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UMA FRAMEWORK COM REPRESENTAÇÕES BASEADA EM
PERSONALIZED PAGERANK PARA EMPARELHAMENTO DE GRAFOS
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Grafos são usados para modelar problemas e codificar relacionamentos entre en-
tidades em vários contextos, abrangendo estudos que vão desde redes sociais até
interações biológicas. Um problema clássico em teoria dos grafos envolve encontrar
o mapeamento de vértices entre dois grafos que exibem maior similaridade. Esse
problema é conhecido como emparelhamento de grafos, também referido como al-
inhamento de redes. O emparelhamento de grafos depende fortemente da estrutura
da rede e surge em contextos diversos devido à importância de identificar estru-
turas semelhantes em redes. Nesta dissertação, apresenta-se uma nova framework
que não requer sementes, usa representações baseadas em Personalized PageRank,
e utiliza um algoritmo em rodadas para mapear gradualmente os nós. Em cada ro-
dada, o algoritmo define pares de âncoras que irão aprimorar as representações dos
nós para, então, decidir os emparelhamentos na rodada subsequente. Este trabalho
formaliza a definição de uma nova representação de vértices com base no Person-
alized PageRank, bem como uma métrica de similaridade para comparar vértices
usando essa representação introduzida. Os resultados de avaliação demonstram val-
ores de acurácia de até 97% em média, considerando emparelhamentos corretos em
pares de grafos que foram submetidos a um processo de edge sampling com uma
probabilidade de remoção de aresta de 20% no modelo Barabási–Albert.
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Graphs are used to model problems and encode relationships between entities
in various contexts, encompassing studies ranging from social networks to biological
interactions. A classic problem in graph theory involves finding the node mapping
between two graphs that exhibit high similarity. This problem is known as graph
matching, also referred to as network alignment. Graph matching heavily relies on
the structure of the network and arises in diverse contexts due to the importance
of identifying similar structures in networks. In this dissertation, we introduce a
novel seedless framework based on Personalized PageRank fingerprints, utilizing
an algorithm in rounds to gradually map nodes. In each round, the algorithm
defines anchor-mapped pairs to enhance fingerprints and then decide matchings in
the subsequent round. This work formalizes the definition of a new node fingerprint
based on Personalized PageRank, as well as a metric for comparing nodes using the
introduced fingerprint. Our evaluation results demonstrate accuracy values of up
to 97% on average, considering correct matchings across pairs of graphs that have
been subjected to an edge sampling process with a 20% probability of edge removal
in the Barabási–Albert model.
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Chapter 1

Introduction

1.1 Motivation

A variety of problems in computer science are modeled using graphs to encode
relationships between entities. This representation can be defined such that a graph
G is given by G = (V,E), where V is a set of vertices (also known as nodes)
and vertices are connected by a set of edges E. Graph modeling proves to be a
powerful tool that abstracts a problem, allowing a simple representation and making
it possible to approach the problem with different algorithms known in graph theory.

At the same time, several themes in society and nature can be represented by
networks. Thus, the field of network science proves to be highly interdisciplinary
[1, 2], encompassing studies ranging from social networks to biological interactions.
In each study, the meaning of vertices and edges may be different, in a social network
vertices may represent users, and edges the existence of friendship, while in a protein-
protein network, vertices may represent proteins, and edges indicate interaction
between them. Within this context, a graph problem may address different topics
depending on the specific network where it is being studied.

The graph matching problem, also known as network alignment, involves finding
a node-to-node correspondence between two graphs. The resulting node mapping
must be such that it maximizes the structural similarity between the graphs, and
will associate the label of a vertex in one network with the label of a vertex in
the other network. This problem heavily relies on the network’s structure and
arises in various contexts due to the importance of identifying similar structures.
Typically, this problem involves two similar, yet distinct networks, where there is
a significant correlation between the entities (vertices) of one network and those
of the other. This correlation suggests that the mapping entities either perform
the same function within their respective networks or represent the same entity.
It is important to note that when this problem involves identifying corresponding
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vertices between two networks with the same number of nodes and edges, and we
are interested in determining if the mapping preserves the adjacency structure, the
problem is referred to as graph isomorphism problem.

Consider the context of social networks to illustrate the application of a graph
matching problem. In two distinct networks, such as mutual friendships on a social
media platform (e.g., Facebook or Instagram) and message exchanges on a messaging
application (e.g., WhatsApp), it is expected that there will be a structural similarity
despite the networks not being identical. For instance, users who are friends on
Facebook are more likely to also communicate via WhatsApp. In this example,
solving the graph matching problem could allow the association of user profiles on
the social media platform with phone numbers found in the messaging network by
identifying the node mapping between the networks that represent the same user.

As an illustrative example, we can examine Figure 1.1 as representing two sub-
sets in different networks: one from a social media platform where edges denote
mutual friendships, and another from a messaging application where edges denote
message exchanges between users. These networks share notable similarities. For
instance, in the social media network, node d acts as a hub, and similarly, node
6 plays the same role in the messaging application network, both with the highest
number of connections. Therefore, without additional information, the vertices are
likely to correspond to each other. At the same time, it’s worth noting that some
nodes within the same network are structurally equivalent, making them harder to
match, such as nodes a or b in the social media network. Despite the networks not

a

b c

d e

f

g h

i

Social Media Network

7

5 9

6 1

2

8 4

3

Messaging App Network

Figure 1.1: Comparison of a social media network subset (e.g., Facebook) and a mes-
saging application network subset (e.g., WhatsApp). In the social media network,
nodes represent users and edges indicate mutual friendships. In the messaging ap-
plication network, nodes also represent users, but edges indicate message exchanges.
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being identical, with edges present in one network but absent in the other, perform-
ing graph matching between these networks to identify corresponding nodes could
potentially reveal the phone numbers associated with each user. This highlights
privacy concerns, as the ability to cross-reference data from different platforms.

Literature has shown that graph matching between two social networks can lead
to the de-anonymization of users in a previously anonymized network, considering
only the structural similarity between an anonymized network and an auxiliary net-
work [3]. The work conducted used a graph of users from Flickr and an anonymized
graph of users from Twitter, two social networks, and was able to re-identify users
in the anonymized Twitter graph with only a 12% error rate. This result can raise
several discussions about privacy and information security.

In the field of biology, other works have demonstrated that the application
of graph matching between two biomolecular interaction networks, such as pro-
tein–protein interaction networks (PPI), can identify common interaction patterns
[4]. Solving this problem within this context allows for mapping proteins with simi-
lar roles between two different organisms based on their connectivity patterns. Sim-
ilar studies are also applied to other types of biological networks, such as gene
co-expression, metabolic, or gene regulatory networks.

To address the graph matching problem, different approaches aim to represent
network nodes, two prominent techniques include the use of embeddings and finger-
prints. Fingerprints refer to the structural characteristics of a vertex or a set of these
characteristics, including for example degree, eccentricity, clustering coefficient, and
the distance to a reference vertex. These attributes encode details about the role of
each node within the network topology. On the other hand, embeddings result from
transforming the graph structure into a low-dimensional space, where each vertex
is represented by a single d-dimensional vector [5], known as the vertex embedding.
This transformation facilitates the application of machine learning algorithms by
enabling models to more effectively understand real-world data domains.

This scenario allows for exploring diverse methods of vertex representation, en-
suring their roles within the network topology are effectively captured. Additionally,
it enables the exploration of various techniques to calculate node similarity and de-
termining the final matching solution for the problem. Several methodologies can
be employed to address the graph matching problem, including Bayesian methods
[6], percolation [7], machine learning [8], and optimization techniques.

1.2 Contributions

The work described in this dissertation addresses the problem of graph matching by
proposing a novel framework based on Personalized PageRank fingerprints. This

3



framework builds upon other works, including a Bayesian framework for graph
matching [6] and an embedding method based on Personalized PageRank [9].

This work’s main contributions are:

• A novel node fingerprint definition based on Personalized PageRank, and in-
corporating anchor nodes, to capture the structural identity of nodes.

• A novel distance metric for calculating similarity between nodes using the
introduced node fingerprints.

• A framework for seedless graph matching using the node fingerprints and dis-
tance metrics introduced by this work.

• Implementation and evaluation of the framework on synthetic networks using
different parameterizations.

• Comparison with another approach for seedless graph matching, SANA [10].

1.3 Organization

The remaining chapters of this dissertation are structured as follows: Chapter 2 in-
troduces relevant concepts and related work within the scope of graph matching and
this study. Chapter 3 outlines the contributions of this dissertation, including the
proposed framework and implemented algorithm. Chapter 4 describes the proposed
methodology and conducts experiments on synthetically generated networks using
an edge sampling process with varying edge removal probabilities, and comparing
the results with an existing algorithm. Finally, Chapter 5 concludes the dissertation,
along with potential future work.
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Chapter 2

Background and Related Work

2.1 Graph Matching

Graph matching, also known as network alignment, is a fundamental problem in
graph theory and it has applications in various interdisciplinary domains. The goal
of this problem is to find a node-to-node correspondence between two graphs. A
graph matching solution should be a mapping π : V1 → V2 which represents the
alignment of vertices to maximize the number of correctly mapped edges

There are multiple techniques and approaches for solving the graph matching
problem. Typically, the graph structure plays a crucial role, but in some cases,
algorithms utilize vertex attributes that are not encoded in the structure. Further-
more, algorithms address the problem in different ways, such as employing the use
of seeds, node embedding and heuristics. As examples, [6] employs a framework
with Bayesian methods and fingerprints, [10] utilizes simulated annealing heuristics,
and [11] proposes a distance based canonical labeling for graph matching.

2.1.1 Isomorphism and automorphism

The graph matching problem is a generalization of the graph isomorphism prob-
lem. An isomorphism between two graphs G1(V1, E1) and G2(V2, E2), is a bijection
between their vertex sets, π : V1 → V2, that preserves adjacency, i.e., an edge
(u, v) ∈ E1 exists if and only if (π(u), π(v)) ∈ E2 [12]. Isomorphic graphs are struc-
turally identical, differing only in vertex labels, unlike graphs in a graph matching
problem that exhibit similarities we aim to identify.

Determining whether a graph isomorphism exists is an NP problem, and there
is no known polynomial-time algorithm for the general case of this problem. How-
ever, for certain classes of graphs, such as trees or planar graphs, polynomial-time
algorithms do exist.

On the other hand, the concept of graph automorphism refers to an isomorphism
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from a graph to itself [12]. An automorphism of a graph G = (V,E) is a permutation
π of the vertex set V preserving the same set of edges E. Similar to the isomorphism
problem, there is no known polynomial-time algorithm for finding automorphisms
of a graph for the general case.

The set of all automorphisms of a graph constitutes what is called the automor-
phism group. Within this set, we can have a collection of vertices that are struc-
turally equivalent in a graph. When addressing the problem of finding a matching π

for graph matching, it’s important to recognize that multiple valid matchings may
exist because of this automorphism group (that can exist in both input graphs), but
not all algorithms consider these nuances. Consider that there is an automorphism
that maps u to v, where u, v ∈ V2, in this case it is not possible to distinguish their
labels based on the structure, as they are structurally equivalent. Therefore, in this
dissertation, when evaluating the framework’s performance, if there is a matching
π(u′) = v, for u′ ∈ V1 but the correct matching should be π(u′) = u, this will
be considered an error in the identified matching. This is because, despite being
structurally accurate, the labels do not recognize it as a correct match.

2.1.2 Seeded

Seeded graph matching algorithms use a seed set of pre-mapped node pairs, typically
obtained from external information. The seed information is an attribute that is
not encoded in the graph structure, except when obtained through a heuristic, in
which case the pre-mapped node pairs represent informed estimates. The seed set
is typically used as a starting point, where the algorithm then attempts to identify
pairs of unmapped nodes that are neighbors of seed nodes, progressively expanding
this process to map the entire network.

In the work by Narayanan and Shmatikov [3], an algorithm targeting anonymized
social network graphs is implemented. In this algorithm, a graph matching problem
is resolved between an auxiliary network and an anonymized network that corre-
spond to real social networks. The work demonstrated that, using a small initial
set of seeds, it was able to successfully de-anonymize several thousand users in the
anonymous graph.

In the work by Yartseva and Grossglauser [7], as well as the work by Kazemi,
Hassani, and Grossglauser [13], the authors utilize seeds and demonstrate the exis-
tence of a sharp phase transition. This transition, achieved by increasing the size
of the seed set, delineates the boundary between almost certain failure and almost
certain success in the percolation graph matching process. These studies formalize
the seed set size as a function of network parameters and demonstrate how the size
of the seed set can greatly influence the performance of a graph matching algorithm.
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2.1.3 Seedless

Unlike seeded algorithms, seedless graph matching algorithms do not require pre-
mapped node pairs as input. In this case, the algorithm relies entirely on the network
structure, requiring to build the entire mapping.

In the work by Heimann, Shen, Safavi, and Koutra [8], the authors address
the graph matching problem using a representation learning approach that does
not depend on seed nodes. The proposed algorithm utilizes node embeddings to
capture the structural properties of the graphs. These embeddings are then aligned
through a process that minimizes the distance between corresponding nodes in the
embedding space.

In the work by Pedarsani, Figueiredo, and Grossglauser [6], they propose a
Bayesian framework for seedless graph matching with polynomial-time complex-
ity. In their proposed framework, an incremental mapping process is employed. For
each graph, nodes are ordered by degree in descending order, with an attempt to
first map nodes with higher degrees (which might be easier to differentiate). The
execution occurs in phases (or rounds), and in each phase, the nodes that were
mapped in the previous phase, called anchors, are then utilized to map additional
nodes in the subsequent round.

Furthermore, [6] employs a fingerprint definition, capturing for each node the
node degree and hop distances from the node to anchors. Essentially, the method
leverages the anchor-mapped pairs to enhance fingerprints and then decide harder
matchings. To achieve this, in each round, the number of anchors is doubled, as
well as the size of mapped nodes, until the entire network is part of the matching.
During each round, the algorithm matches a set of nodes using a maximum bipartite
matching. The matching process relies on a measure of similarity (cost function)
between two node fingerprints, given by the Bayesian framework that computes the
probability that a given pair of nodes is correctly mapped.

The framework proposed in this dissertation draws inspiration from the concepts
introduced in [6]. It incorporates similar ideas, including the use of anchor informa-
tion for fingerprints, execution in rounds, and matching per round using anchors.
However, this dissertation distinguishes itself by introducing novel metrics to build
the fingerprint and defining new equations for measuring similarity between two fin-
gerprints. Additionally, this dissertation employs a heuristic-based weight function,
in contrast to the Bayesian probabilistic model used by Pedarsani, Figueiredo, and
Grossglauser.
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2.1.4 Node Fingerprint

The node fingerprint comprises a set of attributes, which may include metric values
or metric vectors, with the purpose of representing a node. These attributes are
designed to capture the node’s characteristics based on its topological relationships
in the graph.

Depending on the application, the definition of node fingerprint can vary. In [6],
the node fingerprint is a set of the node degree and the hop distances between the
node and anchor points. In this definition, the fingerprints change with each round
due to the new set of anchor nodes.

As a pertinent example for this dissertation, the study in [9] aims to represent
nodes using a single vector derived from the intermediate values of the Personalized
PageRank algorithm’s evolution. This adaptation allows the algorithm to capture
the surrounding topology’s information, with the vector reflecting the progressive
ranking of a node’s importance.

In this dissertation, each node fingerprint will consist of a set of vectors related
to the execution of the Personalized PageRank algorithm. These vectors are based
not only on the vertex that the fingerprint represents but also on the anchor nodes.
Consequently, as explored by [6], the fingerprint will change each round due to the
new set of anchor nodes.

2.2 PageRank and Personalized PageRank

The PageRank algorithm was first proposed in the work by Brin and Page [14]. It
aims to measure the relative importance of web pages based solely on the graph
structure, and serves as the foundation for Google’s search engine. In this concept,
the web is viewed as a graph, where each page represents a node, and the links
are directed edges connecting these pages. The importance (rank) of a node is
determined by the quantity and quality of the edges pointing to it. In this context,
a page’s rank depends not only on the number of times it is referenced by other
pages but also on the rank of those pages.

The intuition behind PageRank can be illustrated using random walks on a
graph. This concept is commonly referred to as “random surfer model”, where the
surfer navigate through pages by clicking on links at random. In the graph, this
represents navigating from node to node according to the edges, and each time a node
is visited, its importance increases. To avoid getting trapped in small loops of pages,
the surfer occasionally jumps to a random page based on a uniform distribution. The
resulting PageRank is determined by the standing probability distribution of this
random walk on the graph.
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The implementation of the PageRank algorithm involves an iterative process
where ranks are updated until convergence. During this process, the graph’s random
walk transition probability matrix is multiplied by the previous importance vector.
The final equation also incorporates the concept of jump (or teleport) based on
the uniform distribution. According to this process, it can be noted that for each
iteration a certain importance (rank) is assigned to each network node.

The concept of Personalized PageRanks is proposed in the same article [14] and
futher explored in [15]. It serves as a method to measure the importance of web
pages based on user-specific preferences or specific perspective. To achieve this, the
original PageRank algorithm is modified so that the random walker’s jumps no longer
follow a uniform distribution, but rather a custom distribution. This personalized
distribution can either be a probabilistic distribution among a set of specific nodes
or always teleport to the same node. Similar to the original algorithm, the iterative
process of Personalized PageRank assigns an importance (rank) to each network
node at every iteration. Most algorithms are concerned with the converged ranking
values. However, this dissertation focuses on the intermediate values obtained during
the process to capture information about the graph structure.

As referenced in the work by Gleich [16], the application of PageRank algorithms
extends beyond evaluating the importance of web pages within the link structure
graph. PageRank can be utilized across any network, and its applications have
expanded into multiple domains. These include social network analysis, recommen-
dation systems, and even networks in biology and physics. As previously mentioned,
the work conducted in [9] uses PPR values to represent nodes, illustrating the diverse
applications that the PageRank algorithm can perform.
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Chapter 3

A PPR Framework for Seedless
Graph Matching

3.1 General Considerations

The main contribution of this dissertation is a framework for seedless graph matching
based on Personalized PageRank (PPR) that uses the structural information of the
PPR fingerprint for each vertex to construct a matching between two input graphs.
The algorithm works in rounds, where in each round a new matching is determined
for the new set of candidate vertices. This matching takes into account the matching
of the previous round, even though previously matched nodes can be changed in the
current round. The number of candidate vertices increases along with the rounds
until it includes all vertices of the input graph with the smallest number of vertices.
Algorithm 1 shows the pseudo-code of the framework.

In the following sections, key aspects of the framework are presented, explaining
the steps involved and the decisions motivating the design.

3.2 PPR as Fingerprint

The Personalized PageRank (PPR), also called Topic-specific PageRank [14, 15],
represents the importance ranking of vertices according to some viewpoint, where
viewpoint is a specific set of network vertices. This feature allows generating differ-
ent rankings for the same network depending on the viewpoint, unlike the original
PageRank, where a unique ranking of the vertices is generated for the network.

In this framework, multiple importance rankings will be calculated, each using
a single vertex as the viewpoint. This approach allows us to generate unique finger-
prints for each vertex based on its viewpoint. Consequently, the PPR will induce in
each vertex a different fingerprint based on the importance ranking and the network
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structure, simply by changing the viewpoint.

Algorithm 1 Framework
Input: graphs G1(V1, E1) and G2(V2, E2)

Output: matching π

V ′
1 ← vertices sorted in decreasing order according to structural feature of G1

V ′
2 ← vertices sorted in decreasing order according to structural feature of G2

round h← 1

anchors Sh−1 ← ∅
final matching size n← min{|V1|, |V2|}
while true do

nh ← min{2h, n}
Define V h

1 ← V ′
1(1 : nh) and V h

2 ← V ′
2(1 : nh) as the candidate sets

Build GB ← G(V h
1 , V

h
2 , E

h), the weighted complete bipartite graph
w(u1i,u2j) ∈ Eh ← weight given by fSh−1

(u1i, u2j)

π ← (approximate) minimum weight matching for GB

if nh = n then
return π

Bπ ← vertex pairs (edges) of π sorted in ascending order according to Eh

Sh ← Bπ(1 : 2h−1)

h← h+ 1

The PPR importance values can be obtained through an iterative process where,
just like in PageRank, after a certain number of iterations converges to the final
importance for the vertices. In this dissertation, the initial PageRank importance
vector, r0, will be a column vector with value 1 for the viewpoint vertex and zero
for the other vertices. Likewise, the column vector for teleport transitions S will
be defined in the same way with value 1 for the viewpoint vertex and zero for the
other vertices. Consequently, at t = 0 of the iterative process, the importance will
be concentrated on the viewpoint vertex. Since the teleport set is defined only as
the viewpoint vertex, when considering the iterative process as a random walk, the
restart will always be directed to the viewpoint vertex.

Algorithm 2 shows the pseudo-code of the iterative process to calculate the PPR
taking into account only a single vertex as the viewpoint. In this iterative process,
the importance ranking in a given horizon t, called rt, will be obtained by multi-
plying the graph’s random walk transition probability matrix M and the previous
importance vector rt−1. Applying the teleport concept, using a teleport factor α,
we will weight the importance contribution via the random walk matrix and the
teleport. The definition of function rt will be given by:
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rt
(vector)

= (1− α)Mrt−1 + αS (3.1)

In this framework, we will need the PPR importance values of the iterative
process calculated using each of the graph’s vertices as a viewpoint. The presented
Algorithm 2 can be slightly modified so that in a single execution the values for all
vertices are obtained as if the same algorithm had been executed for each different
vertex as a viewpoint. Taking Equation 3.1 as a reference, the modified version used
in the framework replaces the initial PageRank importance r0 by an identity matrix
and likewise the vector for teleport transition S also by an identity matrix. As a
result, rt will no longer be a vector representing the importance ranking using a given
viewpoint vertex on horizon t, but rather a matrix where the values of each column
represent the importance ranking for a different vertex as viewpoint on horizon t.
The modified definition of function rt will be given by:

rt
(matrix)

= (1− α)Mrt−1 + αI (3.2)

Algorithm 2 Personalized PageRank with single vertex as viewpoint
Input: graph G(V,E)

Input: viewpoint vertex u

Input: teleport factor α

Input: horizon of rounds T

Output: importance rankings r0, r1, ..., rT

n← |V |
M ← Column stochastic transition probability matrix for G, with dimension n×n,
meaning that if (j, i) ∈ E and dj is out-links of j, then Mij = 1/dj, else Mij = 0.
S ← Teleport transition column vector with dimension n× 1, where the only
non-zero value is at index u, with value 1.
r0 ← Initial state column vector with dimension n× 1, where the only non-zero
value is at index u, with value 1.
R← [r0] importance ranking list
t← 1

while t ≤ T do
rt ← (1− α)Mrt−1 + αS

add rt to R

t← t+ 1

return R
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For some contexts using PPR, only the final importance value of each vertex is
relevant (obtained after the algorithm converges), however, the intermediate values
obtained during the iterations encode structural information about the network.
Thus, in each t of the iterative process, an importance value is given to each vertex
of the graph. As a result, the sequence of importance values for a specific vertex
allows us to encode more information about the structural role of this vertex than
just the final importance value after convergence.
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Figure 3.1: Comparison of PPR iterative process using different viewpoint vertices
and starting at t = 0. In both iterative processes, teleport factor α = 0.4 and
maximum horizon T = 3.

As can be seen in Figure 3.1a starting from a viewpoint vertex of the network,
the PPR values expand to the other vertices and if we compare this expansion and
the values obtained with Figure 3.1b we can see how the viewpoint changes the
PPR values obtained during the iterative process.

We can define a vector Ru(u), or for simplicity Ru, as the sequence of PPR
values in the range 0 ≤ t ≤ T , where the vertex u is the viewpoint and the
vertex of interest at the same time. So in Figure 3.1a we would have Ra =

Ra(a) = [1.00, 0.40, 0.68, 0.51] and in Figure 3.1b we would have Re = Re(e) =

[1.00, 0.40, 0.52, 0.21]. Going further, we can think of an additional parameter to ac-
cess the value of each specific t, so Ra(a, 0) = 1.00, Ra(a, 1) = 0.40, Ra(a, 2) = 0.68

and Ra(a, 3) = 0.51. Note that t = 0 represents an initial state predefined by the
algorithm, and the horizon T = 3 (in Figure 3.1) indicates the number of rounds of
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the PPR iterative process that were executed.
The definition of Ru by itself could be considered a fingerprint for vertex u, as

stated in SAB [9]. For this framework we have a new fingerprint definition, that
seeks to encode more structural information, and a new metric to calculate the
distance between fingerprints.

Analyzing Figure 3.1a and Figure 3.1b and comparing with the previous def-
inition, we can notice that for both Ra(a) and Re(e) we have the same values for
t = 0 and t = 1. This will always be true when the viewpoint and the vertex of
interest are the same and the parameters used to calculate the PPR are also the
same. Hence when calculating the distance between these two vectors it makes sense
to ignore these values. This will be covered again in Section 3.4.1.

Similarly we can define Ru(v) as the sequence of PPR values where this time
vertex u is the viewpoint, but v is the vertex of interest. So in Figure 3.1a we would
have, for example, Ra(f) = [0.00, 0.00, 0.04, 0.03], it should be noted that the PPR
evolution is still starting from vertex a, but when changing the vertex of interest we
have a vector different from Ra. Also, the same viewpoint can generate vectors for
all other vertices of interest, so thinking about a vertex u as viewpoint, it is possible
to evaluate its structure information on the network with two different perspectives:
looking at itself as a vertex of interest through Ru or looking at others vertices as
vertices of interest using Ru(x)|x ∈ V \ {u}.

It is worth noting that when the viewpoint and vertex of interest are different,
the vector of Ru(v) will always start with at least one zero. This occurs because
the evolution of the PPR from the viewpoint u will take some rounds to reach the
vertex of interest v. More specifically, the number of rounds t necessary for the
PPR value Ru(v, t) to be non-zero will be exactly the hop distance between u and
v in the graph. Thus, depending on the horizon T , the sequence Ru(v) can contain
zeros only. Hence when calculating the distance between two vectors, where in each
the viewpoint and the vertex of interest are different, it makes sense to consider the
precondition of a set of starting zeros that each vector will contain (which can be a
sequence of different length). This will be covered in Section 3.4.1.

The algorithm works in rounds and the anchors (seed set) defined in one round
will be used to find a new matching in the next round. The set of anchors for
h = 1, by definition, will be S0 = ∅ (empty set), and for subsequent rounds it
will have half of the candidate vertices from the previous round that were best
evaluated as matching, i.e., the set of anchors that will be used in a round h > 1

will be Sh−1 = {a1, . . . , ak}, where k = 2h−2. The framework uses a fingerprint to
characterize a vertex and allow two vertices to be compared using their respective
fingerprints. Based on this, in each round the fingerprint of the vertices is modified
according to the anchors defined in the previous round. The framework defines the
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fingerprint of a vertex u in a round h, using anchors Sh−1, as:

Fu = [Ru, Ru(a1), . . . , Ru(ak)] (3.3)

Recall that an anchor is a vertex in G1 that has been matched with a vertex in
G2. From the viewpoint of a vertex u in G1, the anchors of G1 provide valuable
information for u’s fingerprint, indicating the “importance” of each anchor from
u’s viewpoint. Therefore, using the anchors of G1 as vertices of interest from u’s
viewpoint enriches the information about u in G1. This leads to more informed
matching decisions, as the anchors in G1 have corresponding anchors in G2, which
are used in the fingerprints for vertices in G2.

3.3 Ordering Candidate Vertices

In every round of the framework a new matching is determined from a set of can-
didate vertices chosen from each input graph. In the first rounds the candidate
sets are smaller, and in the last round the candidate vertices will calculate the
matching between all the vertices of the graph with the lowest cardinality and the
same number of vertices from the other graph. Considering graphs G1(V1, E1) and
G2(V2, E2), in round h the size of the set of candidate vertices in each graph will be
nh = min{2h, n}, where n = min{|V1|, |V2|}.

The candidates in each graph are not chosen at random. Initially, for each graph
the vertices are sorted in descending order according to some structural feature of
the nodes, so in a round h the candidate vertices will be the first nh of each ordered
list. The round’s matching will then be calculated between the chosen candidate
vertices, therefore, the idea of ordering the vertices is to maximize the chances that
the candidate set of one graph contains the corresponding vertices in the candidate
set of the other graph. The use of a vertex sorting based on network structural
feature and the matching decision using the PPR fingerprint makes the network
structure play a central role in this graph matching framework.

A good ordering for candidate vertices should order the corresponding vertices
of each graph in the same position (or close to it). In the graph matching problem,
the corresponding vertices are in different graphs, which in general have different
structures. Therefore, the sorting metric must be sensitive to structure, to encode
the vertex correctly in its position, but robust so that small changes (such as the
absence of edges or vertices) do not easily affect the ordering, which could prevent
candidates from one graph to coincide with the candidates in the other graph.

There are different structural features that could be applied to sort the candidate
vertices. In this dissertation we will explore some options to compare how they affect
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the result of the matchings and which is more reliable according to the experimental
evaluation. In Figure 3.2, the following features are presented: degree, edges in
EgoNet-1 and the PPR value Ru(u, 2). Considering a vertex u in a network, the
degree is simply the number of neighbors of u. For edges in EgoNet-1, we consider
an induced subgraph composed of vertex u and all its neighbors and count the edges
in this subgraph. Finally, for Ru(u, 2), the PPR iterative process is run for vertex
u until t = 2 and the value Ru(u, 2) is selected as the node feature for sorting (it
is worth noting that Ru(u, 0) and Ru(u, 1) could not be used since each one would
have the same value for all vertices of the network).
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Figure 3.2: Comparison of different structural features used for sorting the candidate
set with the value for each vertex. Vertex a is highlighted as are the network
properties that influence its value, for 3.2a and 3.2b are edges, and for 3.2c is the
importance of neighboring vertices.

By calculating a structural feature for each vertex and using these values to
generate an ordering, the list of candidates for each graph will point out differences
between the network’s vertices, from vertices with stronger characteristics (greater
values) to more common vertices (smaller values). The sorting by each of these
features can lead to different ordering of the vertices, and will directly affect the
results of the framework, since the initial matchings will be executed with different
candidate vertices and consequently the anchors that will be used to assist the
matchings of subsequent rounds will also be different.

The ordering of candidates can highlight characteristics in complex networks,
where some features can present a long-tail behavior. In this case, metrics such as
degree can be very unequal between vertices, where the majority may have a small
degree and very few have a degree orders of magnitude greater than average. This
lack of normality in a feature can benefit the choice of initial candidate sets, but
quickly it may not be able to distinguish the vertices with lower values, making the
choice of sets more randomized.

It is important to mention that depending on the network, the performance of the
same feature may differ, as it is directly associated with its structural characteristics.
The idea of analyzing different ordering metrics is not to choose on a case-by-case
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basis which one performs better, but to have a guideline against the tested examples,
and use a metric that proves to be reliable.

Recall that the first round of the framework has no anchors defined, while in the
subsequent rounds, rankings using anchors as vertices of interest are added to the
fingerprint. Because of this, the initial matching is the least informed and with each
new round the matchings become more informed. Starting the matching algorithm
by trying to decide the matching between the vertices that can be more easily
identified is important because it means choosing good anchors that will provide
relevant information for future decisions. Furthermore, when choosing anchors that
are not true matches will negatively affect the matchings of subsequent rounds.

3.4 Building the Weighted Graph

The matchings between the vertices of the input graphs, G1 and G2, are defined
each round from the weighted complete bipartite graph GB ← G(V h

1 , V
h
2 , E

h) where
V h
1 and V h

2 represent the candidate vertices in round h for G1 and G2, respectively,
and Eh represents the weighted edges between V h

1 and V h
2 . The weight of each

edge represents the structural distance between the vertices, where a zero distance
represents an identical structure according to the framework’s evaluation. Thus,
having a reliable distance metric between the fingerprints of two nodes is essential
to matching vertices correctly.

A bipartite graph guarantees that a vertex in V h
1 will have its correspondence in

V h
2 , i.e., a matching between a vertex in G1 and a vertex in G2. Additionally, using a

complete bipartite allows a vertex in V h
1 to correspond to any vertex in V h

2 and vice
versa. Therefore we know that in a round h, where the candidate set has size nh, the
number of edges in GB will be (nh)

2, consequently this will also be the number of
distances calculated in round h. Figure 3.3 illustrates the complete bipartite graph
that is used to determine the matching pairs at round h = 1 which has a candidate
set of nh = 4 vertices.

3.4.1 Calculating Distances

The weight or distance between two vertices, w(u1i,u2j) ∈ Eh, in a round h, is given
by fSh−1

(u1i, u2j). The distance is based on comparing the fingerprint of vertices u1i

and u2j, and is composed of two main terms. The first term only takes Ru1i and Ru2j

into account, i.e., without considering anchors. The second term jointly evaluates
the anchors through the fingerprint, treating the anchors as vertices of interest. The
anchor pairs considered in a round h belong to the set Sh−1, defined in round h− 1,
meaning that each pair (a1i, a2j) ∈ Sh−1 is composed of a1i ∈ V h−1

1 and a2j ∈ V h−1
2 .
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Figure 3.3: Representation of the weighted complete bipartite graph GB at round
h = 2 where the candidate set has size nh = 4.

The framework, when calculating the distance between fingerprints, is analyzing
different sequences of PPR values in each fingerprint. All sequences of PPR values
will have the same length of T +1, based on the horizon T parameter, meaning that
each sequence has range 0 ≤ t ≤ T . As mentioned in Section 3.2 the entire sequence
encodes information about the structure, which is why the sequences are analyzed
considering the value at each iteration t. However we can think that not every t

index is equally reliable.
Thinking about the reliability of iteration t in a PPR sequence, let’s imagine

the PPR where the viewpoint is a single vertex. During the iterative process, the
calculated values expand from the viewpoint vertex towards the others, as can be
seen in Figure 3.1. Therefore, when t = 1 the vertices with non-zero values will be
vertices at hop distance 1 (including the viewpoint), when t = 2 all vertices with
d ≤ 2 and so on. Based on this, when t = 2, modifications within d ≤ 2 can affect
the calculated values. Likewise, when t = 3, changes within d ≤ 3 will influence the
calculated values. Thus, the larger the t, the greater the range that can impact the
values. Something similar will also occur when evaluating Ru(v), with the difference
that in this case, we will only notice the differences in Ru(v, t) for t ≥ t∗, where
t∗ = min{t|Ru(v, t) > 0} = du,v the hop distance between u and v on the graph.

When comparing two equivalent vertices in different networks we expect the
structures to have similarities that will be encoded by the framework. At the same
time, since the networks are not identical, there will be structural differences encoded
in each fingerprint even for corresponding vertex pairs. As seen previously, with the
increase in t the structure evaluated for the PPR also increases, so the greater t,
the greater the probability of differences in the structures surrounding corresponding
vertex pairs. Based on this, the framework must guarantee a greater or more valuable
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contribution for smaller values of t, and with each increase in t the contribution
added to the comparison must be amortized.

In order to formalize the distance between two vertices, let’s define d(Ru1i
, Ru2j

)

as a first distance between two sequences of PPR values for node i in G1 (denoted
u1i) and node j in G2 (denoted u2j). In this case, for each PPR sequence the
viewpoint and the vertex of interest are the same vertex, i.e., no anchors contribute
to the distance in this case. The definition of function d(Ru1i

, Ru2j
) is given by:

d(Ru1i
, Ru2j

) =
T∑
t=2

∣∣Ru1i
(u1i, t)−Ru2j

(u2j, t)
∣∣

max
(
Ru1i

(u1i, t), Ru2j
(u2j, t)

)σt−2 (3.4)

In this metric, at each t analyzed, we calculate the absolute value of the difference
between the value of each fingerprint, and normalize it by the maximum between
the two values. After that, we apply an amortization according to a factor σ, where
σ is within the range [0, 1]. The final value will then be a sum of this calculation
for 2 ≤ t ≤ T , where we start the comparison with t = 2 since, as demonstrated
in Section 3.2, for t < 2 the PPR values will all be the same, and the T horizon
is the number of rounds of the PPR iterative process that have been executed. It
is worth noting that we use σt−2, since for t = 2 it will be σ2−2 = σ0 = 1, i.e., no
amortization and for t > 2 this factor will reduce the contribution to the distance
(assuming σ < 1).

The normalization carried out in Equation 3.4 has the purpose of ensuring that
for each t the contribution to the distance is proportional to the difference measured,
so that it is always within the range [0, 1]. At the same time, the amortization used
is related to the discussion of reliability of an index t in the PPR sequence, so that
the first value considered is not amortized and subsequent values are increasingly
amortized.

Similar to Equation 3.4 we define a second distance between two sequence of
PPR values, but where this time the viewpoint and vertex of interest are different.
In particular, the vertex of interest for each sequence will be anchors. The second
distance d′(Ru1i

(a1k), Ru2j
(a2k)) is defined as:

d′(Ru1i
(a1k), Ru2j

(a2k)) =
T∑

t=t∗

∣∣Ru1i
(a1i, t)−Ru2j

(a2j, t)
∣∣

max
(
Ru1i

(a1k, t), Ru2j
(a2k, t)

)σt−t∗ (3.5)

where:

t∗ = min{t|Ru1i
(a1k, t) > 0 ∨Ru2j

(a2k, t) > 0} (3.6)

The use of this metric allows the calculation of a distance between u1i and u2j,
but taking into account the vertices of interest a1k ∈ V1 and a2k ∈ V2 which are
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corresponding anchors decided in the previous round of the framework. The idea
behind the metric is similar to Equation 3.4 but the initial t, as indicated in Equation
3.6, will be the smallest t for which at least one of the values is different from zero
(otherwise, both are zero and we have no distance value). Therefore, we also use
the same t to start the amortization.

When using Equation 3.5, the anchor vertices, a1k and a2k, are considered a
correct matching that will add more information to the distance calculated by the
framework. However, when using multiple pairs of anchors there will be pairs with
different confidence levels, i.e., anchors that the framework will be more confident of
being correct than others. Based on this, we define a confidence metric w(a1k, a2k)

where the value for each anchor pair is in the range [0, 1], and the sum for all anchor
pairs is 1. Greater confidence indicates that the anchor pair is more likely to be
a correct match in comparison with the other available anchors. The confidence
w(a1k, a2k) is defined as:

w(a1k, a2k) = 1− d(Ra1k , Ra2k)∑
(a1x,a2x)∈Sh−1

d(Ra1x , Ra2x)
(3.7)

Once we have a distance definition for two vertices using a single anchor given by
Equation 3.5, the next step is to define a distance between two vertices considering
a set of anchor pairs. For this we will combine Equations 3.5 and 3.7 to weight
the contribution of each anchor, therefore anchor pairs with higher confidence will
contribute more compared to pairs with lower confidence. The distance considering
a set of anchors is defined by the function da(u1i, u2j, Sh−1) as follows:

da(u1i, u2j, Sh−1) =
∑

(a1k,a2k)∈Sh−1

d′(Ru1i
(a1k), Ru2j

(a2k))w(a1k, a2k) (3.8)

The framework’s final distance given to a pair of vertices and considering the
set of anchors from the previous round will be based on Equations 3.4 and 3.8. To
combine these metrics, each component will be normalized by its maximum value
among the distance of other pairs of vertices and finally the components will be added
taking into account γ as a weighting parameter, where γ is within the range [0, 1].
The final distance is defined by fSh−1

(u1i, u2j) as given by the following equations:

d̄(Ru1i
, Ru2j

) =
d(Ru1i

, Ru2j
)

max{d(Ru1z , Ru2q), ∀(u1z ∈ V h
1 , u2q ∈ V h

2 )}
(3.9)

d̄a(u1i, u2j, Sh−1) =
da(u1i, u2j, Sh−1)

max{da(u1z, u2q, Sh−1),∀(u1z ∈ V h
1 , u2q ∈ V h

2 )}
(3.10)
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fSh−1
(u1i, u2j) = d̄(Ru1i

, Ru2j
)γ + d̄a(u1i, u2j, Sh−1)(1− γ) (3.11)

The use of normalization by the maximum value among other pairs of vertices in
Equations 3.9 and 3.10 ensures that each component of the final distance between
two vertices is within the range [0, 1]. This allows the weight parameter γ to effec-
tively control the contribution of each component. It can be noted that for γ = 1,
the final distance relies solely on the distances without considering the anchors. This
implies that the fingerprints defined for each vertex would function as if no anchors
were used. Therefore, executing the process in rounds with this parameterization,
unlike rounds with anchors, does not enhance the information of each vertex for
more informed matching decisions.

The use of σ in Equations 3.4 and 3.5 as well as γ in Equation 3.11 allows fine-
tuning the distance metric. The σ is associated with amortization when evaluating
higher t indexes in a PPR sequence and γ controls the relative importance between
PPR metrics considering or not considering the set of anchors. Although these are
the parameters directly associated with the distance calculation, the parameters
used to calculate the PPR, as described in Section 3.2, play a central role in the
final distance given by fSh−1

(u1i, u2j).
The final distance between two vertices is determined by the unique fingerprint

of each vertex. The anchors, defined in each round, are essential in shaping the
fingerprint and, as a result, affect the distance calculations. Therefore, the distance
between any two vertices is not static but varies with each round of the process.

3.5 Minimum Weight Matching in Bipartite Graph

After building the weighted graph, GB ← G(V h
1 , V

h
2 , E

h), we have by definition the
distances between each pair of all possible matchings. Thus, finding the minimum
weight matching in the bipartite graph means finding the combination where pairs
of vertices are as close as possible.

The problem of finding the minimum weight matching in bipartite graph is itself
another problem in computer science. This problem can be stated as finding a perfect
matching M minimizing w(M) =

∑
e∈M w(e), where w(M) is the total weight of M

and w(e) is the weight of edge e. A perfect matching is a subset of edges where no
two edges share a vertex and every vertex of the graph belongs to exactly one edge.

For the framework, an algorithm that finds the optimal solution will be equivalent
to finding the minimum distance sum where each vertex u ∈ V h

1 has one and only
one corresponding vertex in V h

2 , and the same applies for each vertex v ∈ V h
2 to have

exactly one corresponding vertex in V h
1 . There are multiple algorithms that can be
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used to solve this problem, one of them is the Hungarian Algorithm that finds the
optimal solution in polynomial time, with a time complexity of O(n3) in the case of
complete bipartite graphs with n vertices.

At each round, with the weighted bipartite graph built, the framework calls
a separate module to solve the minimum weight matching. With this setup, the
framework can use any algorithm to find a perfect matching in the bipartite graph.
For this dissertation, a greedy algorithm was implemented to generate an efficient
approximation of the optimal solution. In this greedy algorithm the edges are sorted
in ascending order by weight and then each edge in the order is added to the matching
if it does not violate the requirements to be a matching. The time complexity of this
approach is O(n2 log n) which is the time required to sort all edges of the complete
bipartite graph.

Algorithm 3 Greedy Minimum Weight Matching
Input: weighted edges E

Output: perfect matching M

E ′ ← edges sorted in ascending order according to w(e) for each e ∈ E

M ← ∅ empty list of matching edges
A← {} empty hash set of vertices used in partition A
B ← {} empty hash set of vertices used in partition B
i← 1

while i ≤ |E ′| do
(a, b)← E ′[i]

if a ̸∈ A and b ̸∈ B then
adds a to A

adds b to B

adds (a, b) to M

i← i+ 1

return M

During the execution of the framework, only in the last round we will be in-
terested in all the edges found by the minimum weight matching. Therefore, in
Algorithm 3, since it builds the matching starting with those with greater similarity
(edge with the lowest weight), a small optimization is to use a new parameter to
indicate the size of matching to be returned, and thus stopping early the matching
procedure. The algorithm could then monitor whether this condition has already
been met to return the partial matching before finding a perfect matching.

22



3.6 Implementation

All framework algorithms were designed and implemented using Python 3. The im-
plementation of the framework can be divided into five modules: coordinator, which
coordinates execution; sorting metric, which implements the sorting criteria for can-
didate vertices; PPR, responsible for calculating the PPR metric for all vertices of
both input graphs; distance metrics, which computes the vertex fingerprints and
their distances; and minimum weight matching algorithm, responsible for finding
the matching in the bipartite graph.

During initialization, the framework shuffles all the vertices of each input graph
and then maps them to a new vextex identifier (e.g., vertex number). Due to this,
the framework’s algorithms only know the generated ids of the vertices. The idea
prevents the framework from being biased by using the original ids of the vertices,
especially when analyzing synthetic data, where the input graphs may use the same
identifier for vertices that are the correct match. Due to shuffling, even if a tie occurs
when analyzing a metric, for example during the ordering of candidate vertices, the
framework will not be biased in ordering the corresponding vertices in the same
order position.

The framework receives a set of parameters required by each its modules. To
define the order of candidate vertices, it receives the sort method that must be
adopted. In the case of PPR, the parameters provided are the teleport factor α and
the maximum horizon T of iterations to be calculated. For distance metrics, the
required parameters are the amortization factor σ and the contribution weight of the
distance component with no anchors γ. In the case of minimum weight matching,
there is no parameter, but the implemented module uses a greedy algorithm.

Regarding implementation details, PPR results are obtained and stored in a
sparse matrix, since depending on the size and diameter of the graph and the max-
imum horizon T , space could easily be a limitation. The PPR matrix for each
iteration is saved so that it can later be queried by distance metrics. Note that for
t = 0 the matrix is not stored, since the PPR values do not depend on the graph
structure or parameters, and only on the viewpoint and vertex of interest.

The framework algorithm is a CPU bound process, where most of the execution
time occurs calculating the weighted bipartite graph. Based on this, to improve
the framework’s performance, during distance calculations the framework makes
use of process-based parallelism, available with Python’s multiprocessing module,
and using concurrent.futures.ProcessPoolExecutor which offers a higher level
interface for submitting tasks.

The framework’s code, along with the datasets used for evaluation, is publicly
available at [17].
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3.7 Time-Complexity Analysis

In this section, we evaluate the time complexity of the framework step by step, and
finally, its overall time complexity. To simplify the notation, let’s assume that both
graphs have |V1| = |V2| = n nodes.

The proposed framework includes steps that are executed only once as part of
the preparation. Additionally, there are processes that are executed in each round
of the framework until the final result is achieved.

Preparatory steps for the framework:

• Sorting vertices: The vertices of each input graph are sorted according to a
structural feature. The time-complexity of performing the sorting twice (a
constant factor) is O(n log n).

• Execution of PPR: The computation of PPR values, as defined using Equation
3.2, involves iteratively multiplying the column stochastic transition probabil-
ity matrix M (of dimension n× n) by the importance matrix r (of dimension
n × n) for T iterations. Given that T is a constant, the time complexity of
this process is O(n3).

Steps performed in each round of the framework:

• Minimum Weight Matching: In the bipartite graph, it is necessary to deter-
mine the matchings for each round. Using the Greedy Algorithm 3, the time
complexity will be O(k2 log k), where k is the number of vertices corresponding
to one of the candidate sets. For the final round, k = n, resulting in a time
complexity of O(n2 log n).

Since the framework operates in log2 n rounds, we need to consider the complex-
ity of the minimum weight matching being executed for each round. Consequently,
the final time complexity for the framework will be O(n2 log2(n)) considering the
execution phase only and O(n3) for the preparation phase.
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Chapter 4

Methodology and Evaluation

4.1 Methodology

The methodology described in this chapter evaluates the framework by employing
two types of random graph models: Erdős-Rényi [18] and Barabási-Albert [19]. The
goal is to assess and characterize the algorithm’s effectiveness in the context of graph
matching. To achieve this, the evaluation process involves executing the framework
algorithm having as input two distinct but structurally similar graphs, denoted as
G1 and G2.

To generate the input graphs, we begin by creating an initial graph G0 using the
desired random model. This initial graph serves as the foundation for generating two
distinct graphs, G1 and G2, through an edge sampling process. The edge sampling
process runs independently to generate G1 and G2 evaluating each edge of the initial
graph and removing it with probability ρ (removing edge probability). As a result,
the process will generate two distinct graphs, with some shared and some unique
edges. The probability of an edge u of G0 being present in both G1 and G2 is (1−ρ)2.

In this dissertation, 80 pairs of graphs, G1 and G2, were generated. To test
the performance of the framework against different types of networks, different at-
tributes were used to generate the instances and for each selected set of attributes,
10 instances were generated according to Table 4.1. The attributes include: gen-
erative model adopted, Erdős-Rényi or Barabási-Albert; graph size, n = 512 or
n = 1024; and removing edge probability, ρ = 0.1 or ρ = 0.2. It is worth mentioning
that regardless of the generative model adopted, it was parameterized to generate
networks with average degree d̄ = 2 log2(n).

The generated instances serve as input for the framework, and will be evaluated
with parameter variations. The idea of comparing different framework parameters is
to see how they impact the result and evaluate whether any parameterization stands
out compared to others.
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Model n ρ Instances
Erdős-Rényi 512 0.1 10
Erdős-Rényi 512 0.2 10
Erdős-Rényi 1024 0.1 10
Erdős-Rényi 1024 0.2 10
Barabási-Albert 512 0.1 10
Barabási-Albert 512 0.2 10
Barabási-Albert 1024 0.1 10
Barabási-Albert 1024 0.2 10

Table 4.1: List of instances generated to evaluate the framework’s performance.
Each instance is composed of G1 and G2 generated through the edge sampling
process under a graph G0.

In the context of the framework, we consider parameters related to its implemen-
tation and those related to the execution of the PPR. For this evaluation, we kept
the PPR-related parameters constant while introducing variations to some of those
specific to the framework itself. The following definition describes these parameters:

• PPR teleport factor: α = 0.5 (see Equation 3.2)

• PPR horizon of rounds: T = 5 (see Algorithm 2)

• Framework amortization factor: σ = 0.9 (see Equations 3.4 and 3.5)

• Framework candidate sorting feature: parameterized by execution (refer to
Section 3.3)

• Framework final weighting parameter γ: parameterized by execution (see
Equation 3.11)

As the framework of this dissertation works in rounds, in addition to evaluating
the final result of the matching found, this also allows us to evaluate the evolution of
the results obtained round by round. In each round, the maximum number of hits
that the framework could make would be the size of the set of candidates, but if not
every vertex of a candidate set has a corresponding vertex in the other candidate set,
this number will necessarily be smaller. Evaluate the evolution of the framework’s
performance allows us to obtain insights into the functioning of the framework and
the evolution of the choice of anchors round by round.

As a comparison model, the instances were also submitted to SANA [10] (Sim-
ulated Annealing Network Aligner), publicly available at [20]. The graphs were
provided as input in the form of edge lists, where the order of the edges has been in-
tentionally shuffled. The only parameterization provided to the algorithm was -s3

1, which determines the weight of the objective function (s3 refers to Symmetric
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Substructure Score). As we only have the algorithm’s matching output result, we
compared only the final result achieved.

In each input instance, let G1 = (V1, E1) and G2 = (V2, E2) be graphs with
corresponding vertices that share the same label. The score evaluation in the graph
matching problem is then obtained by comparing the number of vertex pairs identi-
fied by the framework as matching and having the same label, relative to the total
number of pairs. Therefore, in a round h, where the framework returns a mapping
π : V h

1 → V h
2 that maps the vertices of G1 to G2, with |V h

1 | = |V h
2 | = nh, the score

for π in round h, denoted as shπ, can be defined by the indicator function 4.1 and
Equation 4.2 as follows:

δ(a, b) =

1 if a = b

0 if a ̸= b
(4.1)

shπ =

∑
u∈V h

1
δ(π(u), u)

nh

(4.2)

Given this, the score does not take into consideration nodes in V1 or V2 that have
a non-trivial automorphism. Recall that if there exists an automorphism that maps
two or more nodes to each other, these nodes are indistinguishable by the structure
of the graph. In this way, nodes with the same structure but different labels can be
counted as mismatches. For example, assuming there exists an automorphism that
maps u to v, where u, v ∈ V2, and u′ ∈ V1 corresponds to u in V2 (therefore sharing
the same label), but the framework returns π(u′) = v, this will be counted as an
error in the metric being used, despite being structurally accurate.

4.2 Results on Erdős-Rényi graphs

The Erdős-Rényi [18] model, also known as the G(n, p) model, generates random
graphs with n nodes by connecting each possible pair of nodes with a probability p

independently. This is a classic random model where the structure is random and
depends on the execution. Using n and p as parameters, any graph with n vertices
can be generated by the model, however the probability of generating each graph
will be different depending on p.

Compared to real networks, such as social networks, G(n, p) exhibits lower clus-
tering and the degree distribution is not heavy-tailed. Unlike what is expected in
real networks, the degree distribution is a binomial concentrated around the average
degree. As the model is parameterized with n and p, it will obey the number n of
vertices and will present the average degree according to p.

In this model, the degree of each vertex results from the sum of n−1 independent
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random variables representing the possible edges. Therefore, to obtain the average
degree d̄ = 2 log2(n), p(n) = 2 log2(n)/(n− 1) was used as parameter.

The results obtained for n = 512 are available in Appendix A, and are qualita-
tively similar to the results presented here for n = 1024.

4.2.1 Evolution

Using the G(n, p) model, we first evaluate the candidate sorting features of degree,
edges in EgoNet-1 and the PPR value Ru(u, 2). For all features we use the same
weighting parameter γ = 0.25, i.e., in the final distance 0.25 will be the contribution
of the metric not considering the anchors, and 0.75 will be the contribution of the
metric considering the anchors.

In Figure 4.1 and 4.2, the graphs with n = 1024 using ρ = 0.1 and ρ = 0.2 are
evaluated respectively. The figures show the performance of the framework round
by round, on average for the 10 instances with this set of attributes, and according
to the candidate sorting feature.

It is possible to see that EgoNet-1 as the ordering for the candidate set outper-
forms the others features. Using this sorting approach, the accuracy reaches 100%

for ρ = 0.1 and exceeds 50% for ρ = 0.2. Additionally, for both values of ρ, it is
possible to notice that the performance for EgoNet-1 exhibits a significant upward
trend after a certain number of iterations. Specifically, for ρ = 0.2, this increase
occurs after a substantial decrease in the number of hits.

Analyzing the use of other sorting features, we notice that degree has an average

Figure 4.1: Average framework round by round score with standard deviation for
the 10 graph instances generated by the G(n, p) model with n = 1024 and ρ = 0.1.
Framework execution comparing structural features for sorting the candidate set.
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Figure 4.2: Average framework round by round score with standard deviation for
the 10 graph instances generated by the G(n, p) model with n = 1024 and ρ = 0.2.
Framework execution comparing structural features for sorting the candidate set.

final performance intermediate between EgoNet-1 and Ru(u, 2) for ρ = 0.1, starting
out the same as EgoNet-1 and reaching a final result of over 50% accuracy. However,
for ρ = 0.2, although it initially demonstrates superior performance compared to
Ru(u, 2), it ultimately converges to a similar performance level, with an accuracy of
less than 1%.

Given the higher performance of EgoNet-1 as the sorting feature, we compare the
performance of different weighting parameter γ keeping the sorting feature fixed as
EgoNet-1 and varying only γ. In Figure 4.3 and 4.4, the graphs with n = 1024 using
ρ = 0.1 and ρ = 0.2 are evaluated respectively. The figures show the performance
of the framework round by round, on average for the 10 instances with this set of
attributes, and according to the weighting parameter.

Analyzing the performance in the instances with ρ = 0.1, as shown in Figure 4.3,
it is noted that the influence of γ is not substantial, with the occurrences varying
in which one has a better performance but maintaining the same trend, and in the
end all obtaining the maximum score.

On the other hand, in the instances with ρ = 0.2, Figure 4.4, we observe sig-
nificant differentiation as we approach the final iterations. When γ = 0.15 the
performance drops below 40% and for the values of γ = 0.10, γ = 0.20, γ = 0.25,
the performances converge, ranging between 54% and 59%.

In the assessments using EgoNet-1 as sorting feature, it can be observed a ten-
dency for a drop in accuracy in the initial iterations, more evident for ρ = 0.2,
followed by an upward trend around the middle round of the total number of it-
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erations. This upward trend may be associated with the use of more anchors that
will contribute to the distance, where these anchors among themselves will also have
their confidence evaluated to contribute more or less to the distance metric.

Figure 4.3: Average framework round by round score with standard deviation for
the 10 graph instances generated by the G(n, p) model with n = 1024 and ρ =
0.1. Framework execution using edges in EgoNet-1 and comparing values for the
weighting parameter γ.

Figure 4.4: Average framework round by round score with standard deviation for
the 10 graph instances generated by the G(n, p) model with n = 1024 and ρ =
0.2. Framework execution using edges in EgoNet-1 and comparing values for the
weighting parameter γ.
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4.2.2 Matching Result

In Figure 4.5 and 4.6 we have the comparison of the final matching result for the
framework and for the SANA algorithm for ρ = 0.1 and ρ = 0.2, respectively. In
both comparisons we have the results per instance and on average. In the case of
the framework we have the results for edges in EgoNet-1 as the sorting feature, with
variations of the weighting parameter γ, and for SANA the simple execution without
trying to change parameterizations.

Comparing the final matching results obtained by the framework, both per in-
stance and on average, the outcome at ρ = 0.1 demonstrates equal performance
across all instances with 100% accuracy. This performance indicates that even with
varying γ values, the framework achieves excellent results for a non-aggressive edge
sampling process. On the other hand, for the SANA executions in all instances, the
results were below 1% accuracy (ranging from 0 to 2 correct matches out of the 1024
possible pairings). The SANA results may be attributed to the G(n, p) model, he
algorithm may not be well-suited for it, given the differences from the results that
will be presented later for the BA model.

For graphs with ρ = 0.2, the results vary depending on the instance and the
γ adopted for the framework, while consistently remaining below 1% accuracy for
SANA (ranging between 0 and 4 correct matches out of the 1024 possible pairings).
In some instances, regardless of γ, the framework produces similar results, such as
for instances 1, 2, 8, and 9. However, for other instances, a specific γ value stands
out. For example, in instance 5, γ = 0.25 significantly outperforms other values,
and in instance 10, γ = 0.10 excels. Notably, edge sampling with ρ = 0.2 shows
that framework results are instance-dependent, with some results being very low
and others achieving 100% accuracy. On average, γ values of 0.10, 0.20, and 0.25

yield the best results, ranging between 54% and 58% accuracy.
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Figure 4.5: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the G(n, p) model using n = 1024 and ρ = 0.1.

Figure 4.6: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the G(n, p) model using n = 1024 and ρ = 0.2.
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4.3 Results on Barabási-Albert graphs

The Barabási–Albert (BA) [19] model creates scale-free networks using a prefer-
ential attachment mechanism. In this model, new nodes are added over time and
are more likely to connect to existing nodes with higher degrees, simulating real-
world networks with power-law degree distributions, where some nodes (hubs) have
significantly more connections.

This model starts with a small clique graph and at each step a new vertex is
added with degree m. Thus, the degree distribution in the BA model is a heavy-
tailed distribution, unlike the G(n, p), but the building process also does not favor
the existence of triangles and consequently the generated network has low clustering.

The input parameters of this model are n and m, where n is the number of
vertices in the final network, and the average degree will be determined according
to m, so that d̄ = 2m. Therefore to obtain the average degree d̄ = 2 log2(n), the
same as was used for the G(n, p) instances, m = log2(n) was adopted.

The results obtained for n = 512 are available in Appendix B, and are qualita-
tively similar to the results presented here for n = 1024.

4.3.1 Evolution

As assessed for the other model, using the BA model we first evaluate the candidate
sorting features of degree, edges in EgoNet-1 and the PPR value Ru(u, 2). For all
features we use the same weighting parameter γ = 0.25, i.e., in the final distance
0.25 will be the contribution of the metric not considering the anchors, and 0.75 will
be the contribution of the metric considering the anchors.

In Figure 4.7 and 4.8, the graphs with n = 1024 using ρ = 0.1 and ρ = 0.2

are evaluated respectively. Similar to the evaluation for the G(n, p) model, it is
observed that EgoNet-1 outperforms the other features as the ordering for the can-
didate set. However, for the BA model, in instances with ρ = 0.1, the degree feature
also achieves 100% accuracy. In instances with ρ = 0.2, EgoNet-1 achieves superior
results compared to the same ρ value in the G(n, p) model, obtaining over 80% accu-
racy for the BA model, while the degree feature exhibits intermediate performance
between EgoNet-1 and Ru(u, 2) with over 60% accuracy.

Following the same procedures adopted for the G(n, p) model, due to the supe-
rior performance of the EgoNet-1 feature, we compare the performance of different
weighting parameter γ keeping the sorting feature fixed as EgoNet-1 and varying
only γ. In Figure 4.9 and 4.10, the graphs with n = 1024 using ρ = 0.1 and ρ = 0.2

are evaluated respectively.
Similar to the G(n, p) model, adjusting the γ parameter in the BA model with

ρ = 0.1 slightly influences the score evolution during framework iterations, and these

33



iterations ultimately converge to the maximum score. For instances with ρ = 0.2,
the behavior of accuracy initially decreasing followed by an upward trend becomes
more pronounced. In this context, the instances exhibit similar performances, but
as we approach the final iterations, they differentiate. Specifically, γ values of 0.20
and 0.15 yield the highest accuracies (97% and 90%, respectively), while γ values of
0.10 and 0.25 result in accuracies 85% and 83%, respectively.

Figure 4.7: Average framework round by round score with standard deviation for
the 10 graph instances generated by the BA model with n = 1024 and ρ = 0.1.
Framework execution comparing structural features for sorting the candidate set.

Figure 4.8: Average framework round by round score with standard deviation for
the 10 graph instances generated by the BA model with n = 1024 and ρ = 0.2.
Framework execution comparing structural features for sorting the candidate set.
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Figure 4.9: Average framework round by round score with standard deviation for
the 10 graph instances generated by the BA model with n = 1024 and ρ = 0.1.
Framework execution using edges in EgoNet-1 and comparing values for the weight-
ing parameter γ.

Figure 4.10: Average framework round by round score with standard deviation for
the 10 graph instances generated by the BA model with n = 1024 and ρ = 0.2.
Framework execution using edges in EgoNet-1 and comparing values for the weight-
ing parameter γ.
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4.3.2 Matching Result

In Figure 4.11 and 4.12 we have the comparison of the final matching result for the
framework and for the SANA algorithm for ρ = 0.1 and ρ = 0.2, respectively.

For instances with ρ = 0.1, i.e., a non-aggressive edge sampling process, the
framework’s performance, regardless of the γ parameter, achieved 100% accuracy.
In the evaluation for the BA model, unlike the G(n, p) model, the SANA algorithm
exhibited an average accuracy of 70%. Analyzing individual instances, we observe
extreme behavior: SANA performed either with low accuracy (below 1%, with a
maximum of 8 correct matches out of the 1024 possible pairings) or exceptionally
high (correctly identifying all pairs except for instance 10, where there were 4 mis-
matches).

For graphs with ρ = 0.2, the results of the framework were notably higher for
the BA model than for the G(n, p) model. On average, using edges in EgoNet-1 as
the sorting feature and γ = 0.20, the accuracy was 97%, with accuracies for other
γ values ranging between 83% and 90%. When evaluating individual instances,
the framework almost always presented a score above 85%, but for some instances
it showed considerably lower performance for specific γ values. In instance 4, the
accuracy was lower for γ = 0.10 and γ = 0.25, in instance 7 for γ = 0.25, and
in instance 8 for γ = 0.10 and γ = 0.15. The SANA algorithm exhibited the same
extreme behavior, achieving high performance in only 2 out of 10 instances, resulting
in an average accuracy of 21%.

Figure 4.11: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the BA model using n = 1024 and ρ = 0.1.
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Figure 4.12: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the BA model using n = 1024 and ρ = 0.2.

4.4 Differences in results between Erdős-Rényi and

Barabási-Albert

Comparing the results obtained from graph instances using the Erdős-Rényi model
(G(n, p)) and the Barabási-Albert model (BA), it is evident that in most cases, the
performance for instances using the BA model was superior. This is particularly
noticeable for the SANA algorithm, used for comparison, as its performance in
the G(n, p) model was consistently close to zero, regardless of the removing edge
probability ρ. For the framework of this dissertation, the differences become evident
when ρ = 0.2, where the performance is at least 25% higher on average.

These results indicate that graph matching algorithms not only depend on the
network topology but can also be sensitive to the characteristics of that topology. In
this particular case, there are significant differences between the topologies created
by each of these models. For instance, in BA graphs, the degree distribution follows
a power-law, meaning they have a few highly connected nodes (hubs). In contrast,
the G(n, p) model has a binomial distribution concentrated around the average de-
gree. Another feature is the clustering coefficient, where BA graphs tend to have
higher clustering coefficients compared to G(n, p) graphs. These characteristics, es-
pecially the presence of hubs in BA graphs, can make them more robust to noise and
perturbations. As a consequence, even with missing or incorrect connections, the
overall structure of BA graphs can remain relatively preserved. This may indicate
the reason why, even for ρ = 0.2, the framework was able to achieve superior results
for the BA model.
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Chapter 5

Conclusions

This dissertation introduces a novel seedless framework based on Personalized
PageRank fingerprints for the graph matching problem. The main contribution of
this work is an addition to other works in the context of graph matching, especially
for systems that do not rely on a seed set of pre-mapped node pairs. The newly
defined fingerprints and distance metrics using Personalized PageRank represent a
significant advancement over existing approaches based on Personalized PageRank
embeddings, which did not account for anchor nodes.

The evaluations were conducted using pairs of similar graphs based on synthetic
generative models. In this process, an original graph is generated using the desired
model, and pairs of similar graphs are independently generated by subjecting the
original graph to an edge sampling process that uniformly removes edges from the
original graph with a given input probability. Applying this process allowed assessing
the framework’s resilience to noise between the compared graphs.

This study also evaluated the proposed framework under different parameters for
candidate sorting features and final distance weighting. The selected parameters for
assessing performance per instance and on average were the candidate sorting feature
as edge in EgoNet-1 and a final weighting γ between 0.10 and 0.25 (corresponding
to the metric’s contribution without the anchors). These preliminary parameter
settings were the most successful, but there is potential for tuning these and other
parameters to enhance the final framework performance.

The obtained results outperformed the algorithm SANA used for comparison,
achieving accuracy values of up to 97% on averaged across instances with a 20%

probability of edge removal for the Barabási–Albert (BA) model. Results obtained
with a 10% edge removal probability showed 100% accuracy, regardless of the tested
model or vertex candidate ordering. For a 20% edge removal probability, accu-
racy averaged between 39% and 58% for the G(n, p) model instances and averaged
between 83% and 97% for the BA model instances. These results highlights the
effectiveness of Personalized PageRank fingerprints in capturing node roles within
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the network structure.
Independent of the obtained results, it is important to note that the probability

of edge removal applied to the edge sampling process significantly affects the out-
comes depending on the evaluated instance. This suggests that despite having some
resilience to noise introduced by edge sampling, both the instances and the applied
generative model also impact how the framework will perform. In addition, this is
also related to the interference that noise can cause to the topological structure of
nodes in the network. For an edge removal probability of 20%, this implies a 64%

probability of the same edge being present in both graphs of the input pair of similar
graphs, according to the employed edge sampling process.

5.1 Future Work

The work in this dissertation and the results obtained provide a foundation for
further research to better evaluate and enhance the framework, as outlined below.

Parameter tuning

This work investigated the variation of the candidate sorting feature and the final
weighting parameter. Nonetheless, there remains significant potential to explore
other variations, including parameters that were held constant, such as those related
to the PPR execution. Conducting an analysis could provide more insights into how
parameter changes impact the performance and accuracy of the graph matching
framework. This analysis could help identify more efficient and robust parameters.

Evaluation on real networks

This work evaluates the use of the framework on synthetic networks, constructed
using two generative models. Future work may include assessing the framework’s
performance on real-world networks from different domains, such as social networks
and biological networks. This could provide a better understanding of the frame-
work’s applicability and effectiveness in diverse scenarios.

Comparison with other seedless graph matching algorithms

This work compared the performance of the framework with the existing SANA
[10] algorithm. For future work, a comparative analysis with other seedless graph
matching algorithms, such as REGAL [8], can highlight the framework’s strengths
and weaknesses. This comparison could provide valuable insights into areas where
it excels or can be improved.
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Appendix A

Results for Erdős-Rény with n = 512

Figure A.1: Average framework round by round score with standard deviation for
the 10 graph instances generated by the G(n, p) model with n = 512 and ρ =
0.1. Framework execution using edges in EgoNet-1 and comparing values for the
weighting parameter γ.

43



Figure A.2: Average framework round by round score with standard deviation for
the 10 graph instances generated by the G(n, p) model with n = 512 and ρ =
0.2. Framework execution using edges in EgoNet-1 and comparing values for the
weighting parameter γ.

Figure A.3: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the G(n, p) model using n = 512 and ρ = 0.1.
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Figure A.4: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the G(n, p) model using n = 512 and ρ = 0.2.

45



Appendix B

Results for Barabási–Albert with
n = 512

Figure B.1: Average framework round by round score with standard deviation for
the 10 graph instances generated by the BA model with n = 512 and ρ = 0.1.
Framework execution using edges in EgoNet-1 and comparing values for the weight-
ing parameter γ.
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Figure B.2: Average framework round by round score with standard deviation for
the 10 graph instances generated by the BA model with n = 512 and ρ = 0.2.
Framework execution using edges in EgoNet-1 and comparing values for the weight-
ing parameter γ.

Figure B.3: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the BA model using n = 512 and ρ = 0.1.
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Figure B.4: Performance comparison for each instance and on average for different
parameterizations of the framework and the SANA algorithm. Executions under
the 10 instances generated by the BA model using n = 512 and ρ = 0.2.
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