to build a stable state relative to the entire network [Hong et al., 2015]. 

Another approach is to configure network input vertices with initial Boolean values 

representing their gene expression level [Cho et al., 2016]. 

This report searched the network attractors that result from the topological 

features and logical functions attributed to each vertex, given the binarized scRNA-seq 

data available. The use of single cell data, allows a better description of the 

heterogeneous nature of cancer with a consequent better therapeutic outcome, unlike 

Bulk RNA-seq data which provide average expression levels of a cell population that 

may include tumor cells and other cell types. The attribution of a specific Boolean value 

to each vertex of the network, obtained through gene expression binarization, 

conditioned the initial conditions in the system's state space. These initial conditions 

were the starting points of a trajectory, driven by the topology and the logic functions 

characterizing the network, whose evolution ended when reaching an attractor.This 

strategy is very time efficient, avoiding the nonpolynomial complexity of other 

strategies to find network attractors [Hong et al., 2015]. The result obtained can be 

considered satisfactory given the percentage of attractors obtained. 

From the analysis of the attractors obtained in this work, we extracted peculiar 

characteristics on several genes, demonstrating the need for a theranostics approach 

based on specific patient data. Key genes frequently expressed in attractors identified in 

this report were cited in the scientific literature related to breast cancer. They are 

BAX[Sturm et al., 2000], DDR1 [Belfiore et al., 2018], EGFR[Bhargava et al., 2005], 

ERBB2 [Vernimmen et al., 2003)], ETV1 [Ouyang et al., 2015], MAP3K7 [Zhou et al., 

2017], PLAT [Theillet et al., 1993], ST14 [Kauppinen et al., 2010].  
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BAX pro-apoptotic protein is differentially expressed in breast tumors by the 

BAX gene. The tumor suppressor gene TP53 regulates the expression of BAX and its 

mediated apoptosis. A reduced level of BAX expression is an adverse prognostic factor 

in breast cancer [Sturm et al., 2000].  

DDR1, a non-integrin collagen tyrosine kinase receptor, plays an essential role in 

cellular communication with the microenvironment. It is differentially expressed in 

several malignant tumors, playing an essential role in tumor progression, including 

breast cancer [Belfiore et al., 2018 ].  

EGFR is an epidermal growth factor receptor protein. It is part of pathways that 

control several key biological processes like angiogenesis, cellular proliferation, and 

apoptosis avoidance. Indeed, it is worth highlighting the FDA approved GEFITINIB 

availability, an anticancer drug that acts as an EGFR tyrosine kinase inhibitor. In a 

sample of 175 breast cancer cases, there was EGFR amplification in 11 of them. On 

these 11, 10 (91%) had an EGFR protein overexpression detected by 

immunohistochemistry [Bhargava et al., 2005].  

ERBB2, commonly referred to as HER2, encodes a member of the epidermal 

growth factor (EGF) receptor, a family of tyrosine kinase receptors. About 30% of 

invasive breast carcinomas overexpress this gene and are correlated with poor 

prognosis. HER2 encodes a 185kDa transmembrane receptor belonging to the EGFR 

group. The monoclonal antibody Trastuzumab effectively inhibits the growth of breast 

cancer tumors that overexpressed HER2 [Vernimmen et al., 2003].  

The ETV1 protein (together with ETV4 and ETV5) forms the PEA3 subfamily of 

ETS transcription factors. The PEA3 group could be a tumorigenic factor in breast 

cancer. ETV1 expression is higher in TNBC tissues compared to normal tissues. 

Negative regulation of ETV1 can activate COP1 as a tumor suppressor in patients with 

TNBC [Ouyang et al., 2015].  

MAP3K7 is an enzyme that is encoded by the MAP3K7 gene. This protein 

controls a series of cell functions like apoptosis and transcription regulation. Cell 

growth assessment performed by MTT assay showed an increase in MAP3K7 

expression in breast cancer tissues compared with non-malignant breast tissue [Zhou et 

al., 2017]. Given the crucial role of this protein in other types of cancer [Rodrigues et 

al., 2015; Cheng et al., 2019; Washino et al., 2019], it would be interesting investigate 

in more detail its role in breast cancer. 
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PLAT encodes tissue-type plasminogen activator, a serine protease that 

transforms the proenzyme plasminogen to plasmin, an enzyme. Reports in the literature 

point out the amplification of PLAT in breast cancer. Literature reports indicate that 

15.6% of breast cancer tumors present PLAT amplification [Theillet et al.,1993]. It is 

also interesting to note the impact on gene expression related to migration and invasion 

in breast cancer, especially PLAT, obtained from docosahexaenoic acid (DHA), which 

emerged in a recent study [Chénais et al., 2020].   

ST14 encodes a matriptase protein. It is an epithelial-derived integral serine 

protease. The overexpression of this protein is associated with low tumor survival in 

node-negative breast cancer cases. It also seems that a coordinated overexpression of 

ST14 and other genes (MNP and MST1R) is associated with metastasis and poor breast 

tumor prognosis [Kauppinen et al., 2010].   

IKBKG gene encodes the NF-KAPPA-B essential modulator (NEMO), a protein 

that is the regulatory subunit of the IKB kinase complex's inhibitor. This protein's 

overexpression may occur in cases of inflammatory breast cancer (IBC), a rare form of 

breast cancer characterized by a particular phenotype [Lerebours al., 2008]. As this 

protein is often highlighted in the literature for its role as a growth and progression 

factor in several types of cancer [Karin, 2006], it might be appropriate to thoroughly 

investigate its role in breast cancer development. 

All those scientific evidence confirm the effectiveness of the approach proposed 

in this work to identify biomarkers and potential therapeutic targets. The present report 

also produced a detailed list of genes never expressed in the attractors obtained. An 

example is the ANXA1, never expressed in the attractors related to the breast cancer 

sample BC07_X. The level of expression of the protein produced by ANXA1, seems to 

indicate poor overall survival in TNBC [Gibbs and Vishwanatha, 2018]. Another 

example is the SMAD4, never expressed in the attractors of BC02_X. The protein 

produced by this gene is part of the SMAD family of transcription factor proteins, 

which acts on the TGF-β signal transduction. SMAD4 expression was lower in breast 

cancer tissue than in the surrounding breast epithelium [Stuelten et al., 2006]. These 

constantly not-expressed genes in tumor attractors can be used as biomarkers for 

diagnostics, predictive, and prognostic purposes [Lerebours et al., 2008], awaiting 

further research advances on the challenge of increasing gene-level expression using 

CRISP techniques [Matharu et al., 2019]. 
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It is worth noting that even if we based the choice of genes that compose the 

network on differentially expressed genes from the MDA-MB-231 cell line, which is 

associated with the TNBC subtype, we succeed in obtaining attractors for other cancer 

subtypes as well. This result indicates that the method used to include intermediary 

vertices from the human interactome and related transcription factors is robust enough 

to capture key genes possibly involved in all major breast cancer subtypes. 

It is significant to highlight another point that emerged in this report: the ERBB2 

gene is a therapeutic target in breast cancer for which specific drugs exist [Gomez et al., 

2008]. ERBB2 is constantly expressed in all patients analyzed in this report except for 

one, the patient BC03-X. For this reason, BC03-X may not need the type of therapeutic 

intervention related to ERBB2. This consideration allows us to place our method in the 

context of personalized medicine. Nevertheless, further specific algorithm development 

for defining the more appropriate therapeutic approach for each patient is needed. 

Different settings in specific parts of the procedure illustrated in this report may 

be further studied. For example, one example of future work is to compare the results 

obtained with both asynchronous and synchronous models on the network dynamics. 

Another example of future work is to use specific logic functions for each node of the 

network instead of the nested canalyzing function approach used in this analysis. 

 

3.4         Chapter conclusion 

 

In this work, we model the complex dynamics of a gene regulatory system related 

to breast cancer using scRNA-seq data. We computed the attractors of the analyzed 

cells, as well as the genes related to attractor stability. Each group of cells belongs to a 

different patient, and a certan degree of differentiation between the various patients was 

found in the genes characterizing the attractors. This characterization drives therapeutic 

actions differentiated from patient to patient based on the analysis that emerged. These 

considerations allow us to frame the system developed in this report within the 

paradigm of personalized medicine. This work can be expanded in many ways. One 

significant advancement will be to define an algorithm to define optimal therapeutic 

interventions based on the analysis of the model. One crucial optimization parameter for 

this algorithm is to minimize the number of therapeutic interventions while providing 

maximum efficacy. Another contribution is to evaluate if asynchronous boolean 
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modeling can provide new insights compared to synchronous boolean modeling. Our 

group intends to explore those questions soon. 
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 CHAPTER 4                                                                           [Sgariglia et al., 2024]   

 

                    Optimizing Therapeutic Targets                                  

 

 

 

                                                

Studying gene regulatory networks associated with cancer provides valuable 

insights for therapeutic purposes, given that cancer is fundamentally a genetic disease. 

However, as the number of genes in the system increases, the complexity arising from 

the interconnections between network components grows exponentially. In this study, 

using Boolean logic to adjust the existing relationships between network components 

has facilitated simplifying the modeling process, enabling the generation of attractors 

that represent cell phenotypes based on breast cancer RNA-seq data. A key therapeutic 

objective is to guide cells, through targeted interventions, to transition from the current 

cancer attractor to a physiologically distinct attractor unrelated to cancer. To achieve 

this, we developed a computational method that identifies network nodes whose 

inhibition can facilitate the desired transition from one tumor attractor to another 

associated with apoptosis, leveraging transcriptomic data from cell lines. To validate the 

model, we utilized previously published in vitro experiments where the downregulation 

of specific proteins resulted in cell growth arrest and death of a breast cancer cell line. 

The method proposed in this manuscript combines diverse data sources, conducts 

structural network analysis, and incorporates relevant biological knowledge on 

apoptosis in cancer cells. This comprehensive approach aims to identify potential 

targets of significance for personalized medicine. 

Cancer is a disease characterized primarily by uncontrolled cellular proliferation. 

This dysregulation disrupts normal cellular homeostasis, leading to the emergence of 

distinctive traits known as "hallmarks of cancer," which are common across different 

tumor types [Hanahan D, 2022]. Carcinomas, a type of epithelial cell tumor, account for 

approximately 85% of all cancers and can affect various tissues in the human body. 

When these tumors occur in glandular tissue, they are specifically referred to as 

adenocarcinomas. Breast cancer falls into the category of adenocarcinomas. It is the 
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most prevalent neoplastic condition affecting women, with a global incidence of 

approximately 2,261,419 new cases and 684,996 deaths in 2020 [Sung, Hyuna et al., 

2021].  

In addition, treating this pathology gives rise to harmful adverse effects in 

patients. For instance, a study identified 38 distinct negative symptoms categorized into 

five groups that resulted from chemotherapy administration [Chan et al., 2017]. 

Therefore, developing new intervention strategies that can enhance therapies and 

minimize their unwanted side effects is crucial. We propose using a Boolean modeling 

approach for breast cancer to address this need. Cancer is a genetic disease with 

multifaceted ramifications [Vogelstein and Kinzler, 2004]. Cancer cells' DNA 

undergoes numerous alterations due to the oncogenic process, including single-base pair 

mutations, indels, and epigenetic modifications. 

Cancer occurrence leads to network modifications, where the pathways involved 

are frequently intertwined to generate processes characteristic of tumor dynamics and 

progression [Yuan et al., 2017; Barillot et al., 2013; Feng et al., 2018]. Epigenetic 

changes and alterations in gene regulatory networks [Waddington, 1957] provide an 

opportunity for modeling cancer attractors [Huang et al., 2009]. This study builds upon 

a previous analysis [Sgariglia et al., 2021] of attractors identified within a gene 

regulatory network based on breast cancer data. Specifically, by incorporating a novel 

set of genes associated with apoptosis into the Boolean network, we identified new 

attractors resulting from target inactivation. This modeling enabled our gene model to 

transition towards a cell death phenotype, as observed in corresponding in vitro 

experiments [Tilli et al., 2016]. 

This paper presents an algorithm that optimizes the selection of network elements 

capable of inducing trajectories between attractors in the epigenetic landscape. 

Additionally, we have introduced an indicator that quantifies the network's response 

when inducing a trajectory from a malignant state to an apoptosis state through direct 

intervention on its vertices. We incorporated a set of genes representing the apoptosis 

process into the gene regulatory network associated with breast malignancy to achieve 

this. By manipulating the activation or inhibition state of each gene in this group, we 

assessed the effectiveness of network perturbations in transitioning the phenotype from 

malignancy to apoptosis. We calibrated the network based on (i) the typical gene 

expression level observed in the malignant attractor and (ii) the genes to be inhibited for 

inducing apoptosis in a malignant cell line, as determined from in vitro experiments. To 
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validate the system dynamics, we compared the results with the in vitro experiment 

[Tilli et al., 2016], where five genes were silenced to induce the death of a breast cancer 

cell line. This experimental data was used to evaluate the network's behavior upon the 

permanent silencing of specific targets. 

We confirmed that the network structure derived from the interactome could drive 

the malignant attractor toward apoptosis by selectively silencing the same network 

vertices as those targeted in the in vitro experiment. The capacity of our model to 

replicate the conditions conducive to malignant cell death observed in vitro enabled us 

to optimize the selection of targets for transitioning the system dynamics from the 

malignant attractor to the apoptosis state. This optimization process involved utilizing 

specific analysis techniques to examine the network structure, enabling us to identify 

the vertices whose inhibition could mimic and enhance the outcomes achieved in the in 

vitro experiment. 

 

    4.1                        Materials  and Methods 

 

 

The various stages involved in conducting this research are briefly outlined in Figure 

4.1. 

 

 

 
 

Fig. 4.1: Steps for Boolean network construction and dynamic emulation.. 
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4.1.1                     Network construction 

 

We initiated our study using a gene regulation network established in a previous 

publication [Sgariglia et al., 2021]. Breast cancer RNA-seq data guided the selection of 

network nodes, and the chosen genes were linked to their respective hallmarks using the 

MSigDB repository. Notably, the two crucial hallmarks of cancer, namely 

"UNLIMITED REPLICATIVE POTENTIAL" and "EVASION OF CELL DEATH," 

were well-represented in the dataset. We introduced an additional set of 28 genes to 

supplement the initial network consisting of 103 genes [Sgariglia et al., 2021] to enlarge 

the network. Twenty-five incorporated nodes were for apoptosis-associated genes, 

exerting either inducing or inhibitory effects on this cellular process. Alongside these 25 

novel vertices, two existing vertices from the previous study assume a crucial role in 

cellular apoptosis as constituents of the apoptotic cascade. Collectively, we refer to 

these 27 genes as apoptosis-related genes. This network enlargement was imperative to 

facilitate the modeling of the transition from the malignant state to the apoptosis one, 

which was induced by network perturbations through targeted inactivation of specific 

vertices. Protein-protein interactions were acquired from the IntAct interactome (IntAct 

database, version updated in December 2017) to establish the network connections 

between genes. The specific file used for obtaining the interactions was retrieved from 

the FTP link ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact-

micluster.txt, accessed on January 11, 2018. The directionality of the connections and 

their regulatory nature (activation or inhibition) were determined by consulting the 

Metacore database  [Ekins et al., 2007]. To verify the network's validity in replicating a 

tested biological scenario in vitro, our system was configured to reproduce the outcomes 

documented by Tilli et al. [Tilli et al., 2016]. Their experimental study demonstrated 

cell death in a cancer cell line (MDA-MB-231) by inhibiting five genes using RNA 

interference. To achieve this objective, we retrieved the RNA-seq data of two distinct 

cell lines, namely MCF10A and MDA-MB-231, from the Gene Expression Omnibus 

(GEO) repository available at https://www.ncbi.nlm.nih.gov/gds/. MDA-MB-231 is a 

malignant cell line derived from triple-negative breast cancer, while MCF10A served as 

the non-tumoral control in this study. For MCF10A, we obtained the following RNA-

seq datasets: SRR2149928, SRR2149929, SRR2149930, SRR2870783, and 

SRR2872995. Regarding MDA-MB-231, we acquired the RNA-seq datasets: 

https://www.ncbi.nlm.nih.gov/gds/
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ERR493677, ERR493680 (corresponding to the body portion), and ERR493678, 

ERR493679 (corresponding to the protrusion portion) of the cells. 

Based on information obtained from the GEO repository, the cells were cultured 

on a polycarbonate transwell filter with 3-micrometer pores, allowing the formation of 

protrusions through the pores for 2 hours. Subsequently, the cells underwent a washing 

step, and both sides of the filter were lysed to extract RNA for further analysis. Through 

this protocol, the cells were fractionated into two distinct fractions: protrusion and body 

types. In the subsequent analysis, we employed a binary approach to categorize the up-

regulated genes observed in each MDA-MB-231 RNA-seq dataset (both body and 

protrusion) compared to every MCF10A RNA-seq dataset. This approach introduced 

variability into the experiment and facilitated the assessment of system robustness. 

To ensure the convergence of our network model with scale-free networks, which 

is characteristic of cell signaling pathways [Albert, 2005], we examined the degree 

distribution of the network vertices. To evaluate the network's structure, we compared 

its degree distribution with that of random graphs [P. Erdόs and A. Rényi, 1959], Watts 

and Strogatz small-world networks [Watts DJ and Strogatz SH, 1998], and scale-free 

networks [Albert, 2005], all generated with the same number of vertices. To facilitate 

this comparison, we utilized the complementary cumulative distribution function 

(CCDF) as defined by equation 1. The CCDF provides the probability (F) of a vertex 

having a connectivity degree equal to or greater than a specified value. By analyzing 

these distributions, we could determine the degree of alignment between our network 

and these reference models. 

 

                            
                                                                                     

 

   

 4.1.2                   Boolean  model  construction 

 

After constructing our model's directed graph, we established the conditions 

necessary for its dynamic simulation by defining the transfer functions that govern the 

system's evolution at discrete time intervals. The objective was to guide the dynamic 

behavior of the network elements in a manner that faithfully replicated the observed 

conditions from the in vitro experiment conducted by Tilli et al. [Tilli et al., 2016]. By 
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incorporating these specific conditions, we aimed to ensure the accurate representation 

of the experimental findings within our model's dynamic framework. In systems 

biology, accurately deducing the interaction rules of a network poses a significant 

challenge. To address this complexity, we employed Boolean nested canalizing 

functions [Nikolajewa et al., 2006], where the function is influenced by the specific 

order in which variables are organized. A Boolean function is considered canalizing if a 

single input can solely determine the output. In cases where this input does not play the 

canalizing role, the other inputs are deemed responsible for fulfilling this function. By 

adopting the hierarchical structure of transfer functions, achieved through nested 

canalizing functions, we aimed to capture the behavior of biological systems more 

effectively [Kauffman, 1993; Shmulevich et al., 2003 ]. Furthermore, many network 

nodes exhibited a substantial number of inputs, emphasizing the need for a robust 

modeling approach. In this scenario, using nested canalizing functions offers increased 

system stability [Kauffman et al., 2004], which is crucial in managing the inherent noise 

observed in biological systems. 

The utilization of nested canalizing functions and the need to align the model with 

biological facts enabled us to manually establish the transfer rules for each gene 

[Kauffman et al., 2004; Szallasi and Liang, 1998]. Opportunely, Harris  [Harris et al., 

2002] demonstrated that a significant portion of the gene updating rules fell under 

canalizing functions. Considering these considerations, we determined the number of 

inputs for the Boolean functions, as defined in Equation 4.2. 

 

                                                                                      

 

Considering a set of Boolean variables               , the input was defined 

as essential (see equation 4.3) if the condition of equation 4.3 was satisfied. 

 

                                                                                  (4.3) 

 

The essential inputs were defined as canalizing if there were values            

that satisfied equation 4.4 for all remaining combinations of variables         where x 

is a canalizing input value, and xi is a canalized value.  
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A function with   essential input is defined as nested if it is z-times canalized with 

        canalizing inputs and         canalizing values, to which correspond the 

canalized value        . 

Nested canalizing functions are an extension of the canalizing function formalism 

[Nikolajewa et al., 2007], in which the order of the inputs is considered to assign the 

canalizing role. In addition, canalizing functions can be nested if it is possible to set 

them with   inputs and     Boolean operators AND (   or OR (⋁  with a priority 

proceeding from left to right. Thus, defining       ⋁}), we have equation 4.5. 

 

               

                                                                                         

 

 

In the implementation phase of this report, each input of the function was coupled 

to a single logical operator, which can be an    and  or an ⋁  or . In light of these rules, 

the transfer functions of the network have been implemented according to Equation 4.6 

 

         ⋁  ⋁  ⋁                                               (4.6)         

                          

 

where       is the n
th

 node of the network,    ,        ,    represents the number of 

nodes with activation function on       , and   ,        ,   is the number of nodes 

with inhibition function on      . To create suitable conditions for the network to 

reproduce the results obtained in the in vitro experiment [Tilli et al., 2016], we applied 

some changes to the general scheme of the nested canalizing functions illustrated above 

in the nodes representing the TP53, HIF1A, RELA, NFKB1, HDAC1, STAT3, BCL2, 

CASP3, and BRCA1 genes as shown in equations 4.7 to 4.11 where some input variables 

with activation or inhibition roles on nodec ceased to be independent of the other 

elements of the function and assume a cumulative role for the final result, which the 

other nodes cannot replace. 

 

                         ⋁  ⋁   ⋁               ⋁    ⋁             (4.7) 

 

                   ⋁   ⋁              ⋁    ⋁                        (4.8)      

  



66 
 

 

                          ⋁            ⋁   ⋁    ⋁                    (4.9) 

 

                             ⋁    ⋁           (4.10) 

 

                            ⋁  ⋁   ⋁        ⋁   ⋁   ⋁          (4.11) 

 

After defining the constituent elements of the gene regulation network and 

analyzing its structure, the subsequent task was determining the appropriate 

mathematical formalism for the system's dynamic analysis. We opted to employ a 

directed graph model based on Boolean logic. Boolean network modeling represents 

one of the simplest methods for dynamic modeling while offering the advantage of 

reliably providing insights into system dynamics. 

In this context, we considered a Boolean variable, denoted as B, which takes on 

the value of True (1) or False (0) depending on whether a particular gene is up-regulated 

or not in the RNA-seq data of the MDA-MB-231 (malignant) cell line compared to the 

MCF10A (control) cell line. Consequently, for the n vertices within our network, we 

can express this relationship using equation 4.12. 

 

                     

                                                                                                     

 

When time is represented as a discrete scalar value, the states of the network can 

be depicted as a vector with its components being the vertices of the network (equation 

4.13).  

 

 

                                                                                                                               

 

The trajectories of the system within the state space are then contingent upon the 

Boolean functions associated with the n vertices of the network (equation 4.14). 
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In this report, we used a synchronous update mode for the network vertices, 

wherein all vertices are updated simultaneously. While an asynchronous update mode 

may align better with biological realism, the choice of update mode is not crucial given 

the computational and conceptual advantages of synchronous updates and the enhanced 

system stability achieved through the utilization of nested canalized transfer functions 

[Kauffman et al., 2003]. In the synchronous update mode, the system's progress occurs 

in consecutive temporal states (equation 4.15). 

 

               

    
     

           
    

            
    

                                                                      

 

 

The goal of Boolean modeling is to identify the attractors expressed by the 

dynamics of the system. Attractors are stable gene activity patterns that represent the 

long-term behavior of the Boolean network and are interpreted as a specific cellular 

phenotype.  

Attractors in a Boolean system can be subdivided into different classes. Examples 

are fixed-point attractors, characterized by a single state of the system (i.e., the Boolean 

configuration of network nodes) that persists indefinitely, and cyclic attractors, 

characterized by a sequence of states that repeat periodically. Each attractor is matched 

with a specific basin of attraction, composed of all the system states for which it 

represents the stable state at the end of their dynamic evolution. 

 

 

4.1.3                                Model  validation   

 

 

Initially, we compared MDA-MB-231 RNA-seq samples (two from the body and 

two from the protrusion) and each corresponding MCF10A sample. To achieve this, we 

employed the Reads per kilobase of transcript per Million reads mapped (RPKM) 

normalization process, as outlined in Pires  [Pires et al., 2021], to normalize the read 

counts of the twenty paired RNA-seq samples. Subsequently, we subtracted each 

normalized value of the MCF10A RNA-seq sample from the corresponding MDA-MB-

231 data. For positive values (indicating up-regulated genes in the malignant state), we 
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applied a logarithmic transformation based on equation 4.16, utilizing the pipeline 

described by Pires [Pires et al., 2021]. 

                                                

                                     y = x*Log2(x+1)                                                                    (4.16) 

 

 

The procedure involved in this pipeline consists of classifying genes as up-

regulated based on whether the logarithmic transformation of their differential 

expression surpasses a critical threshold. To determine this critical value, a Python 

script was employed to fit a Gaussian curve with a 95% confidence level to the data for 

a p-value of 0.025 (for more details, refer to Pires et al., 2021). In each of the twenty 

comparisons between MBA-MD-231 and MCF10A, genes that were identified as up-

regulated through this process were assigned a value of "1", while the remaining genes 

were assigned a value of "0" (Supplementary material S1).  
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Fig. 4.2: Procedure used for binarization of RNA-seq values. BLOCK 1:  normalization 

of RNA-seq values. BLOCK 2:  subtraction of each normalized value of MCF10A 

RNA-seq from each value of MDA-MB-231data and log transformation application. 

BLOCK 3: determination of the threshold value for which to attribute a specific 

Boolean value. BLOCK 4: attribution of a  Boolean value based on the critical value. 

 

Using the BooleanNet library [Albert et al., 2008], we analyzed the binary values 

of each MDA-MB-231 RNA-seq normalized data in conjunction with the corresponding 

genes from every MCF10A sample within our network (Supplementary material S2). 

Our objective was to identify the attractors generated through the dynamic evolution of 

the network. The presence of the 27 apoptosis-related genes in the attractors of this 

initial configuration served as a reference point for evaluating the impact of subsequent 

network modifications (Figure 4.3). 

 

 
 



71 
 

Fig. 4.3: Structure of the gene regulation network under study. The blue color indicates 

the five target genes, CSNK2B, HSP90AB1, TK1, VIM, YWHAB, which were inhibited 

in the in vitro experiment of Tilli et al. [Tilli et al., 2016]. The dark green nodes 

represent the apoptosis-related genes. The nodes in light green exemplify the rest of the 

network genes. There is no vertex inhibition in this network representation. 

. 

Subsequently, we conducted simulations to replicate the conditions of the in vitro 

experiment performed by Tilli et al. [Tilli et al., 2016], where the MDA-MB-231 cancer 

cell line's death was induced through transient inhibition of TK1, VIM, YWHAB, 

CSNK2B, and HSP90AB1 genes using siRNA interference. For the sake of clarity, we 

will, below, refer to these five targets as bench targets. To emulate this in vitro 

experiment, we permanently inhibited the vertices corresponding to these bench targets 

in the dynamic evolution of the network, as shown in Figure 4.4. 

 

 
 

Fig. 4.4:   The five bench targets (blue nodes) were set to zero (inhibition) for network 

dynamics emulation. 

 

Figure 4.4 compares the activation or inhibition of the 27 apoptotic genes and 

their involvement in the attractors after inhibiting the five bench targets in the original 

network depicted in Figure 4.3. This comparison allowed us to evaluate the functional 

agreement between our model and the in vitro experiment conducted by Tilli  [Tilli et 

al., 2016]. Furthermore, TP53 was permanently inhibited throughout the network 

simulation since mutations render it ineffective as a tumor suppressor in MDA-MB-231 

[Yoshida et al., 2009]. 
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4.1.4                  Optimizing the number of targets 

 

Based on the in vitro induction of cell death in MDA-MB-231 through the 

silencing of CSNK2B, HSP90AB1, TK1, VIM, and YWHAB [Tilli et al., 2016], and 

considering our understanding of the key 27 apoptosis-related genes, we present a 

methodology to identify genes capable of driving cancer cells towards programmed cell 

death. 

To maximize the presence of the 27 apoptosis-related genes within the apoptosis 

attractor, with genes promoting apoptosis being activated and genes inhibiting it being 

deactivated, our objective was to identify the most effective target genes within the 

network structure. To achieve this, we examined the network's modularity based on the 

connectivity of its vertices. The Clauset-Newman-Moore greedy modularity 

maximization algorithm [Clauset et al., 2004] was used to identify the modular 

structure, considering the network as undirected. Modularity was calculated using 

equation 4.17, where c represents communities, Lc denotes the number of links within a 

community,   is the resolution parameter, and    is the sum of degrees within the 

community. 

 

 

                                              

    
  

           
    
                                                                                                                                                                              

 

In the initial stage of the algorithm, each node is assigned to its own cluster, 

forming a partition. The algorithm then proceeds iteratively, merging pairs of clusters to 

increase modularity. The initial modularity value is negative, representing a singleton 

cluster, and gradually increases until reaching a positive peak, corresponding to the 

optimal solution found by the algorithm. Eventually, the modularity value returns to 

zero when all nodes are in the same community. In a backward process, the algorithm 

identifies the partition corresponding to the peak value. The implementation of this 

algorithm utilized the NetworkX Python library [Hagberg et al., 2008]. After detecting 

the communities in the network, we examined whether the 27 apoptosis-related genes 

were grouped or dispersed among these identified modules, with the possibility of 

forming a single community by the algorithm's criteria. This approach has previously 

been implemented in [Takeshi et al., 2014], where a modularized network was used to 
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map drug targets for cancer and identify modules that were the focus of therapeutic 

action. 

Due to the observed clustering of apoptosis-related genes in the network structure, 

we searched nodes that could be bridges among these apoptosis-related clusters and the 

five bench targets. Identifying these bridge nodes could potentially shorten the path for 

target genes to replicate the outcomes of the in vitro experiment. To accomplish this, we 

employed the Dijkstra algorithm using the NetworkX library in Python [Hagberg et al., 

2008] to find the shortest path between each of the five bench targets (CSNK2B, 

HSP90AB1, TK1, VIM, YWHAB) and every apoptosis-related gene. 

A similar approach was adopted by George  [George et al., 2006], wherein 

intermediate genes along the shortest path were identified as potential therapeutic 

targets. These genes were then ranked based on the number of shortest paths in which 

they were involved. 

Utilizing the knowledge gained from the in vitro experiment, which demonstrated 

that inhibiting the five bench targets resulted in cell death of MDA-MB-231, we sought 

alternative vertices that, when inhibited, would activate the maximum number of genes 

within the apoptosis group. To accomplish this, we aimed to identify the smallest set of 

vertices that shared the common property of being involved in at least one shortest path 

between each of the five genes (CSNK2B, HSP90AB1, TK1, VIM, YWHAB) as starting 

nodes and any apoptosis-related gene as the final node (Figure 4.5). 
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Fig.4.5: Pseudocode of target vertex determination in shortest paths. Lines 1-6 (block 

1): Detection of the shortest paths via Python networkX library between the five bench 

targets and the apoptosis-related genes. Lines 7-11 (block 2): Creation of a list for each 

bench target gene containing the nodes detected by the algorithm on every shortest path. 

Line 12-17 (block 3): Insertion in the list of new targets of the genes present in the 

largest number of lists of the previous step. The asymptotic complexity of the algorithm 

is    a                       . 

 

The methodology outlined in Figure 4.5 enabled us to identify novel target genes 

that can potentially influence the configuration of the apoptosis-related group. By 

"configuration," we refer to both the count of activated apoptosis-related genes that can 
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induce apoptosis and the consistency of this count across the RNA-seq comparisons 

conducted in this study. 

To evaluate the impact of deactivating the newly identified target vertices using 

the shortest path strategy on the configuration of the apoptosis-related group, we 

examined the activation or inhibition status of the apoptosis-related genes across the 

twenty analyzed comparisons (ten for the body and ten for the protrusion, representing 

the two fractions of MDA-MB-231). This approach enabled us to compare the effects of 

inhibiting the new targets within the shortest paths to those obtained by inhibiting the 

original five bench targets. 

 

    

 

     4.2                                 Results 

 

     4.2.1                               Gene regulatory network 

 

 

The breast cancer regulatory network utilized in this study consists of the genes 

employed in a previous report for the computation of Boolean attractors [Sgariglia et al., 

2021], which were further expanded by the inclusion of 25 additional genes (Fig. 6). 

These 25 genes, along with the two genes already present in the initial network, play a 

key role in the cellular apoptosis process. 
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Fig 4.6: Breast cancer gene regulatory network used in this report. Twenty-five red 

nodes and the three blue nodes, not part of the apoptosis group, are the new vertices 

added to the network used in the previous report (yellow nodes). In the group of twenty-

seven red genes related to apoptosis, two (BAX and BCL2L1) were already present in 

our earlier work network. 

 

The network depicted in Figure 4.6 consists of 131 nodes and 494 edges. The 

system's dynamics are governed by Boolean transfer functions, where each node can act 

as either an activator or an inhibitor on the other nodes to which it is connected 

(Supplementary materia S3). The nature of these interactions was deduced using a 

dedicated software [Ekins et al., 2007], which also facilitated the integration of the 

genes from the apoptosis-related group into the pre-existing network. 
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4.2.2                  Structural analysis of the network 

 

 

We examined the structural features of the network by comparing it to well-

known canonical network types. This comparison involved analyzing the degree 

distribution and comparing it to three distinct network types commonly described in the 

literature: The Erdos-Renyi network [P. Erdόs and A. Rényi, 1959], the Watts-Strogatz 

network [Watts and Strogatz, 1998 ], and the Barabasi-Albert network [Albert, 2005]. 

 

 
Fig. 4.7: Convergence of our model with three canonical networks. Log-log plot of 

Erdos and Renvi (blue line), Watts and Strogatz (orange line), and scale-free networks 

(green line) networks compared to the experimental network of this study (red). 

 

By analyzing the plot presented in Figure 4.7, which depicts the complementary 

cumulative distribution function, we observed a striking resemblance between the 

network utilized in this study and the network model characterized by a power-law 

degree distribution. This finding aligns with the observations made by Albert [Albert, 

2005], who noted that power-law distributions are commonly observed in various real 

networks, including those describing intricate biological systems like the network 

employed in our analysis. 
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4.2.3                              Attractor analysis 

 

 

Upon examining the gene regulation network depicted in Figure 4.3, specifically 

in its unaltered state without any vertex inhibition, we observed that the percentage of 

genes satisfying the requisite conditions for transitioning from the malignant state to 

apoptosis was 29.6% for body samples and 14.8% for protrusion samples. This finding 

indicates an unfavorable configuration for the cell apoptosis process, as only two genes 

from the Bcl-2 family demonstrated a pro-apoptosis role. Moreover, the fact that crucial 

genes such as CASP3, CASP6, and CASP7, which play a fundamental role in the 

intrinsic apoptosis pathway, were inactive further supported the unsuitability of the 

configuration. Additionally, XIAP and DIABLO, which serve as inhibitors of CASP9 

and the IAP family, failed to meet the necessary conditions for initiating an apoptosis 

process, as illustrated in Figure 4.8. 
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Fig. 4.8: Configuration of the apoptosis-related genes in the attractors of the twenty 

comparisons of two MDA-MB-231 sample types, body, and protrusion. The seven 

genes indicated in red favor a pro-apoptotic mechanism if the gene is inhibited. On the 

other hand, the 20 genes displayed in black favor apoptosis if genes are activated 

(Supplementary material 1). The DAXX gene is an exception, for which we did not 

find any characterization of its pro-apoptosis state in the literature. T (for True or 

activation), F (for False or inhibition), and X (for a continuous alternation between T 

and F) represent the boolean value of the 27 apoptosis-related genes within the detected 

attractors. T, F, and X background colors indicate if there are matches between the 

detected state and the ideal one of the corresponding genes for apoptosis induction. The 

green background means correspondence, while the orange one indicates a divergence.  

 

To replicate the outcomes described in Tilli et al. [Tilli et al., 2016], we conducted 

in silico the inhibition of the five bench targets known to induce cell death in the MDA-

MB-231 cell line in vitro. In the body samples, the percentages of genes in the apoptosis 

attractors that assume the state of inhibition or activation supporting cell death were 

74.1% and 55.6% in the comparisons 1 to 6 and  7 to 10, respectively. As for the 

protrusion samples, we found that 41% of the genes in the apoptosis phenotype state 

were observed in comparisons 1 to 6, while in comparisons 7 to 10, the percentage rose 

to 74%. These results are depicted in Figure 4.9. 

Comparing these results with those presented in Figure 4.8 (obtained without any 

gene inactivation in the network), there is a noticeable difference in both quantitative 

and qualitative aspects. Quantitatively, the percentages of genes aligned with the 

apoptosis state in the attractors are significantly higher, indicating a certain degree of 

representation of the in vitro experiment within the model. Qualitatively, the presence of 

the apoptotic state in the Bcl-2 and Caspase families and DIABLO and XIAP supports 

the expected outcomes of the bench experiment in the body 1-6 and protrusion 7-10 

comparisons. However, in the body 7-10 and protrusion 1-6 comparisons, this alignment 

is only partially observed due to discrepancies in the RNA-seq profiles of the MCF10A 

cell lines used in these particular comparisons. 
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Fig. 4.9: Attractors obtained by inhibiting the five bench targets: CSNK2B, HSP90AB1, 

TK1, VIM, and YWHAB. Columns BODY 1-6 and 7-10 refer to the ten body samples, 

while columns PROTRUSION 1-6 and 7-10 refer to the ten protrusion ones. 

 

 

4.2.4                   Network modularity analysis   

 

    

The network modularity analysis revealed that the apoptosis-related genes tended 

to form distinct clusters with clear functional characteristics. This observation is 

depicted in Figure 4.10, where the two different groups of apoptosis-related genes are 

illustrated. 
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Fig. 4.10: Network modularization process through the Clauset-Newman-More 

algorithm with the number of components of the apoptosis group in each of the seven 

modules. Groups 3 and 5, highlighted in green, indicate the groups belonging to the 

same modules relevant to the cell apoptosis process (mainly Caspases and Bcl-2 

families) [Pecorino, 2012]. 

 

The majority of apoptosis-related genes, approximately 92.5%, are found in 

Groups 3 and 5. Group 3 comprises the complete Caspases, XIAP, and DIABLO group, 

while Group 5 includes the entire Bcl-2 family. The modular distribution of these genes, 

as depicted in Supplementary material S4, demonstrates their tendency to cluster 

together. This characteristic is of great significance in the methodology employed in this 

study as it enables the utilization of a relatively small number of target vertices to 

activate these genes. 

 

                              

   4.2.5                              Shortest path evaluation 

 

 

By examining the shortest path connecting the five bench targets with the 

apoptosis-related genes, we identified three genes present in at least one of these paths, 

namely HIF1A, XIAP, and BCL2. Since XIAP and BCL2 are part of the apoptosis 

group, which serves as an indicator of the network's state, and they also serve as the 

final nodes in the shortest paths, we did not evaluate the effects of inhibiting these genes 

on the apoptosis attractor. However, since HIF1A is not a member of the apoptosis 

group, we replaced XIAP and BCL2 with their respective input nodes, STAT5A and 

BRCA1 (Figure 4.11). 
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Fig. 4.11: Process of new target identification by the shortest search. Panel A: HIF1A, 

XIAP, and BCL2 are present in at least one of the 27 shortest paths. From these three 

genes, only HIF1A did not belong to the apoptosis-related group. Panel B: STA5A and 

BRCA1 represent the only input genes of XIAP and BCL2. Thus, HIF1A, STAT5A, and 

BRCA1 were the optimized target nodes detected within the shortest paths between the 

five bench targets and the 27 apoptosis-related genes. These three vertices were 

excellent candidates to complete the new set of optimized target genes that trigger the 

network within the apoptosis state. 

 

4.2.6                            Optimizing the  number of targets 

 

 

Identifying the vertices with the highest centrality between the five bench targets 

and the 27 apoptosis-related genes allowed us to explore the impact of inhibiting the 

new targets on the apoptosis attractor and propose a novel approach for selecting 

therapeutic targets. By applying the algorithm outlined in Figure 4.5, we identified 

STAT5A, BRCA1, and HIF1A as highly central vertices. Hence, we targeted the 

inhibition towards these three genes instead of inhibiting CSNK2B, HSP90AB1, TK1, 
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VIM, and YWHAB. Combining these three genes successfully activated the apoptosis 

attractor in all sample comparisons. The outcomes achieved by inhibiting HIF1A, 

STAT5A, and BRCA1 as substitutes for the five bench targets are given in Figure 4.12. 

 

 
 

Fig. 4.12: Activation or inhibition status detected in the 27 genes constituting the 

apoptosis-related group in the attractors of 10 body (1-10) and ten protrusion (1-10) 

sample comparisons by inhibiting HIF1A, STAT5A, and BRCA1 instead of CSNK2B, 

HSP90AB1, TK1, VIM, and YWHAB. 

 

In Figure 4.12, we demonstrated the simultaneous induction of cell apoptosis in 

both body and protrusion types for the Bcl-2 and Caspase gene families across all 

combinations of RNA-seq data. Notably, BID, a pro-apoptosis member of the Bcl-2 

family, is activated in this simulation. The activation of BID plays a crucial role in 

activating downstream Caspases by directly activating BAX and BAK. This activation is 

absent in simulating the apoptosis attractor using the five bench genes (Figure 4.8). 
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Similar considerations apply to DIABLO, which exhibited inconsistent expression in the 

six RNA-seq protrusion combinations from 1 to 6 (Figure 4.8). 

Consequently, we simulated the induction of the network into the apoptosis 

attractor using various gene inhibition strategies. By inhibiting the five bench targets, 

we achieved a configuration conducive to apoptosis in a significant portion of the genes 

within this group (shown in green on the graph) (Figure 4.13). The percentage of genes 

activated in the apoptosis-related group was notably higher (74.1%) compared to 

scenarios without bench target inhibition (first column). When HIF1A, STAT5A, and 

BRCA1 were selected as targets for inhibition, the proportion of genes activated in the 

apoptosis group further increased (77.8%) and remained consistent regardless of the 

MDA-MB-231 fraction or the MCF10A RNA-seq data used to identify the up-regulated 

genes in MDA-MB-231 (Figure 4.13, right column). 

Based on the findings above, it might be inferred that the transition from sample-

specific malignant basins of attraction in body and protrusion samples, respectively, 

occurred towards a unified basin of attraction that signified a generalized state of 

cellular apoptosis, which was achieved by inhibiting HIF1A, STAT5A, and BRCA1 

(Figure 4.14). 
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Fig. 4.13:  The results detected on the body and protrusion fractions of MDA-MB-231 

used in this report, respectively. The columns identify which network genes were kept 

silenced in the dynamic simulation of the model. The green color, as opposed to the red 

one, indicates the percentage of the genes of the apoptosis group presenting a stable 

configuration of activation or inhibition associated with the attractor of the apoptosis 

phenotype. 

 

 
 

Fig. 4.14: Boolean description of the transition from two basins of attraction 

representing the malignant cellular state of body and protrusion to a single basin of 

attraction of the cellular apoptosis state, obtained by inhibiting HIF1A, STAT5A, and 

BRCA1. 

 

  4.3                                   Discussion 

 

 

As a multifaceted disease, cancer is influenced by numerous factors that cannot be 

comprehensively understood solely through molecular analysis. Consequently, there is a 

growing inclination to integrate molecular data with the dynamic characteristics of 

biological networks, employing computational and mathematical modeling techniques 

to gain deeper insights into the underlying biological mechanisms driving its 

progression [Kitano, 2002]. 
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The choice between quantitative and qualitative modeling approaches depends on 

the nature of the available data. Quantitative modeling, which involves ordinary 

differential equations and requires kinetic parameters, becomes challenging and feasible 

only for gene regulatory networks of limited scale [Karlebach and Shamir, 2008]. In 

contrast, qualitative Boolean network modeling provides a viable alternative, allowing 

for relatively straightforward dynamic simulation of complex biological systems 

[Schwab et al., 2020]. This approach proves beneficial in exploring regulatory 

interactions in protein expression [Dahlhaus et al., 2016] and developing strategies for 

therapeutic interventions [Bloomingdale et al., 2018]. It is also important to note that 

since the model proposed in this work is a Boolean-type model, we implicitly assume 

that the values of the system components are binary and Boolean functions govern their 

interaction. Such a description of the system dynamics, termed qualitative, necessarily 

implies a loss of the functional detail of the system that a quantitative methodology can 

provide instead. In addition, having chosen a synchronous rather than asynchronous 

network update system, giving preference to the deterministic nature of interactions an 

easy interpretation of results, a rough approximation was accepted in the timing 

mechanisms of the system elements, at the expense of the stochastic nature of these 

interactions. 

In addition to the documented characteristics, we conducted functional 

compatibility checks to validate the Boolean model used in this study against the results 

obtained from an in vitro experiment [Tilli et al., 2016] involving silencing five genes 

using siRNA. This experiment induced apoptosis in the MDA-MB-231 cell line. Our 

data show that our system can generate functionally compatible outcomes by inhibiting 

the same genes as in the in vitro experiment. Thus, we successfully replicated the 

behavior of an actual biological system within the Boolean dynamics of the gene 

regulatory network implemented in our research. 

In this study, we utilized a Boolean network that represents a set of up-regulated 

genes in breast cancer to identify attractors corresponding to specific cellular 

phenotypes. We further assessed the compatibility of the Boolean network with an 

existing biological system by comparing it with an in vitro experiment [Tilli et al., 

2016]. The assignment of Boolean values to the network nodes followed the algorithm 

depicted in Figure 4.2. This algorithm facilitated the Booleanization of RNA-seq values 

based on the gene expression variations between malignant and non-malignant cell 

lines. By considering the gene expression differences across different cell lines, we were 
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able to perform dynamic simulations of our model on a substantial number of 

comparisons, yielding valuable insights. Indeed, rather than solely relying on a single 

control for the four malignant samples (two body and two protrusion) to Booleanize the 

RNA-seq values and identify attractors, we expanded our approach by incorporating 

five samples of the non-malignant cell line MCF10A. By incorporating these additional 

samples, we derived gene expression differences that enabled us to perform a more 

comprehensive analysis. This strategy resulted in twenty combinatorial comparisons, 

significantly enhancing the numerical significance of network configurations and 

enabling the application of the procedures outlined in this study. 

Considering cancer phenotype as basins of attraction in the epigenetic landscape 

[Crespo et al., 2013], this report aimed to cause the transition from a basin of attraction 

of malignant type to that of apoptosis [Shi et al., 2010] through the perturbation of a 

subset of genes belonging to the network. For this purpose, we developed an algorithm 

(Fig. 5) that optimizes the choice of the network elements to produce a transition from 

one specific phenotype to another.  

The approach of exploring the relationship existing between the results of an in 

vitro experiment, the insertion of a specific group of genes for apoptosis into the 

system, and the investigation of the network structure through the analysis of shortest 

paths between the five bench targets and the apoptosis-related group, represents an 

innovative strategy for clinical applications to increase patient benefit in personalized 

approaches of cancer therapies.  

Including the apoptosis-related gene group within the network was a reference to 

evaluate the induction of cell death attractors through vertex inhibition. The results 

obtained in this study, depicted in Figure 4.13, schematically illustrate the effectiveness 

of this methodology. By inhibiting the three genes HIF1A, STAT5A, and BRCA1, we 

observed a transition in the system dynamics from malignant basins of attraction to 

those associated with cell apoptosis across all analyzed samples. The comparison of this 

result (Figure 4.12) with that obtained by reproducing the in vitro experiment (Figure 

4.9), shows the robustness of the data obtained by applying the procedure of Figure 4.5. 

Inhibiting the five genes (CSNK2B, HSP90AB1, TK1, VIM, YWHAB) described in Tilli 

et al. [Tilli et al., 2016] promotes a configuration of the 23 apoptosis-related genes 

conducive to apoptosis. However, the quantitative uniformity of this configuration 

varies among different comparisons. In the body sample, lines 1 to 6 exhibited a greater 

inclination towards apoptosis, whereas lines 7 to 10 in the protrusion sample displayed 
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a higher favorability towards apoptosis (Figure 4.9). Conversely, when inhibiting the 

three genes (HIF1A, STAT5A, BRCA1) as detected through the procedure outlined in 

Figure 4.5, a more consistent profile of activated apoptosis-related genes was observed 

across all comparisons (Figure 4.12). Despite the divergent attractors between the body 

and protrusion samples, the induction of apoptosis by inhibiting HIF1A, STAT5A, and 

BRCA1 underscores the method's robustness.  

According to Figure 4.11, the target genes identified through the procedure 

outlined in Figure 4.5 should ideally be HIF1A, XIAP, and BCL2, considering our 

objective of identifying target genes capable of activating or inhibiting the 27 apoptosis-

related genes, regardless of their specific configuration. Consequently, we decided to 

avoid designating XIAP and BCL2 as targets. One possible alternative was substituting 

them with their respective input nodes, STAT5A and BRCA1, which do not belong to the 

apoptosis group. Therefore, it cannot be ruled out that the combined inhibitory effect on 

the HIF1A, XIAP, and BCL2 genes may significantly induce apoptosis in cancer cells. 

The role of HIF1A, STAT5, and BRCA1 is well documented in tumors. HIF1A 

encodes the HIF-1α protein, whose level is regulated by hypoxia and other mechanisms, 

and is part of the heterodimeric transcription factor HIF-1. HIF-1α has crucial roles in 

many tumorigenic processes, such as epithelial-mesenchymal transition (EMT), 

metastasis, cancer cell metabolism, and angiogenesis [Yang et al., 2008; Wang et al., 

2021; Sharma et al., 2002 ]. Interestingly, there is a crosstalk between the HIF-1 and 

p53 pathways to determine cell fate depending on hypoxic conditions [Zhou et al., 

2015; Wang et al., 2019]. Therefore, targeting the HIF-1 signaling in cancer can be a 

promising therapeutic strategy [Sharma et al., 2002]. 

The transcriptional factor STAT5 is a member of the JAK-STAT (Janus 

kinase/Signal transducer and activator of transcription) pathway, which is altered in 

many tumors. Activated STAT5 upregulates the expression of genes involved in cell 

proliferation, invasion, angiogenesis, and the inhibition of apoptosis [Halim et a., 2020]. 

The exact role of STAT5 in breast cancer is still under debate. The STAT5 activation in 

tumor macrophages by derived factors from breast cancer cells led to the expression of 

anti-tumor immune stimulatory genes [Jesser et al., 2021]. On the other hand, it was 

shown that STAT5a, an isoform of STAT5, could confer resistance to doxorubicin [Li 

et al., 2021] and combined PI3K/mTOR and JAK2/STAT5 pathways inhibition induced 

cell death in triple-negative breast cancer [Britschgi et al., 2012]. 
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BRCA1 is an essential gene in DNA repair and cell cycle regulation. When 

mutated, the risk of developing many cancers significantly increases, especially for 

breast and ovarian tumors [Fu et al., 2022]. Several studies have shown increased brain 

metastasis frequency in patients carrying BRCA1 mutations [Ratner et al., 2019; 

Zavitsanos et al., 2018]. Another fundamental role of this gene is the maintenance of 

genomic stability [Roy et al., 2012]. Therefore, BRCA1 is essential to tissue 

homeostasis.  

More specifically, several reports have established the relationship between the 

inhibition of HIF1A, STAT5A, and BRCA1 genes and the induction of apoptosis in the 

MDA-MB-231 cell line. In the case of HIF1A, suppressing its expression using siRNA 

has been shown to inhibit cell growth and enhance apoptosis [Zeng et al., 2014]. 

Inhibition of STAT5A has been correlated with reduced metastasis and growth of breast 

cancer tumor cells [Medler et al., 2016]. Additionally, the knockdown of STAT5A 

restores cellular sensitivity to TRAIL-induced apoptosis [Yoshida et al., 2009]. As for 

BRCA1, its RNAi-mediated silencing, along with miR-342 transfection, has been found 

to increase the percentage of apoptotic cells [Crippa et al., 2016]. Furthermore, BRCA1-

depleted MDA-MD-231 cells exhibited heightened susceptibility to proteasome 

inhibitors [Gu et al., 2014]. Considering the known functions and the consequences of 

the deregulation of these three genes in cell homeostasis, our study underscores the 

impact of inhibiting them on promoting apoptosis induction in the MDA-MB-231 cell 

line. It is important to note the interplay between HIF-1 and p53 pathways to determine 

cell death under hypoxic conditions [Zhou et al., 2015, Wang et al., 2019]. The 

inhibition of HIF1A could favor p53 in its apoptotic roles. However, in our model, p53 

was inactivated since it is mutated in this cell line and not working as a tumor 

suppressor (Hui et al., 2006). Therefore, other mechanisms need to be investigated more 

deeply in the future. 

The outcomes presented in this study hinged on the fine-tuning of the transfer 

functions (eqs. 6-10) to align the model with the in vitro experiment [Tilli et al., 2016]. 

However, the concurrence observed between the in vitro results, and the computational 

simulation indicated a satisfactory level of model representativeness, warranting its 

potential for future optimization and application in therapeutic scenarios. Consequently, 

it becomes feasible to integrate specific experimental findings with computational 

hypotheses formulated to tackle therapeutic challenges associated with cancer. 
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It is worth noting that the identified therapeutic targets are the results obtained by 

running the algorithm presented in Figure 4.5 on the boolean network model 

constructed and validated by our group. The results obtained through their inhibition 

show that their choice is necessary and sufficient to achieve optimization in qualitative  

terms of the performance obtained from the in vitro experiment taken as a reference in 

this report. All this does not exclude the possibility of not having considered other 

important therapeutic targets that have emerged in other contexts. 

The main objective of our research was to identify therapeutic targets on which an 

inhibition action is capable of causing a change in the state trajectory of the system, 

consequently producing a change in the system's final target attractor. 

However, the use of  Boolean gene regulatory networks in some research areas, 

such as pharmacogenetics [Hemedan et al., 2022], can be challenging in identifying the 

complicated mechanisms between the genome, its products (RNAs and proteins), and 

the cellular-level response to drugs.  

Because of the complex interactions that exist among molecules involved in a 

carcinogenic process, a perturbation analysis method such as the one we used in our 

research can be useful in dealing with such complexity, proposing specific interventions 

on the system by guiding and facilitating the subsequent choice of  therapy  useful for 

the purpose. Indeed, once therapeutic targets have been identified, there is the 

possibility of pharmacologically acting on them directly or through signaling pathways 

in which they are involved, through drugs currently in use. 

Another therapeutic possibility of greater complexity is using siRNA molecole 

encapsulated in nanoparticles specific to the identified targets. 

The outcomes presented in this study are derived from the analysis of data 

obtained from specific biological samples. The growing abundance of such information 

on distinct pathological conditions of cancer highlights the versatility of our model in 

accommodating various configurations of the same disease. The positioning of the 

method developed in this study within personalized medicine reflects its capacity to 

address individualized approaches to cancer treatment. 
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4.4                         Chapter  conclusion 

 

In this research, we implemented a  new computational method for optimizing the 

number of potential targets for breast cancer. We constructed a Boolean Gene 

Regulatory Network Model of a breast cancer tumor and validated it using RNA-seq 

data from tumoral cell lines. We achieved these results by integrating experimental data 

with those obtained from an extensive literature search in Boolean gene regulatory 

networks, for which the analysis of the corresponding attractors allowed the 

identification of potential therapeutic targets. In future work, we intend to apply our 

method to actual patient data to validate our results in the context of personalized 

medicine. 
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CHAPTER 5 

 

                                                          Discussion 

 

The results shown in the specific sections of the thesis demonstrate how the goals  

pursued in the introductory section were achieved. Potential therapeutic targets for 

breast cancer were identified using the implemented model, whose biological 

compatibility was also verified by emulating an in vitro laboratory activity. 

The various steps performed to achieve these results offer several interpretive 

insights into the methodology adopted. 

The different types of data used in the two stages of the research, scRNA-seq in 

the first stage and RNA-seq values from in vitro cell lines in the second stage, and the 

different data binarization methodology adopted between the two different distinct 

stages described in the thesis, did not prevent the production of biologically relevant 

results in the various stages of the research analyzed.  

The procedure for constructing the gene regulatory network related to breast 

cancer, built from scratch in the first stage of the research and used as a starting point in 

the second stage, is the result of intensive research into the functional relationships 

existing between the various genes comprising the system, culminating in the use of 

software capable of providing in detail the bibliographic justifications for the links 

between the individual genes detected. The size of the network obtained justifies the 

accuracy of the search carried out in choosing the elements of which it is composed 

while at the same time allowing an accurate analysis of the problem under investigation. 

In the proposed method with the network that was implemented, and through Boolean 

formalism, we investigated the epigenetic landscape representing the cell under certain 

conditions. We provided a way to identify the critical elements of the system to drive 

the cell state within it.  

However, it is important to consider that there are still many genes and proteins 

whose functions, interactions, and regulatory logic have not been discovered yet, with 

the consequence that the implemented network model is not complete and contains 

many uncertainties that will be filled with the advancement of research in this specific 

field. Using the Boolean network allowed the dynamic analysis of a gene regulation 

network with a large number of nodes. This task would have been difficult o, through a 
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quantitative analysis, for example, by using differential equations. However, this 

advantage must be contrasted with an approximation in the description of the analyzed 

biological phenomenon that Boolean networks provide. Describing a gene's activity 

level through two states, active or inhibited, provides an extreme approximation of 

biological reality and lends itself to a potential excessive simplification of the analyzed 

phenomenon.  

The success achieved using Boolean networks in this research illustrates how the 

organization of network structure played a more important role than the kinetic details 

of the individual interaction [Albert and Thakar, 2014]. This suggests the hypothesis 

that the model implemented in this research can be used as a foundation of regulatory 

models where more detailed continuous models can be built as kinetic information of 

quantitative experimental data becomes available. 

A further point of reflection is the updating method adopted in the dynamic 

analysis of the network. Synchronous updating, in which all network elements are 

updated simultaneously, although it provides an advantage from a computational point 

of view, represents a simplification of what happens in biological reality [Schwab et al., 

2020]. For this reason, an asynchronous network updating method could represent a 

valid alternative to investigate. 

It is also interesting to reflect on the adequacy of nested canalizing functions 

adopted on the network nodes. The advantages of using this type of function are well 

documented [Zhou et al., 2013], along with the benefit of applying the same function 

calculation rule to all nodes in the network.  However, precisely this generalization in 

use represents a limit in describing the complexity and variety of the system, suggesting 

further study of the method adopted in assigning Boolean functions to the individual 

nodes of the network. 

The results obtained in this research show the capability of the method used in the 

silicon model and the dynamics of the analyzed cell. Effective control of biological 

systems can be achieved by controlling a limited number of distinct variables [Borriello 

and Daniels, 2021]. Considering the limited number of nodes in the network on which 

an inhibitory action was acted upon in the silicon model producing through the 

formalism of Boolean dynamical networks a direction of cancer cell fate, it can be said 

that the method described in this thesis confirmed this claim. 

However, it is important to note that the control obtained over the system is also 

due to the direct intervention of modifying nested canalizing functions on some key 
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network vertices. While this type of intervention may be relatively easy in not very 

large networks, it may not represent an easy application in Boolean networks of 

considerable size, suggesting further study in this regard, for example, by implementing 

automation techniques that would allow the easy adaptation of the type of function 

applied to the nodes according to the type of attractor to be reached. 

The use of increasingly complex and specific gene expression data for certain 

pathological situations represents a potential motivation for further and more in-depth 

development of the method implemented in this research toward use in the context of 

precision medicine.  
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CHAPTER 6             

                                   

                                       Conclusion 

 

Changing cell fate from its natural course represents a challenge of considerable 

complexity and involves several interesting implications, especially in the therapeutic 

field. 

The research pathway described in this dissertation represents a potentially 

valuable contribution to the therapeutic approach for breast cancer. 

The interdisciplinary approach described in this dissertation resulted in a 

biological model closely mimicking an actual experimental situation. 

Using modeling techniques already frequently used in systems biology, such as 

Boolean gene regulatory network modeling, together with original procedural 

methodologies, we identified specific genes capable of modifying the fate of a cancer 

cell line. 

The use of the Boolean formalism allowed the analysis of the system dynamics of 

a network with a significant number of nodes despite the approximation that it entails in 

the description of biological phenomena. This exercise made a computationally efficient 

approach to network dynamic analysis possible despite the large number of nodes 

involved. Analysis of network dynamics on systems like the one implemented in our 

research with differential equations is undoubtedly more complex to model due to the 

need to infer the required parameters. This point is of fundamental importance, 

considering that incorporating the network with a significant number of specific genes 

for a given cell phenotype represents a key point of the methodology implemented. 

Moreover, using results obtained in the laboratory as a reference allowed the validation 

of our approach, providing a procedural paradigm applicable in other similar contexts. 

In addition, the use of laboratory  results obtained in the laboratory to validate the 

implemented model and as reference for an optimization of the results through the 

procedure we adopted could be used in contexts similar to the one described in this 

thesis.  
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