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A análise da estrutura em conjuntos de dados complexos tornou-se essencial para
resolver problemas difíceis de aprendizagem automática. Os aspectos relacionais dos
dados, que captam as relações entre objectos, desempenham um papel crucial na
compreensão da estrutura subjacente dos dados. Embora os algoritmos tradicionais
de grafos tenham sido amplamente utilizados para relações binárias, provas recentes
sugerem que os hipergrafos podem proporcionar uma abordagem mais eficaz para
modelar relações complexas e não binárias. As redes neurais de hipergrafos (HGNN)
demonstraram oferecer uma pequena melhoria no desempenho quando comparadas
com as redes neurais de grafos (GNN). Neste trabalho, é proposta uma nova abor-
dagem para inserir conhecimento de domínio relacional em HGNNs usando uma
cláusula lógica que expressa relações não binárias. Avaliamos o desempenho deste
novo modelo hipergrafos, designado por BHGNN (Bottom-clause HGNN), em com-
paração com abordagens bem conhecidas. Os resultados mostram que o BHGNN
pode alcançar uma melhoria estatisticamente significativa do desempenho, com base
no teste Wilcoxon signed-ranks, em comparação com HGNN e GNNs.
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The analysis of structure in complex datasets has become essential to solving
difficult Machine Learning problems. Relational aspects of data, capturing rela-
tionships between objects, play a crucial role in understanding the underlying data
structure. While traditional graph algorithms have been widely used for binary
relations, recent evidence suggests that hypergraphs can provide a more effective
approach for modeling complex, non-binary relations. Hypergraph Neural Networks
(HGNN) have been shown to offer a small improvement in performance when com-
pared to Graph Neural Networks (GNN). In this work, a new approach is proposed
for inserting relational domain knowledge into HGNNs using a logic clause expressing
non-binary relations. We evaluate the performance of this new hypergraph model,
called Bottom-clause HGNN (BHGNN), in comparison with well-known approaches.
Results show that BHGNN can achieve statistically significant improvement of per-
formance, based on the Wilcoxon signed-ranks test, in comparison with HGNN and
GNNs.
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Chapter 1

Introdution

1.1 Introduction

In several areas of machine learning (ML) and data science, the analysis of relational
knowledge contributes to problem solving [3]. Relational data can be represented in
different ways that reflect different relationships. For example, a relational database
can be interpreted as a graph where primary keys serve as nodes and links between
them are represented by foreign keys [4, 5]. In this context, Graph Neural Networks
(GNNs) [6–8] facilitate the manipulation of this graph structure [2, 9].

GNNs model relational structures in domains such as social networks and biolog-
ical systems. They effectively capture interactions between entities. For example,
BotGNN [9] constructs a bipartite graph from relational data and uses a GNN for
classification. However, pairwise relations do not always capture knowledge com-
prehensively, leading to the need for non-binary relations to address complex data
structures [10, 11].

Research suggests that hypergraphs, which allow hyperedges to connect multiple
vertices, provide a framework for modelling non-paired relations [12]. Additionally,
a relational database can also correspond to hypergraphs [13], with existing applica-
tions using hypergraphs because of the limitations of pairwise relationships [14–16].
For example, [15] models systems such as protein complexes and metabolic reactions
using hypergraphs, while [17] applies hypergraphs to social recommendation.

GNNs work with graphs, while hypergraph neural networks (HGNNs) [18, 19]
extend this approach to hypergraphs. An HGNN generates embeddings from hy-
pergraphs, facilitating several tasks.

Creating a hypergraph from relational data based solely on facts has limitations.
A fact in logic is a statement such as P (a), where P is a predicate and a is an object.
For example, P (X) can represent the property of being a prime number, while P (5)
indicates that 5 is a prime number. Facts provide structure, but they may not
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fully capture the complexity of real-world data. Relying on facts alone can lead to
information overload, which reduces the effectiveness of hypergraph representations.

To improve data representation, this work explores the use of logical clauses to
construct hypergraphs, moving beyond traditional fact-based approaches. By incor-
porating n-ary predicates within logical clauses, the method captures relationships
and dependencies within the data. This approach addresses the limitations of using
facts alone and allows for a more detailed understanding of the relational structure.

In addition, the integration of logical clauses aims to evaluate the impact on
hypergraph neural networks by providing a more informative embedding if it leads
to accurate classifications and inferences. It is hypothesised that the use of these
logical constructs can improve the ability of hypergraph neural networks to model
relationships in relational datasets.

To address this limitation, a method is proposed that uses logical clauses such as
P (a) → Q(b) to construct the hypergraph. These clauses can contain n-ary predi-
cates, such as R(a, b, c). This method aims to enrich the hypergraph neural network
with additional knowledge. The hypothesis is that hypergraph neural networks can
effectively represent data relationships defined by logical clauses.

For example, the concept of a lecture can be defined as a ternary predicate
L(t, s, r), with arguments for a teacher (t), students (s), and a room (r). This
ternary predicate identifies a lecture involving a teacher and students in a room.
Alternatively, using binary predicates would require a separate predicate for each
teacher, Lt(s, r), where Lt represents a lecture for teacher t. This conversion of
a predicate into a term is known as reification [20]. The choice of representation
affects the results, as they can vary with the arity of the predicate.

There are many combinations of clauses. To explore these, a bottom-clause
and a mode-declaration are used. A bottom-clause, derived from Inductive Logic
Programming (ILP) [21], is constructed from a single data point and serves as the
basis for searching the space of logical clauses. The introduction of Bottom-clause
Hypergraph Neural Networks (BHGNN) [22] allows the exploration of logical clauses
with HGNNs. In [23], bottom clauses were first used with neural networks, creating
a clause for each data point, next using a feed-forward neural network to create a
classifier. Here a clause is created for each data point, following [23], but the clause
is represented as a hypergraph, therefore we use a hypergraph neural network.

The proposed method facilitates hypergraph construction, with the depth of
clauses representing data relationships influencing the subsequent hypergraph learn-
ing.

HGNNs generate embeddings from the hypergraph, which are used for classifi-
cation and inference within the model.

By integrating domain-specific knowledge into hypergraph generation and em-
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bedding, this approach enables the system to exploit complex data relationships
and infuse symbolic knowledge into HGNNs. This approach is consistent with neu-
rosymbolic systems, which combine symbolic and sub-symbolic components [23–29].

The thesis is structured as follows: Chapter 2 formalises the concepts from ILP,
Neural Networks, Graph Neural Networks and Hypergraph Neural Networks used in
the thesis; Chapter 3 describes the proposed methodology and algorithms; Chapter
4 discusses related work; Chapter 5 presents the experimental results; Chapter 6
concludes the thesis and discusses future directions.
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Chapter 2

Background

Understanding the structures and models used to represent data is central to compu-
tational methods. Five concepts are introduced in this chapter: First-Order Logic
(FOL), Inductive Logic Programming (ILP), Artificial Neural Networks (ANNs),
Graphs and Hypergraphs, along with their neural network counterparts, Graph Neu-
ral Networks (GNNs) and Hypergraph Neural Networks (HGNNs).

Artificial Neural Networks (ANNs) are a core component of machine learning and
artificial intelligence. These models, inspired by the structure of the human brain,
consist of interconnected nodes or neurons arranged in layers. We also describe the
basic components of ANNs, including weights, biases and activation functions, and
discuss the forward and backpropagation algorithms that enable these networks to
learn from data.

First-Order Logic (FOL) is a formal system for expressing statements about
objects and their relationships. FOL extends propositional logic to include quanti-
fiers and predicates, allowing for more expressive representations of knowledge. It
is used in artificial intelligence for knowledge representation, automated reasoning
and natural language understanding.

ILP combines machine learning with logic programming. ILP uses FOL to rep-
resent hypotheses and background knowledge, and allows logical rules to be learned
from examples. This approach is useful for tasks that require symbolic representa-
tions of knowledge, such as bioinformatics, natural language processing, and software
engineering.

Graphs and hypergraphs represent relationships in data. A graph is a set of ver-
tices (or nodes) connected by edges, which can be directed or undirected, weighted
or unweighted. Graphs are used in areas such as social networks, communication
systems and biological networks to model pairwise relationships. Hypergraphs ex-
tend this idea by allowing edges, called hyperedges, to connect multiple vertices
simultaneously, capturing more complex interactions.

Graph Neural Networks (GNNs) and Hypergraph Neural Networks (HGNNs) are
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neural networks designed to work with graph and hypergraph data. GNNs use the
structure of graphs to propagate information between nodes, allowing the modelling
of relationships and processes within the graph. Similarly, HGNNs extend this to
hypergraphs, allowing the modelling of higher order relationships and interactions.

This chapter covers the theoretical underpinnings of these concepts. By the end,
you will have a clear understanding of the neural networks, graphs, hypergraphs,
FOL and ILP used in this thesis.

2.1 Propositional and First Order Logic

2.1.1 Propositional Logic

Propositional logic [30–32], often called Boolean logic, is the most basic form of logic.
It works with propositions, which are declarative statements that can be either true
or false. The simplicity of propositional logic derives from its use of binary truth
values, without regard to the internal structure of propositions.

The main elements of propositional logic are propositions and logical connectors.
Propositions are statements such as "It is raining" or "The light is on". Logical
connectors such as AND (∧), OR (∨), NOT (¬), IMPLIES (→) and BICONDI-
TIONAL (↔) are used to combine these statements into more complex expressions.
For example, "It is raining AND it is cold" combines two statements using the AND
connective.

Truth tables are used to determine the truth value of compound statements.
These tables list the possible truth values of individual propositions and calculate
the resulting truth value of the compound statement. This structured approach
makes propositional logic a useful tool for reasoning about simple statements and
their combinations. However, propositional logic is limited in its ability to represent
statements that involve objects or their relationships.

To illustrate propositional logic, consider a scenario involving weather conditions
and an outdoor event. Propositional logic allows us to combine these statements
using logical connectors to form more complex expressions.

Let us define the following propositions:

• P : It is raining.

• Q: The event is outside.

• R: The event is cancelled.

Each statement can be either true or false. Logical connectors can now be used
to combine these statements and analyse their relationships.
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• AND (Conjunction)

– The conjunction of two propositions P and Q is represented as P ∧Q and
is true if and only if both P and Q are true.

– Example: "It is raining and the event is held outdoors" can be represented
as P ∧Q.

• OR (Disjunction)

– The disjunction of two propositions P and Q is represented as P ∨Q and
is true if at least one of P or Q is true.

– Example: "It is raining or the event is held outdoors" can be represented
as P ∨Q.

• NOT (Negation)

– The negation of a proposition P is represented as ¬P and is true if P is
false.

– Example: "It is not raining" can be represented as ¬P .

• IMPLIES (Implication)

– The implication P → R is true if either P is false or R is true (i.e., P
implies R).

– Example: "If it is raining, then the event will be canceled" can be repre-
sented as P → R.

• BICONDITIONAL (Equivalence)

– The biconditional P ↔ Q is true if P and Q are both true or both false.

– Example: "The event will be held outdoors if and only if it is not raining"
can be represented as Q↔ ¬P .

Let’s consider a more complex statement and construct its truth table. We will
examine the statement: "If it is raining and the event is held outdoors, then the
event will be canceled" ((P ∧Q)→ R).

Here is the truth table for this expression:

6



P Q R P ∧Q (P ∧Q)→ R

T T T T T
T T F T F
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

In the truth table:

• The columns for P , Q and R represent the possible truth values of each propo-
sition.

• The column for P ∧Q shows the truth value of the conjunction of P and Q.

• The last column shows the truth value of the whole expression (P ∧Q)→ R.

The truth table shows how the truth value of the compound proposition (P ∧
Q)→ R depends on the truth values of P , Q and R. In particular, (P ∧Q)→ R is
false only if P ∧Q is true and R is false. This corresponds to the understanding "If
it is raining and the event is being held outdoors, then the event will be cancelled".

This example shows how propositional logic can be used to systematically anal-
yse relationships between simple statements, providing a structured approach to
reasoning about different scenarios.

2.1.2 First Order Logic

First-order logic (FOL) [33–36], also known as predicate logic or first-order predicate
logic, is a formal system for defining and working with propositions and predicates,
providing a framework for formalising statements about objects and their relations.
It is widely used in fields such as mathematics, philosophy, linguistics and computer
science. Unlike propositional logic, which deals only with the true or false values
of whole propositions, FOL allows for more detailed and complex statements by
introducing elements such as quantifiers and predicates.

FOL uses symbols to represent objects, relationships and operations within a
domain. The syntax of FOL consists of several key elements: constants, variables,
predicates, functions, logical connectives and quantifiers.

Constants are symbols that denote specific objects in the domain of discourse.
These objects are usually represented by lowercase letters such as a, b, and c. For
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example, in a domain about people, constants might refer to individuals such as
josé, maria and joão.

Variables are symbols that represent arbitrary objects in the domain, typically
identified by letters such as X, Y , and Z. Variables allow general statements to be
made about objects, allowing universal and existential claims to be formulated.

Predicates are symbols used to express properties of objects or relationships
between multiple objects. For example, P (X) can express "X is a prime number",
and Q(X, Y ) can express "X is greater than Y".

Functions map objects to objects within the domain. They are similar to math-
ematical functions and are often represented by symbols such as f(X) or g(X, Y ).
For example, if f represents the function "father of," then f(X) would denote the
father of X.

Logical connectives are symbols that combine or modify statements to form
more complex expressions. The main logical connectives in FOL include:

• ∧ (and): A conjunction that combines two statements, both of which must be
true.

• ∨ (or): A disjunction that combines two statements, at least one of which
must be true.

• ¬ (not): A negation that inverts the truth value of a statement.

• → (implies): A conditional that asserts the second statement must be true if
the first one is true.

• ↔ (if and only if): A biconditional that asserts both statements must be
simultaneously true or false.

Quantifiers are symbols used to indicate the scope of a statement over the
objects in the domain. There are two primary quantifiers in FOL:

• ∀ (for all): A universal quantifier indicating that a statement applies to all
objects in the domain. For example, ∀xP (x) asserts that P (x) is true for
every object x.

• ∃ (there exists): An existential quantifier indicating that there is at least one
object in the domain for which the statement is true. For instance, ∃yQ(y)
asserts that there is at least one y for which Q(y) holds true.

These symbols together form the basic vocabulary of first-order logic, allowing
for the construction of precise and complex logical statements about objects and
their interrelations within a specified domain.
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Terms in first-order logic represent objects and can be constants, variables, or
function applications. For instance, if f is a function and x is a variable, then f(x)
constitutes a term. Terms serve as the building blocks for constructing formulas,
which can be either atomic or complex.

Atomic formulas are the simplest type of formulas and consist of predicates
applied to terms. Examples of atomic formulas include P (x), where P is a predicate
and x is a term, or Q(x, f(y)), where Q is a predicate applied to the terms x and
f(y), with f being a function and y a variable.

Complex formulas are formed by combining atomic formulas using logical con-
nectives and quantifiers. Logical connectives such as ¬ (not), ∧ (and), ∨ (or), →
(implies), and ↔ (if and only if) enable the construction of more intricate state-
ments. For example, ¬P (x) is a complex formula where the truth value of P (x) is
negated. Similarly, P (x) ∧ Q(y) combines two atomic formulas into a conjunction
that is true only if both P (x) and Q(y) are true.

Quantifiers, ∀ (for all) and ∃ (there exists), further enrich the expressive power
of first-order logic. For instance, ∀xP (x) asserts that the predicate P holds for
all objects x in the domain of discourse, while ∃yQ(y) asserts that there exists at
least one object y for which the predicate Q is true. These constructs allow for
the creation of detailed and nuanced logical statements about objects and their
relationships within a specified domain.

The semantics of first-order logic (FOL) provides the meaning of its syntactical
constructs by interpreting symbols within a specific domain of discourse. This pro-
cess involves several key components: the domain of discourse, interpretation, and
truth.

The Domain of Discourse is the set of all objects under consideration. It defines
the scope within which the symbols of FOL are interpreted.

The Interpretation assigns meaning to the various symbols used in FOL:

• The constants are mapped to specific objects in the domain.

• The variables represent elements of the domain.

• The predicates are interpreted as relations on the domain.

• The functions are interpreted as mappings from tuples of domain elements to
domain elements.

An interpretation also determines the truth value of statements within the do-
main. For example, the statement ∀xP (x) is true if P (x) holds for every x in the
domain. This allows FOL to express and evaluate the truth of logical statements
based on the relationships and properties of objects within the domain.
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For instance, the formula ∃x(Human(x)∧Loves(x, IceCream)) means "There ex-
ists some x such that x is a human and x loves ice cream." Here, the existential
quantifier ∃ indicates that at least one element x satisfies both conditions: being
human (Human(x)) and loving ice cream (Loves(x, IceCream)). This concise expres-
sion efficiently captures the existence of an object with specific properties within a
domain.

2.2 Inductive Logic Programming

ILP [21, 37, 38] is a branch of symbolic machine learning that attempts to induce
logical programs from examples. ILP is dedicated to learning logical theories com-
posed of Horn clauses in first-order logic, using both examples and prior knowledge.
Horn clauses are a specific subset of first-order logic, known for their simplicity and
effectiveness in representing logical relationships and constraints. This approach
combines knowledge representation through logical programming languages with in-
ductive learning techniques to derive logical rules that satisfy the given examples.

It predominantly uses logic programming, in particular the Prolog language, to
represent its constructs. The two main pillars of its theoretical foundation are logic
programming and induction.

First, logic programming forms the backbone of ILP, allowing knowledge and
hypotheses to be represented by logic programs. These programs consist of a set of
rules and facts, typically expressed as Horn clauses.

Second, induction is a fundamental process in ILP. It involves the task of gener-
alising from specific instances to broader, more comprehensive rules. The primary
goal here is to induce a hypothesis that not only accounts for the given observa-
tions, but also has predictive power for new, unseen instances. By abstracting from
the details of the given examples, ILP aims to discover underlying patterns and
relationships that can comprehensively explain the data.

The task of ILP can be defined within a formal framework. The essence of
ILP lies in its goal of deriving a logical hypothesis from given data consisting of
background knowledge and examples. In ILP, input data is expressed in the form of
logical programs that include both positive and negative examples. The objective is
to learn a logical clause that satisfies all positive examples while not satisfying any
of the negative examples. This process can be broken down into specific components
and goals.
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2.2.1 Given

• Background Knowledge (B): This encompasses a set of facts and rules that
are known beforehand. These form the initial knowledge upon which further
reasoning and learning are built.

• Positive Examples (E+): These are instances where the target concept holds
true. They serve as the basis for identifying patterns and constructing the
desired hypothesis.

• Negative Examples (E−): These are instances where the target concept does
not hold true. They are crucial for ensuring that the induced hypothesis does
not overgeneralize and incorrectly cover instances that should be excluded.

A hypothesis H that satisfies the following conditions:

1. B ∪H |= E+: This means that the combination of background knowledge B
and the hypothesis H must entail all the positive examples. In other words,
the hypothesis should correctly explain all instances where the target concept
is true.

2. B∪H ̸|= E−: This condition ensures that the background knowledge B and the
hypothesis H together do not entail any of the negative examples. This means
that the hypothesis should exclude all instances where the target concept is
false, thus maintaining its accuracy and specificity.

The presence of prior knowledge is crucial for the effectiveness of this approach,
manifesting through facts, such as father(Lucas, Maria), or rules, such as grand-
father(X,Y) :- father(X,Z), father(Z,Y), where the interpretation would be "X is
the grandfather of Y if X is the father of Z and Z is the father of Y". These
rules represent logical clauses in the form ∀X, Y, Z, father(X,Z) ∧ father(Z, Y ) →
grandfather(X, Y ). The set father(X,Z), father(Z,Y) is referred to as the "body" of
the rule, while grandfather(X,Y) is termed the "head" of the rule.

The investigation of a logical clause in ILP involves a saturation phase, aiming to
efficiently identify all implicit relationships in the data instances. ILP uses a range of
methods and search strategies to generate and refine hypotheses. These methods in-
clude inverse entailment, top-down and bottom-up approaches, refinement operators
and various search strategies.

• Top-Down: This approach starts with the most general hypothesis and special-
izes it to fit the data. An example of this methodology is the FOIL algorithm
[39].
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• Bottom-Up: This approach begins with specific facts (examples) and general-
izes them. The GOLEM system [40] exemplifies this methodology.

Figure 2.1 shows the difference between the top-down and bottom-up approaches
in ILP. On the left is the top-down approach, starting with a general hypothesis at
the top. This general hypothesis is gradually specialised through successive steps,
leading to more specific hypotheses, until the data (examples) are fully explained.
This method aims to refine broad concepts into detailed rules that fit the observed
data.

Conversely, the right side of the figure represents the bottom-up approach. This
method starts with the specific data (examples) at the bottom. From these specific
instances, the approach gradually generalises the hypotheses, moving upwards to-
wards a more general hypothesis. Each step involves abstracting the specific facts
into broader generalisations, culminating in a broad general hypothesis that encap-
sulates the data.

Top-Down Approach

General Hypothesis

Specialized Hypothesis 1

Specialized Hypothesis 2

Data (Examples)

Bottom-Up Approach

Data (Examples)

Generalized Hypothesis 1

Generalized Hypothesis 2

General Hypothesis

Figure 2.1: Illustration of Top-Down and Bottom-Up Approaches in ILP

Introduced in the Progol system [41], inverse entailment involves finding a hy-
pothesis H such that B ∪ ¬E |= ¬H. This approach combines bottom-up with
inverse entailment, and transforms the problem into a deductive one, making it
easier to manage the search space.

ILP faces several significant challenges that affect its efficiency and applicability.
One of the main challenges is computational complexity. The hypothesis space in
ILP is often large, resulting in high computational demands for both search and
inference. As the system attempts to explore and evaluate numerous potential hy-
potheses, the computational resources required can become significant. This com-
plexity can hinder the practical application of ILP, particularly in scenarios involving
large data sets or complex background knowledge. Effective strategies to manage
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and reduce this computational burden are essential for the further development and
wider use of ILP.

2.2.2 Mode Declarations

Mode declarations are an important aspect of ILP. They serve to define the structure
and constraints of the hypotheses that the ILP system can generate, effectively
guiding the search through the hypothesis space. By specifying which predicates
and terms can be used and how they can be instantiated, mode declarations ensure
that hypotheses remain meaningful and computationally feasible.

They are syntactic constructs that specify how predicates can be used in hy-
potheses. They indicate which arguments of a predicate should be input (already
known values) and which should be output (values to be determined). This distinc-
tion helps in the systematic construction and refinement of hypotheses during the
learning process.

Its advantages are, firstly, that it restricts the hypothesis space by defining the
allowable forms of predicates and their arguments. This narrows down the vast
space of possible hypotheses.

Secondly, mode declarations ensure that the hypotheses generated are meaningful
and relevant to the domain of interest. By specifying the structure and constraints
of predicates, they guide the system in generating hypotheses that are semantically
valid and applicable to the given problem.

Finally, they improve the computational efficiency of the ILP system. By re-
ducing the number of potential hypotheses that need to be considered, they signif-
icantly reduce the computational resources required for hypothesis generation and
evaluation. This efficiency is particularly important in complex domains with large
datasets, where the computational cost of exploring all possible hypotheses can be
prohibitive.

A mode declaration typically consists of the following components:

1. The name of the predicate and its arity (number of arguments).

2. Symbols indicating whether an argument is an input (+), or an output (-)
The first argument is the maximum number of occurrences of this predicate,
if the argument is (*) it means that the predicate can be used as many times
as needed. Input arguments are known values, while output arguments are
variables that the ILP system has to find.

For example, in the mode declaration :- modeb(*, parent(+person,

#person))., the predicate parent/2 has two arguments. The first argument is an
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input (denoted by +), and the second argument is a constant (denoted by #). Mean-
while, the mode declaration is :- modeb(*, grandparent(+person, -person)).

The first argument is an input (denoted by +) and the second argument is an out-
put (denoted by -). This declaration indicates that for any clause using the parent

predicate, the first argument must be instantiated and the second argument is to be
determined by the ILP system.

In these declarations, the parent and grandparent predicates are followed by a
number after a slash, such as parent/2 and grandparent/2. This number represents
the arity of the predicate, which indicates the number of arguments it takes. For
example, parent/2 means that the predicate parent takes two arguments, while
grandparent/2 also takes two arguments.

The symbols +, # and - represent different patterns for the arguments:

• + indicates that the argument is an input, i.e. it must already be instantiated
when the predicate is used.

• # indicates that the argument is a constant, which cannot be changed or further
instantiated.

• - marks the argument as an output, which is not instantiated and is inferred
by the ILP system.

Thus, the predicate/arity notation specifies the name of the predicate and the
number of arguments it takes, while the mode declarations describe how those ar-
guments are used during the ILP process.

Now let’s consider a simple ILP problem in the area of family relationships, with
the following mode declarations

:- modeh(*, grandparent(+person, -person)).

:- modeb(*, parent(+person, #person)).

:- modeb(*, parent(#person, +person)).

:- modeb(*, male(+person)).

:- modeb(*, female(+person)).

• :- modeh(*, grandparent(+person, -person)).: This declaration speci-
fies that the head of a hypothesis can use the grandparent predicate, where
the first argument is an input and the second is an output.

• :- modeb(*, parent(+person, #person)).: This declaration indicates that
the parent predicate can be used in the body of a hypothesis, with the first
argument as input and the second as output.
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• :- modeb(*, parent(#person, +person)).: This allows the parent predi-
cate to be used with the first argument as output and the second as input.

• :- modeb(*, male(+person)). and :- modeb(*, female(+person)).:
These declarations allow the male and female predicates to be used with
a single input argument.

In summary, mode declarations are important in ILP for several reasons: they
guide the construction of hypotheses by specifying valid forms and combinations of
predicates, enhance search efficiency by reducing the hypothesis space and compu-
tational complexity, and provide flexibility in the use of predicates, allowing various
ways to construct and test hypotheses.

2.2.3 Bottom Clause

The bottom clause plays an important role in constraining the hypothesis space,
making the search for an appropriate hypothesis more efficient. The bottom clause,
typically denoted as ⊥, is the most specific clause that can be constructed from a
given example using the background knowledge and language constraints. It serves
as a lower bound in the hypothesis space from which more general hypotheses can
be derived. The bottom clause contains all the literals relevant to the example
according to the background knowledge, ensuring that any hypothesis generalised
from it will cover the example.

The head of the clause initially contains a single predicate representing the target
concept, while the body starts empty. Thus, the most general clause considers any
input as positive, for example ∀X, Y grandparent(X, Y ). Next, the system chooses a
specific example e (a positive instance) that the ILP system aims to explain. Next,
use mode declarations to specify which predicates and terms can be used in the
clauses. This helps to restrict the literals that can appear in the lower clause. Finally,
it saturates the example e with all possible literals that can be derived using the
background knowledge B. This means adding every possible literal that relates to
the example based on the predicates and terms allowed by the mode declarations. As
the search progresses, the clause is refined and instantiated by adding predicates to
the body of the lower clause, based on the observed positive and negative examples,
along with any prior knowledge or constraints. The correspondence between modeh
and modeb is structured to preserve variable chaining, ensuring that any variable
used as an input in a body predicate is also either an input variable in the head of
the rule, or an output variable in another body predicate.

The Algorithm 1 is for generating bottom clauses. It is the modified version of
Progol’s Bottom Clause created by [23]. The main differences between this algorithm
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Algorithm 1

and Progol’s original are two: First, it introduces the depth parameter to allow the
user to specify the depth of the clause; second, it allows to create a bottom clause
on positive and negative examples, which the original algorithm did not allow the
user to do.

Now, consider an example in the domain of family relationships, where the back-
ground knowledge includes predicates such as parent/2, male/1 and female/1.
Suppose we have a positive example grandparent(maria, jose).

1. Example: grandparents(maria, jose).

2. Mode declarations:

:- modeh(*, grandparent(+person, -person)).

:- modeb(*, parent(+person, -person)).
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:- modeb(*, parent(-person, +person)).

:- modeb(*, male(+person)).

:- modeb(*, female(+person)).

3. Background Knowledge:

parent(maria, carlos).

parent(maria, ana).

parent(carlos, jose).

parent(ana, luis).

parent(ana, sofia).

female(maria).

female(ana).

female(sofia).

male(jose).

male(carlos).

male(luis).

4. Saturation: Using the background knowledge and mode declarations, the
bottom clause for grandparent(maria, jose) might contain

grandparent(A, B) :-

parent(A, C),

parent(C, B),

male(B).

The grandparent rule states that A is the grandparent of B if A is the parent
of C and C is the parent of B. In addition, B must be male for A to be recognised
as a grandparent in this context. In summary, A is the grandparent of B if A is
the parent of B’s parent and B is male. However, it’s important to note that the
bottom clause generates the most specific clause for each example up to a certain
depth, based on the BK and the mode declaration. In this clause, specifying that B
must be male is not strictly necessary for a general grandparent rule, but because
the bottom clause systematically constructs the most specific clause for the given
examples, it includes both the parental relationships and other conditions, such as
gender, where relevant.
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This example illustrates how mode declarations can guide the ILP system in the
construction of hypotheses. The mode declarations specify the valid forms of the
predicates grandparent, parent, male and female. The saturation process then
uses these declarations together with the background knowledge to form a bottom
clause, which is a specific hypothesis explaining the given example. In this case, the
hypothesis suggests that for jose to be a grandparent of maria, there must be an
intermediate parent relationship through maria, and jose must be male.

2.3 Graphs and Hypergraphs

Graphs [42–48] and hypergraphs [49–53] are structures in discrete mathematics, with
wide-ranging applications in computer science, network theory, and various scientific
disciplines. A graph G is an ordered pair (V,E), where:

• V is a set of vertices.

• E ⊆ {(u, v) | u, v ∈ V } is a set of edges.

In other words, a graph is a collection of vertices (or nodes) and edges connecting
pairs of vertices. Graphs can be directed, where edges have a direction, or undi-
rected, where edges have no direction. They can also be weighted, with numbers
assigned to edges representing quantities like distance or cost, or unweighted.

For a directed graph G, the edges E are ordered pairs of vertices:

• E ⊆ {(u, v) | u, v ∈ V }.

For a weighted graph G:

• Each edge e ∈ E is assigned a weight w(e) ∈ R .

Graphs are used to model relationships and processes in numerous fields, such
as social networks, communication networks, and biological systems.

In a graph, a path is a sequence of edges connecting a sequence of vertices, and a
cycle is a path that starts and ends at the same vertex without traversing any edge
more than once.

For instance, given V = {A,B,C,D,E} and E =

{{A,B}, {A,C}{B,D}, {D,E}}, we have:

• G = (V,E) represents a graph.

• V = {A,B,C,D,E} represents the nodes.

• E = {(A,B), (A,C), (B,D), (D,E)} represents the edges.
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Hypergraphs extend the concept of graphs by allowing edges, known as hyper-
edges, to connect more than two vertices. This makes hypergraphs suitable for
modeling more complex relationships. For example, in a hypergraph representing
a collaboration network, a hyperedge might connect all researchers who have co-
authored a paper. This allows for the representation of multi-way relationships that
cannot be captured by simple graphs.

In a hypergraph, the incidence structure is often of interest. This structure
describes which vertices are contained in which hyperedges. Hypergraphs can be
uniform, meaning all hyperedges have the same number of vertices, or non-uniform.
An example of a uniform hypergraph is a 3-uniform hypergraph, where each hyper-
edge connects exactly three vertices. The study of hypergraphs includes examining
properties such as hyperedge connectivity, vertex degrees (number of hyperedges a
vertex belongs to), and coloring problems.

Both graphs and hypergraphs are represented mathematically using matrices and
adjacency lists. For graphs, the adjacency matrix is a square matrix used to represent
a finite graph, with elements indicating whether pairs of vertices are adjacent or not.
In hypergraphs, the incidence matrix is used, with rows representing vertices and
columns representing hyperedges, where an entry indicates the presence of a vertex
in a hyperedge. These representations are crucial for computational algorithms that
process graphs and hypergraphs.

Figure 2.2 illustrate the key differences between a graph and a hypergraph.
Figure 2.2a, we have a simple graph. A graph consists of vertices (or nodes)

connected by edges. Each edge connects exactly two vertices. The vertices are
labeled A, B, C, D, and E, and there are edges between certain pairs of vertices,
forming a network of pairwise connections.

Figure 2.2b, we depict a hypergraph. Unlike a simple graph, a hypergraph allows
for hyperedges, which can connect more than two vertices at a time. In this example,
the vertices are the same (A, B, C, D, and E), but the connections are represented by
ellipses that enclose groups of vertices. These ellipses (hyperedges) illustrate multi-
way relationships, showing how hypergraphs can capture more complex interactions.

In summary, graphs and hypergraphs are powerful tools for modeling and ana-
lyzing complex relationships in various domains. Graphs are suitable for pairwise
relationships, while hypergraphs are needed for multi-way interactions.

2.3.1 From Relational to Graph Representation

In Prolog, data is structured using predicates applied to terms, where each predicate
defines a relationship. A relational dataset consists of facts and target examples,
divided into positive and negative cases. This dataset can be represented as a bi-
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A B

C

D

E

(a) A simple graph with vertices A, B,
C, D, and E connected by edges.

A
B

C D

E

(b) A hypergraph with the same ver-
tices, but hyperedges (ellipses) connect-
ing multiple vertices at once.

Figure 2.2: Comparison between a graph and a hypergraph.

partite graph, where terms and predicates are placed in different sets and connected
based on the relationships specified by the facts.

To create a bipartite graph from the dataset, the process begins by selecting one
of the target examples. This example, either positive or negative, will guide the
construction of the graph.

1. Choose a target example: Begin by selecting a target example from the
set of positive or negative cases.

2. Identify related facts: Gather all the facts that relate to the chosen example.
These facts are those that have the target as a term.

3. Create Two Sets: Separate the terms and predicates involved in the facts
into two different sets. One set will contain the terms and the other the
predicates.

4. Connect Sets: Establish links between terms and predicates based on the
relationships defined in the selected facts.

This process is repeated for each target example, resulting in a bipartite graph
for each individual example.

For example, consider the target is west6 and the Prolog facts are as follows:

has_car(west6,car_61) (2.1)

has_car(west6, car_62) (2.2)
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The relations has_car(west6, car_61) and has_car(west6, car_62) describe
that the entity "west6" has two different cars: "car_61" and "car_62". In other
words, "west6" owns or is associated with these two cars.

In a bipartite graph, the data is represented as two sets of nodes:

• Predicates:has_car.

• Terms: west6, car_61, and car_62.

The edges are drawn between predicates and their corresponding terms:

• has_car is connected to west6 and car_61.

• has_car is linked to west6 and car_62.

Figure 2.3 is the bipartite graph where the predicates are connected to the terms
based on the facts provided in Prolog.

has_car

has_car

west6

car_61

car_62

Figure 2.3: Bipartite graph representation of relational data, illustrating the con-
nections between predicates and terms. The predicates has_car are connected to
various terms, such as west6 and car_61.

In order to use methods like GNN, we need to represent this data as feature
vectors. One-hot encoding can be used to create the features for the predicates and
terms.

The feature vector assigns a specific position in the feature vector to represent
each constant and predicate. In our example with one predicate and 3 constants,
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the feature vector will look like this

has_car : [1, 0, 0, 0]

has_car : [1, 0, 0, 0]

west6 : [0, 1, 0, 0]

car_61 : [0, 0, 1, 0]

car_62 : [0, 0, 0, 1]

However, this method may have limitations when trying to retrieve data related
to a target example by identifying relevant facts from related terms - such as the
fact load(car_61, circle, 3) which is not retrieved because it does not have the term
west6, even though it provides information about car_61.

The process of representing the hypergraph is similar to that of the bipartite
graph. The main difference is in the structure: instead of using predicates as nodes,
the representation involves hyperedges connecting multiple nodes.

Alternative works also converts relational data into graph structure [2, 4, 5].

2.4 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural networks specifically designed
to process structured data in the form of graphs [6–8, 54–56]. Unlike traditional neu-
ral networks, which operate on fixed structures such as grids or sequences, GNNs are
built to capture the dependencies between entities, which are naturally represented
as nodes in a graph.

The main idea of GNNs is message passing, where each node in the graph updates
its state by aggregating information from its neighbours. This iterative process
allows nodes to refine their representations based on the structure of the graph and
the characteristics of neighbouring nodes.

Initially, the hidden state of each node i, denoted by h
(0)
i , is set using the as-

sociated feature vector xi such that h
(0)
i = xi. As GNN processes the graph layer

by layer, the hidden state h
(t)
i is updated at each step t by message passing, where

each node aggregates information from its neighbours and combines it with its own
current hidden state. This process allows the hidden states to capture increasingly
rich representations of both the local neighbourhood and the global structure of
the graph. Over multiple layers, the hidden states evolve to reflect not only the
individual node features, but also the broader context of the graph, making them
suitable for tasks such as node classification, graph classification, or link prediction.
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The general steps for applying a GNN are outlined below:

1. Initialisation:

• We begin by assigning a feature vector to each node in the graph. The
feature vector, denoted by xi, represents the initial information or at-
tributes of node i.

• Initialise the hidden state of each node i, denoted by h
(0)
i , using the

associated feature vector xi. In this step, h(0)
i = xi.

• The initial hidden states serve as input to the subsequent message passing
and update phases.

2. Message Passing:

• At each step, nodes exchange information with their neighbours.

• Node i sends a message to its neighbour j, based on its current state h
(t)
i

at step t.

• Node j collects messages from all its neighbours, allowing it to learn
about its local neighbourhood.

3. Node Update:

• After receiving messages from its neighbours, node j aggregates the in-
coming messages. The aggregation function may involve summing, aver-
aging, or applying more complex operations to the received messages.

• Once the messages have been aggregated, the node j updates its hidden
state. This update is achieved by applying a node update function that
transforms the aggregated messages and the previous hidden state of the
node. The updated hidden state for node j at iteration t + 1 is denoted
by h

(t+1)
j .

• The updated hidden state reflects the refined representation of node j,
which now includes information from its immediate neighbours.

4. Iteration:

• The message passing and node update steps are repeated for a predeter-
mined number of iterations or until a predetermined stopping criterion is
met.

• With each iteration, nodes incorporate information from nodes further
away in the graph, gradually increasing the amount of information they
can access.
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5. Readout/Pooling:

• At the end of the iterations, each node has a final hidden state containing
information from its neighbourhood.

• To generate a graph-level representation, the final hidden states of all
nodes are combined using a readout or pooling function. This function
may involve summing, averaging, or applying more sophisticated opera-
tions to the node representations.

• The result is a single vector representing the entire graph. This vector
contains information about both the nodes and the structure of the graph.

6. Output:

• The graph-level representation obtained from the readout or pooling step
is used to perform the desired task.

• Depending on the application, the task may involve predicting a label for
the whole graph (e.g. classification) or predicting a continuous value (e.g.
regression).

The message passing process can be described as follows [57]:

h(k+1)
u = UPDATE(k)

(
h(k)
u ,AGGREGATE(k)

({
h(k)
v , ∀v ∈ N (u)

}))
(2.3)

= UPDATE(k)
(
h(k)
u ,m

(k)
N (u)

)
, (2.4)

In this formulation, h(l)i denotes the representation of node i at level l, while
m

(k)
N (u) refers to the message from node’s neighbours at the same level. N(i) repre-

sents the set of neighbours of node i, and the Aggregation and Update are responsible
for constructing, aggregating and updating messages.

The following example employs numerical data.
Consider the graph 2.4. It is a graph with 4 nodes labelled from A to D and a

feature vector next to it.
We start by generating the message, aggregating it using the mean, and updating

the corresponding nodes. Starting with the node A, which is highlighted in orange,
and its neighbours, which are highlighted in green, are then considered in the process
(see Figure 2.5).
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A 16

B 2

C 4

D 12

Figure 2.4: The initial graph comprises four nodes, labelled A, B, C and D. Node A
is connected to nodes B, C and D, and nodes C and D are also connected to each
other.

A 16

B 2

C 4

D 12

Figure 2.5: Graph illustrating node A (orange) connected to its neighbours, the
green nodes B, C and D, by grey edges.

The weight W is set to 1 and the bias B is set to 1. The function f is a non-linear
function such as ReLU (Rectified Linear Unit), defined as

f(x) = max(0, x)

Beginning with node A:

h
(1)
A = f

(
W (1) × h

(0)
B + h

(0)
C + h

(0)
D

3
+B(1) × h(0)A

)
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h
(1)
A = f

(
1× 2 + 4 + 12

3
+ 1× 16

)
h
(1)
A = f (6 + 16)

h
(1)
A = f (22)

In the following, node B.

A 16

B 2

C 4

D 12

Figure 2.6: Graph with four nodes, where node A (green) is connected to nodes B
(orange), C (grey) and D (grey). Node A, shown in green, is a neighbour of node
B, shown in orange.

h
(1)
B = f

(
W (1) × h

(0)
A

1
+B(1) × h(0)B

)

h
(1)
B = f

(
1× 16

1
+ 1× 2

)
h
(1)
B = f (16 + 2)

h
(1)
B = f (18)

Next, Node C:
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A 16

B 2

C 4

D 12

Figure 2.7: Graph with four nodes, where nodes A (green) and D (green) are con-
nected to nodes B (grey) and C (orange). The green nodes A and D are neighbours
of the orange node C.

h
(1)
C = f

(
W (1) × h

(0)
A + h

(0)
D

2
+B(1) × h(0)C

)

h
(1)
C = f

(
1× 16 + 12

2
+ 1× 4

)
h
(1)
C = f (14 + 4)

h
(1)
C = f (18)

Finally, Node D:

A 16

B 2

C 4

D 12

Figure 2.8: Graph with four nodes, where node A (green) and node C (green) are
connected to node D (orange) and node B (grey). The green nodes A and C are the
neighbours of the orange node D.
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h
(1)
D = f

(
W (1) × h

(0)
A + h

(0)
C

2
+B(1) × h(0)D

)

h
(1)
D = f

(
1× 16 + 4

2
+ 1× 12

)
h
(1)
D = f (10 + 12)

h
(1)
D = f (22)

This process will occur for all nodes. Figure 2.9 is the updated graph after
updating all nodes.

A 22

B 18

C 18

D 22

Figure 2.9: Graph with four grey nodes. After the update, node A now has a value
of 22, node B has a value of 18, node C has a value of 18 and node D has a value of
22. Each node now has information about its neighbours.

Note that in the first iteration, node B only receives information from node A.
In the second iteration, node B receives information not only from node A, but also
from A’s neighbours, nodes C and D.

In the example, the aggregation function used is the mean. However, alterna-
tive aggregation functions such as summation, maximum or minimum can be used
depending on the task at hand.

Figure 2.10 summarise the process. The image represents a message-passing
layer in a GNN. In this particular GNN layer:

1. Message Passing: Nodes in the graph (such as node A) receive information
from neighboring nodes (in this case, B, C, and D). Each node sends a message
to its neighbors, and these messages contain features or embeddings that are
learned during the training of the model.
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2. Aggregation: The incoming messages from neighbors are aggregated (typ-
ically by summation, averaging, or more complex functions) to capture the
information from neighboring nodes.

3. Node Update: Once aggregation is complete, node A updates its internal
state or feature vector based on the aggregated information. The updated
state of node A is propagated to other layers or used for prediction.

Figure 2.10: Illustration of a single layer in a GNN showing the message-passing
mechanism. Node A receives messages from its neighbors (B, C, and D), aggregates
them, and updates its state accordingly. This process allows node A to incorporate
information from its neighborhood in the graph.

The output of a GNN is a learned representation, often referred to as a node
embedding or graph embedding, depending on the task. After several layers of
message passing and hidden state updates, the final hidden state h

(T )
i of each node

encapsulates information about the node itself as well as the structure and features of
its local neighbourhood. This final hidden state serves as a high-level representation
that can be used for various downstream tasks. For node-level tasks, such as node
classification or regression, h(T )

i can be used directly as the output for each node.
For graph level tasks, such as graph classification, a separate "readout" function is
used.

The readout function aggregates the node-level representations into a single
graph-level embedding. After GNN has generated node embeddings by aggregating
information from neighbouring nodes, the readout function combines these embed-
dings into a unified graph representation. Common methods for this include simple
techniques such as sum, mean or max pooling, which summarise the information
across all nodes. For example, applying sum as a readout function to the node em-
beddings of figure 2.9 (with node A = 22, node B = 18, node C = 18, and node D =
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22) results in a graph-level embedding of 22+18+18+22 = 80. This representation
is crucial for downstream tasks such as graph classification.

The output of the readout function is typically fed into a final task-specific
layer, such as a softmax for classification or a regression layer to generate the final
prediction. In this way, the readout function condenses the node-level information
into a comprehensive, informative representation of the whole graph.

In many GNN applications, including our work, the final learned representations
are passed to an MLP for classification or regression tasks.

After the GNN has updated the hidden states of the nodes through message
passing, the output, whether at the node or graph level, serves as input to an MLP.

For node classification tasks, the final hidden state h
(T )
i of each node is fed into

an MLP, which acts as a classifier. The MLP processes these node embeddings and
outputs a class prediction for each node. In graph-level tasks, after the readout
function aggregates the node representations into a single graph representation, this
graph-level embedding is fed into the MLP to predict a label for the entire graph.

The MLP serves as the task-specific component of the pipeline, translating the
learned GNN representations into the desired output. Its role is to map the high-
dimensional node or graph embeddings into a more interpretable space, such as class
probabilities in classification problems.

2.5 Hypergraph NNs

While traditional GNNs operate on graphs composed of nodes and edges, Hyper-
graph Neural Networks (HGNNs) introduce hyperedges capable of connecting mul-
tiple nodes simultaneously. In hypergraphs [58], a hyperedge is a higher-order struc-
ture that establishes connections among any number of nodes simultaneously. This
enables the representation of n-ary predicate relationships, unlike traditional graphs
that encode binary predicates. HGNN leverages this additional structure to capture
complex and higher-order interactions in the data.

The main concept behind HGNN is the generalization of the neighborhood ag-
gregation concept employed in GNNs. Unlike node neighborhoods in graphs, which
consist only of immediately adjacent nodes, in a hypergraph, the neighborhood of
a node is defined by the nodes that share the same hyperedges. This flexibility
allows the dissemination of information from a hyperedge to all nodes it connects,
incorporating higher-order dependencies.

In typical approaches of HGNNs, a common practice involves decomposing hy-
peredges into binary connections to employ methods based on GNNs. This enables
the use of established GNN architectures, such as Graph Convolutional Networks
(GCNs), treating the hypergraph as a bipartite graph. Termed as "hyperedge de-
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composition," this method transforms the hypergraph into an auxiliary bipartite
graph, where hyperedges are represented as edges between hypernodes and conven-
tional nodes. However, as our experiments suggest, this approach may result in
information loss and an increase in computational complexity due to the potential
explosion in the number of connections between pairs.

The algorithm employed in HGNNs resembles that used in GNNs. The crucial
distinction lies in the fact that, when representing data as a hypergraph, neighbors
are no longer conventional pairs but are determined by hyperedges. Message passing
follows the same logic adopted by GNNs; however, in this context, it is carried out
through hyperedges.

In the work of [18], the GCN structure is expanded to hypergraphs by intro-
ducing a hypergraph adjacency matrix and a hypergraph Laplacian matrix. The
authors present a hypergraph-based approach to adapt conventional GCN opera-
tions to hypergraph data. Additionally, in [19], a Hypergraph Convolutional Neural
Network (HGCN) is proposed, which generalizes the concept of graph convolutions
to hypergraphs. The HGCN can incorporate a hypergraph attention mechanism to
assess the importance of hyperedges during convolutional operation. The model is
as follows:

X′ = D−1HWB−1H⊤XΘ

In the presented equation, the incidence matrix H, which represents the connections,
is multiplied by the diagonal matrix of hyperedge weights W.1 The resulting product
is then multiplied by D−1 and B−1, which represent the respective degree matrices.
Finally, this multiplication is applied to the transpose of H, the input matrix X,
and the parameter matrix Θ, resulting in the updated matrix X′ [19].

In summary, Hypergraph Neural Networks extend the framework of graph neural
networks to handle hypergraphs, enabling the modeling of higher-order dependen-
cies among nodes. Moreover, by capturing complex interactions through hyperedges,
HGNN provides a richer representation of the data. As indicated by the experimen-
tal results presented in this work, this comprehensive representation can enhance
performance in various learning tasks involving hypergraph structures.

The process begins with the initialization of a linear transformation using weights
initialized to ones. This transformation is applied to an input vector x to produce
an output vector y, which can be expressed mathematically as:

y = Wx+ b

1https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geomet-
ric.nn.conv.HypergraphConv.html
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where W is the weight matrix, and b is the bias vector.

Step 1: Scatter Operation (Node Degree)

Next, a scatter operation is performed to compute the sum of the weights of the hy-
peredges connected to node i. The incidence matrix H(i, e) encodes the relationship
between nodes and hyperedges (the degree). The inverse degree is computed as:

Di =
1∑

eH(i, e)we

where Di is the degree of node i, and H(i, e) reflects the connections between
nodes and hyperedges.

Step 2: Scatter Operation (Hyperedge Degree)

Following this, another scatter operation is conducted to count how many nodes are
associated with each hyperedge. This can be written as:

B =
∑
i

H(i, e)

To normalize, the inverse of each element in B is computed, resulting in:

B =
1

B

Step 3.1: Message Passing Step

Next is the propagation step, where the feature vector of each neighboring node xj
is scaled by the corresponding normalization factor B. This operation is represented
as:

out = y ·B

Step 3.2: Message Passing Step

Following propagation, another message passing step occurs. During this step, the
features of neighboring nodes are scaled by the normalization factor D, represented
as:

outi = Di · outi

where outi is the resulting output for node i.
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Step 4: Mean Aggregation

Once propagation is complete, the next step is to compute the mean of the outputs
for each node, ensuring that the information is aggregated across the different nodes.

Step 5: Bias Addition

Finally, a bias term is added to the output. This bias is a trainable parameter that
is added element-wise to the output vector. The operation can be written as:

outi = outi + b

where b is the bias vector.

Summary of the Process

The overall process involves:

1. Initializing and applying a linear transformation.

2. Performing scatter operations to count node and hyperedge connections.

3. Computing the inverse of these counts.

4. Propagating information using normalization factors.

5. Aggregating the outputs via mean.

6. Adding a bias term to the final output.

Example Application

Let’s apply the above steps with all parameters set to 1 (W = 1,b = 1, we = 1) on
the following input:

x =


1

4

7

10


Node degree D (before inversion):

D = [1, 2, 2, 1]

After inverting:

D = [1, 0.5, 0.5, 1]
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A 1
B 4

C 7 D 10

Figure 2.11: Initial hypergraph structure with four nodes labeled A, B, C, and D,
where each node is annotated with its corresponding feature values (1, 4, 7, and 10).
The ellipses represent two hyperedges connecting subsets of the nodes.

Hyperedge degree B (before inversion):

B = [3, 3]

After inverting:

B = [0.3333, 0.3333]

Propagation step:

out = y ·B =

[
4

7

]
Message passing step:

out = D · out =


4

5.5

5.5

7


Mean aggregation:

mean(out) =


4

5.5

5.5

7


Bias addition:
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outi = outi + b =


5

6.5

6.5

8



A 5
B 6.5

C 6.5 D 8

Figure 2.12: Updated hypergraph structure after the transformation process. Nodes
A, B, C, and D are shown with their new feature values (5, 6.5, 6.5, and 8), reflecting
the results of the propagation and bias addition steps. The ellipses represent the
same hyperedges as in the initial structure.
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Chapter 3

Proposed Method

In artificial intelligence, the integration of neural computation with symbolic rea-
soning combines the strengths of both approaches. Neural networks are effective
at learning from data and dealing with noisy inputs, but are challenged by tasks
involving logical reasoning and the use of prior knowledge. Symbolic reasoning, on
the other hand, works well with abstract concepts and logical rules, but struggles
with large data sets. Neural-symbolic computing seeks to combine the learning ca-
pabilities of neural networks with the expressive power of symbolic logic to tackle
tasks that require both data-driven learning and reasoning. This chapter examines
one method within this area: the use of hypergraphs to encode symbolic knowledge
that is then used by HGNNs to train classifiers.

Hypergraphs extend traditional graphs by providing a representation of complex
relationships between entities. Unlike standard graphs, where edges connect pairs
of nodes, hypergraphs allow hyperedges to connect multiple nodes, making them
suitable for representing n-ary relationships found in symbolic logic. By encoding
symbolic knowledge in hypergraphs, we obtain a structured representation.

Our approach focuses on the Bottom HyperGraph [22], a structure that extends
the propositionalisation of the bottom clause, an essential element of the ILP search
process. The transformation of symbolic knowledge into a hypergraph format allows
the integration of data and prior knowledge into the training process. This hybrid
method exploits both neural computation and symbolic reasoning.

The construction of the Bottom hypergraph involves several steps. This repre-
sentation is then processed by a hypergraph neural network, which processes the
connected data for classification tasks. To demonstrate our method, we apply it
to the trains dataset from the ILP community. Although the dataset is small in
terms of examples, it contains rich relational descriptions. We classify trains based
on their direction - whether they are heading east or not - using features such as car
length, door opening, cargo shape, and number of wheels.

This chapter explores the theoretical underpinnings, construction process and im-
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plementation of bottom hypergraphs, and provides details of the proposed method.

3.1 Bottom-HyperGraph

The approach of neural-symbolic computing aims to synergistically merge neural
computation with symbolic reasoning. At the core of our method, we integrate sym-
bolic knowledge into hypergraphs, extending the propositionalization of the bottom
clause. With this, we can train a classifier using both data and prior knowledge,
employing hypergraph neural networks.

We introduce the concept of Bottom-HyperGraph, where, based on the predi-
cates of the bottom clause, we transform terms into nodes and use hyperedges to
interconnect terms of any n-ary predicate. The construction process of the Bottom-
HyperGraph follows a delineated sequence of steps outlined and presented below.

1. For each example in the training set:

(a) Generate a Bottom Clause;

(b) Delete the head of the Bottom Clause;

(c) Generate a Bottom-HyperGraph from the body of the Bottom Clause:

i. For each predicate of the form P(t1,t2,...,tn), create a node in the
hypergraph labelled ti, 1 ≤ i ≤ n, and create a hyper-edge con-
necting the terms ti labelled P, i.e., each variable become one node,
and constants turn into many nodes. For example: the clause
P1(A,circle,1),P2(A,1) will have 1 node for variable A, 1 for circle,
and 2 nodes for constant 1; A hyperedge labelled P1 is created, con-
necting the nodes A and circle with the node 1. Similarly, a new hy-
peredge labelled P2 should be created, connecting the nodes A and
1. These hyperedges represent the relationship between the terms
through the predicate P1 and P2.

ii. Create a feature vector for each node ti encoding the arguments and
data types of ti;

iii. Create a feature vector for each hyper-edge P encoding the terms in
P.

Figure 3.1 illustrates the process flow to create a Bottom-HyperGraph.
With Bottom-HyperGraph we have a hypergraph represented in a format that

can be used by a HGNN. Each node individually has its own feature vectors, while
hyperedges contain pertinent information about which nodes they are connected
to. In addition, the type of hyperedge is encoded as a feature vector. We then
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Figure 3.1: Construction do Bottom-HyperGraph

use a HGNN to process this structure, where the node and hyperedge features are
propagated across the hypergraph to capture complex relationships. After applying
the HGNN layers, a readout function is used to aggregate the node and hyperedge
representations into a unified feature vector. Finally, a MLP is applied to this
aggregated representation to perform classification, allowing us to predict the desired
output based on the learned hypergraph embeddings.

To illustrate the entire procedure, we employ the dataset called trains [59], which
is related to trains. This dataset is widely recognized in the community of ILP. The
objective is to classify trains according to their direction, specifically whether they
are heading eastward or not. This classification is based on the characteristics of
the train cars, such as length (short or long), door opening, cargo shape, content
type, and number of wheels, among others.

The dataset in question contains only ten trains, although the relational descrip-
tions can become notably complex. The solution to the problem utilizes logical
clauses, some of which are exemplified below. These clauses incorporate predi-
cates that assert, for example, that train A has a car B with a closed lid con-
taining three circular-shaped cargos, and a car C with a triangular-shaped cargo.
Crucially, the simple train dataset includes ternary predicates, as exemplified by
load(C, triangle, 1). The mode declarations are detailed in Appendix B, providing
an in-depth view of the rule set used in solving the problem.

We operate with four distinct data categories in this mode: #int, #shape, car,
and train. Additionally, we have eleven predicates, namely: closed, double, east-
bound, has_car, jagged, load, long, open_car, shape, short, and wheels. During
data processing, our attention is especially drawn to the symbol #, which functions
as a constant in the bottom clause. It is noteworthy that seven of these constants do
not have numerical types, namely: circle, ellipse, hexagon, nil, rectangle, triangle,
and u_shape.

For the induction of a logical theory using ILP, it is necessary to have both
positive and negative examples, along with prior knowledge and mode declarations.
In this specific context, we present five positive examples expressed in the form
eastbound(eastn), where 1 ≤ n ≤ 5. Simultaneously, five negative examples are
provided, modeled as eastbound(westn), where 6 ≤ n ≤ 10.

The data consists of several categories of entities and their definitions:
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1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Figure 3.2: Michalski’s set of trains [1]

Positive Negative
eastbound(east1). eastbound(west6).
eastbound(east2). eastbound(west7).
eastbound(east3). eastbound(west8).
eastbound(east4). eastbound(west9).
eastbound(east5). eastbound(west10).

• Car Definitions: There are two car identifiers, namely car_61 and car_62,
which are labelled as cars.

• Shape Definitions: Seven different shapes are defined: elipse, hexagon,
rectangle, u_shaped, triangle, circle, and nil.

• Train Definitions: Ten trains are listed, five travelling east (east1 to east5)
and five travelling west (west6 to west10).

Each category defines entities with unique labels within its type. No specific
relationships or properties between these entities are provided in this data.

% Type definitions

% Car Definitions

car(car_61). car(car_62).

% Shape Definitions

shape(elipse). shape(hexagon). shape(rectangle). shape(u_shaped).

shape(triangle). shape(circle). shape(nil).

train(east1). train(east2). train(east3). train(east4). train(east5).
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train(west6). train(west7). train(west8). train(west9). train(west10).

The following data provides details about the westbound train west6 and its
associated carriages:

• Train: west6

– Has two cars: car_61 and car_62.

• Car Definitions:

– car_61

∗ Length: Long

∗ Shape: Rectangle

∗ Status: Closed

∗ Load: 3 circles

∗ Wheels: 2

– car_62

∗ Length: Short

∗ Shape: Rectangle

∗ Status: Open

∗ Load: 1 triangle

∗ Wheels: 2

% westbound train 6

has_car(west6,car_61).

has_car(west6,car_62).

long(car_61).

short(car_62).

shape(car_61,rectangle).

shape(car_62,rectangle).

closed(car_61).

open_car(car_62).

load(car_61,circle,3).

load(car_62,triangle,1).

wheels(car_61,2).

wheels(car_62,2).
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With the background knowledge, mode declarations, and presentation of both
positive and negative examples, we can generate the bottom clause. Utilizing the
first negative example, eastbound(west6), we create the bottom clause 3.1.

eastbound(A) : − (3.1)

closed(B), has_car(A,B),

has_car(A,C), load(B, circle, 3),

load(C, triangle, 1), long(B),

open_car(C), shape(B, rectangle),

shape(C, rectangle), short(C),

wheels(B, 2), wheels(C, 2).

The clause 3.1 states that train A is eastbound if it has two cars, one closed (B)
and one open (C). The closed car (B) carries a load with 3 circles, is long, has
a rectangular shape, and two wheels. The open car (C) carries a load with one
triangle, is short, has a rectangular shape, and two wheels.

Having created the bottom clause, the next step is to remove its head. The head
refers to the objective of the clause. Once removed, we are left with the body of
the clause, which contains the predicates and terms relevant to this example and is
encoded as a hypergraph. This process ensures that the feature vector captures only
the body information following the chaining process of the bottom clause, without
the goal that the classifier will learn. The example 3.2 corresponds to the bottom
clause 3.1 without the head.

closed(B), has_car(A,B), (3.2)

has_car(A,C), load(B, circle, 3),

load(C, triangle, 1), long(B),

open_car(C), shape(B, rectangle),

shape(C, rectangle), short(C),

wheels(B, 2), wheels(C, 2).

In the "trains" example, where hypergraphs go beyond pairwise relations between
nodes, the load relation is set up as a hyperedge connecting three nodes. Similarly,
the closed property can be represented by a unary relation forming a hyperedge
with a single node. This setup affects the message-passing process: in a bipartite
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graph, two hops are required for a predicate node to reach another predicate node,
or for a term node to reach another term node. In a hypergraph, only one hop is
required because each hyperedge connects multiple nodes directly, allowing faster
communication between them. This direct connection in hypergraphs reduces the
complexity of graph traversal compared to bipartite graphs.

To illustrate this difference, figures 3.3a and 3.3b show the same relations:
closed(B), has_car(A,B), load(B, circle, 3), but in distinct representations.

Figure 3.3a shows a bipartite graph with two different sets of vertices. Edges
are only drawn between vertices from different sets. Bipartite graphs are often used
to model relationships between two types of entities. Here, terms are on one side
and relationships are on the other, with edges indicating when a term is part of a
relationship.

In contrast, Figure 3.3b shows a hypergraph. A hypergraph generalises a stan-
dard graph by allowing a hyperedge to connect any number of vertices. This makes
hypergraphs useful for representing complex relationships involving multiple entities
at once. In this case, concepts are nodes and relationships are hyperedges.

Although the representations are different, both diagrams show the same rela-
tionships. The bipartite graph and the hypergraph express the same underlying
data structure, but they do so in different ways.

By comparing the two figures, we can see how different graph forms provide
different views and ways of managing the same set of relationships.

In order to process the hypergraph for HGNN training, feature vectors must be
created to represent the hypergraph. Using the mode file, we can identify all the
predicates and term types that will appear in the bottom clauses. In the case of
the trains dataset, the feature vector has 23 positions that encode the necessary
information, the predicates and term types, for HGNN training.

The first 11 positions are used to encode predicates:
[eastbound, closed, double, has_car, jagged, load, long, open_car, shape, short, wheels].
Each predicate is assigned a unique position, with a truth value represented by
either 1 or 0.

Next, four positions are assigned to data types: [#int,#shape, car, train] and
their presence or absence is represented by 1 or 0.

Then seven more positions represent constants such as
[circle, ellipse, hexagon, null, rectangle, triangle, u_shape] values using the
same binary coding.

The last position is reserved for numerical values, such as those in predicates like
"load" and "wheels".

These three components - predicates, types and constants - serve as templates
for structuring the final feature vectors, with the overall size determined by the need
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(a) bipartite graph (b) hypergraph

Figure 3.3: Figures 3.3a and 3.3b show equivalent sets of relations:
closed(B), has_car(A,B), and load(B, circle, 3). Figure 3.3a shows these relations
as a bipartite graph, while Figure 3.3b shows the same relations using a hypergraph.

to represent all elements.
For example, the predicate "closed" is represented by a one-hot encoding, where

the second position of a 23-dimensional vector contains a 1: [0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0.0]. The 1 in the second position reflects the
assignment of "closed" to that position in the vector.

Similarly, the constant 2 is represented by the vector [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0], where the 12th position represents the data type
"#int" (with a 1) and the last position contains the value 2.

For the variable A, which is of type "train", the 15th position in its vector is set
to 1, following the same logic. The first 11 positions are reserved for predicates, the
next 4 for types, and the 15th position marks the type "train".

For the constant "circle" the vector looks like [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0.0]. The 13th position marks the "#shape" type, while the
first position after the first 15 slots represents "circle". This shows that "circle" is
of type "#shape" and has its own value.

The feature vectors for the hypergraph associated with eastbound(west6)

are presented in 3.1. Appendix C provides an example of the feature vector
corresponding to each term and predicate found in the trains dataset.
closed : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
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has_car : [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
load : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

long : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

open_car : [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
shape : [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

short : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

wheels : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

A : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.]

B : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

C : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

circle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0.]

rectangle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0.]

triangle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0.]

1 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.]

2 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.]

3 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.]

In summary, the procedure starts with the bottom clause of eastbound(west6),
as shown in figure 3.4. Using this example as input, we generate the bottom clause
shown in b). This clause is then transformed into a hypergraph, along with its
feature vectors, resulting in the Bottom HyperGraph. Finally, we use this Bottom-
HyperGraph to train a HGNN. After processing the hypergraph structure with the
HGNN, a readout function is applied to aggregate the learned representations from
the nodes and hyperedges. Finally, an MLP is used to classify the output using the
rich embeddings learned from the hypergraph during the training process.
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Figure 3.4: Bottom Clause Hypergraph Neural Network: a) the process starts
with the background knowledge, and mode declarations (shown here for example
eastbound(west6) of the trains classification problem; b) the generation of the bot-
tom clause for the example eastbound(west6); c) the corresponding hypergraph
(after removing the head of the bottom clause). The colors of the nodes indicate
their type: green for train, yellow for car, red for shape, and blue for int ; d) the
hypergraph is converted into feature vectors for training with HGNN.
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Chapter 4

Bibliographical review

HetSAGE [2] and BotGNN [9] are graph-based methods designed for heterogeneous
and bipartite graph structures respectively. HetSAGE addresses the challenge of
different node and edge types by applying a unified sampling strategy, similar to
GraphSAGE [60], to generate subgraphs that support node classification. BotGNN
incorporates symbolic domain knowledge into GNNs by converting ground clauses
into ground graphs, which improves the network’s ability to learn from relational
data.

Non-graph-based methods such as CILP++ [23] focus on transforming first-order
logic into propositional logic to allow neural networks to process relational data.
The CILP++ system, derived from C-IL2P, uses Bottom Clause Propositionalisa-
tion (BCP) to simplify feature extraction and vector mapping, thereby improving
relational learning.

This chapter explores these methods, presenting their techniques and contri-
butions to neuro-symbolic learning. The following sections examine each method,
detailing its mechanisms and implications for machine learning.

4.1 Related work

This chapter examines related work, including graph-based methods such as HetSage
and BotGNN, and non-graph-based methods such as CILP++ and BCP.

4.1.1 BotGNN

BotGNN [9] is a novel approach that integrates GNNs with domain knowledge using
the framework of Mode-Directed Inverse Entailment (MDIE) [41], derived from ILP.
This method allows multi-relational background knowledge to be incorporated into
GNNs, improving performance on complex graph-based tasks such as molecular
graph classification.
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MDIE is a technique from ILP that constructs logical rules by inverting entail-
ment. Given a data instance e and background knowledge B, MDIE identifies a
specific logical formula ⊥B(e), which captures all the relevant information from B

related to e. In BotGNN, this logical formula is represented as a bottom-graph.
This graph includes labeled vertices and edges that encode the domain knowledge.

The transformation of knowledge into a graph form suitable for GNNs is an
important step. Each graph G = (V,E, σ, ψ, ϵ) consists of

• V : a set of vertices (nodes),

• E: a set of edges connecting the vertices,

• σ: a neighbourhood function (often derived from the edges),

• ψ: a vertex labelling function that assigns feature vectors to vertices,

• ϵ: an edge labelling function.

After several iterations, a final vector embedding of the graph, XG ∈ Rd, is
generated for downstream tasks such as classification.

The bottom graph is constructed by transforming the logical formula⊥B(e) into a
graph. This transformation allows the GNN to use both the structural information
of the graph and the multi-relational domain knowledge. By incorporating this
bottom-graph, BotGNN enhances the GNN’s ability to reason over structured data,
thus improving its predictive performance.

BotGNN was evaluated on several datasets. The results showed that BotGNN
outperformed:

• Standard GNNs: BotGNN performed better than GNNs that did not use
background knowledge.

• Simplified Knowledge Incorporation Methods: A recently proposed
method for incorporating knowledge into GNNs, VEGNN [61], showed lower
accuracy compared to BotGNN [9].

• Multi-Layer Perceptrons (MLPs): BotGNN also outperformed MLPs us-
ing propositionalised features of background knowledge [9].

Key strengths of BotGNN are:

• Combination of GNNs and ILP: BotGNN uses the computational power
of GNNs together with the symbolic reasoning capabilities of ILP to efficiently
handle complex, relational data.
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• General applicability: BotGNN’s method of incorporating domain knowl-
edge is applicable to other fields such as social network analysis, bioinformatics,
and more.

BotGNN is a step forward in the integration of domain knowledge into GNNs.
By embedding structured background information into the graph architecture via
MDIE, it allows GNNs to achieve higher performance on complex tasks involving
relational reasoning. This combination of the computational efficiency of GNNs
with the expressiveness of ILP makes BotGNN a powerful tool for a wide range of
applications in machine learning and knowledge representation.

4.1.2 HetSAGE

HetSAGE [2] is a GNN architecture designed to handle the complexity of hetero-
geneous graphs, where nodes and edges can represent different types of entities
and relationships. Such graphs are commonly found in real-world datasets such as
social networks, knowledge graphs, and recommendation systems. By integrating
concepts from both neuro-symbolic learning and GNNs, HetSAGE enhances the
model’s ability to process and learn from multi-relational data, allowing for more
nuanced representation and inference in complex relational structures.

Traditional GNN architectures, such as GraphSAGE, have been successful in ho-
mogeneous graph settings where all nodes and edges are of the same type. However,
they often face challenges when applied to heterogeneous graphs, which involve a va-
riety of node and edge types, each representing different types of relationships. This
complexity makes it difficult for traditional models to effectively capture and repre-
sent the multi-relational information that is critical for tasks such as classification
and link prediction.

To overcome these limitations, HetSAGE uses the logical reasoning provided by
neuro-symbolic learning. This hybrid approach combines the symbolic reasoning
strengths of logic-based systems with the statistical learning capabilities of GNNs.
In doing so, HetSAGE enhances the representation and learning processes, enabling
the model to better handle the complexity of heterogeneous graphs.

The HetSAGE architecture builds on the sampling and aggregation techniques
introduced in GraphSAGE [60], but adapts them to heterogeneous graph structures.
The following key components of the HetSAGE framework allow it to efficiently
process such graphs:

To represent knowledge within these heterogeneous graphs, HetSAGE uses a
grounded graph construction approach. Knowledge is first represented through logic
programming and then transformed into a graph structure:

• Terms with arity 0 are mapped to graph nodes.
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• Relations with arity 1 and 2 are mapped to node attributes and edges respec-
tively.

• For relations with higher arity, a technique known as reification is used, where
complex relations are represented as additional nodes and edges.

This transformation ensures that the complex relationships within the graph are
effectively captured, providing the basis for further processing by HetSAGE.

Similar to GraphSAGE, HetSAGE uses a sample and aggregate approach. How-
ever, in heterogeneous graphs, nodes may be connected by multiple types of edges,
each representing different relationships. HetSAGE addresses this by performing a
two-step aggregation process:

• Neighbour-Level Aggregation: For each target node, HetSAGE samples
a fixed number of neighbours of the same edge type, capturing the specific
relational structure. For example, in a recommendation system, different edge
types may represent product purchases versus views, and these are treated sep-
arately. The model applies a neighbour aggregation function, such as mean or
max-pooling, to compute aggregated features from these sampled neighbours.

• Edge-Level Aggregation: After obtaining the aggregated features for each
edge type, HetSAGE combines them using an edge-level aggregation func-
tion. This step incorporates information from multiple edge types, allowing
the model to integrate the various relationships that a node may have. The
result is a richer node embedding that captures the heterogeneity of the graph
structure.

By combining logic-based graph construction with this two-step aggregation
strategy, HetSAGE efficiently captures and processes the diverse relationships in-
herent in heterogeneous graphs.

To efficiently handle the size and complexity of large heterogeneous graphs, Het-
SAGE uses a node-centric sampling strategy. Instead of processing the entire graph,
the model focuses on subgraphs centred around the target node. These subgraphs
are constructed by n-hop neighbourhoods, where neighbours within a certain dis-
tance (e.g. one, two or n hops) from the target node are included in the subgraph.
This localised approach allows HetSAGE to efficiently perform classification and
other tasks without the computational burden of processing the entire graph. How-
ever, a limitation of HetSAGE is that it requires binary relationships, such as those
found in graphs, and cannot handle higher order relationships, which may limit its
application in scenarios where multi-way interactions or more complex relationships
are required. Figure 4.1 illustrates the sampling method used in the HetSAGE
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Figure 4.1: Illustration of the two-hop sampling method utilized in the HetSAGE
[2].

model. This two-hop sampling technique effectively collects relevant nodes in the
neighborhood, providing essential context for making predictions.

• Sampling Strategy: The graph is structured with multiple types of nodes and
directed edges (relationships), demonstrating how HetSAGE samples a fixed
number of neighbors of each type to maintain computational efficiency.

• Neighbor Representation: Different colored nodes represent different product
categories, while arrows indicate directed relationships, focusing on how prod-
ucts influence each other.

In summary, HetSAGE combines the representational learning capabilities of
GNNs with symbolic reasoning to enable efficient processing of complex, multi-
relational data. Its two-level aggregation framework and node-centric subgraph
sampling strategy allow it to capture rich, heterogeneous relationships, making it a
powerful tool for a wide range of real-world applications. However, a limitation of
HetSAGE is that it requires binary relationships, such as those found in graphs, and
cannot handle higher-order relationships, limiting its ability to model more complex
multi-way interactions.

4.1.3 CILP++

First-Order Logic (FOL) is a powerful formalism for expressing complex relation-
ships and quantifying variables. However, while FOL excels in knowledge repre-
sentation and reasoning, traditional neural networks, which are effective in pattern
recognition tasks, typically operate at a propositional level. This means that they
deal with concrete instances rather than quantifying variables, which limits their
ability to generalise across logical structures involving variables and relations. To
bridge this gap, propositionalisation techniques have been developed in machine
learning. These techniques convert FOL into propositional logic, which is easier for
neural networks to handle. By transforming sets of first-order logic rules or clauses
into propositional logic, these techniques allow the structure and relationships in-
herent in FOL to be processed by neural learning algorithms, which are inherently
propositional.
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The CILP++ [23] system represents an advanced step in the field of neural-
symbolic integration by combining neural networks with inductive logic program-
ming (ILP), allowing a seamless blend of learning and reasoning from symbolic
knowledge. The fundamental goal of CILP++ is to enable efficient relational learn-
ing by integrating first-order logic into neural networks. This allows the system to
learn relational knowledge and first-order logic rules from examples, with applica-
tions ranging from graph mining to link analysis in social networks.

CILP++ builds on the earlier C-IL2P [25] system, which used background knowl-
edge in propositional logic programs to initialise a neural network. A notable inno-
vation in CILP++ is the use of Bottom Clause Propositionalisation (BCP). BCP
transforms first-order logic rules into propositional representations by focusing on
the bottom clause, a logical structure used in ILP to define a lower bound on the
search space for hypotheses. This bottom clause serves as the basis for extracting
relevant features that can be fed into a neural network. BCP simplifies the feature
extraction process by mapping bottom clauses to numerical vectors, allowing the
seamless integration of logical reasoning into neural models.

To illustrate, consider the logical relationship between individuals in a family
environment. For example, in determining whether A is the mother-in-law of B,
CILP++ would generate a bottom clause that encodes relationships such as "A is the
parent of C, and C is married to B". Similarly, negative relationships are encoded,
such as "A cannot be B’s mother-in-law if A is already married to someone else".
These lower clauses are then propositionalised, which means that each predicate is
assigned a position in a vector. This transformation allows the neural network to
process logical rules numerically, facilitating tasks such as classification.

The first rule states that A is considered the mother-in-law of B if A is the parent
of C, and C is the wife of B. In other words, A becomes the mother-in-law when her
child, C, is married to B as the wife. The second rule states that A cannot be the
mother-in-law of B if A is a wife herself, meaning that if A is married to someone
(referred to as C), she cannot simultaneously be considered the mother-in-law of
B. The following formula will produce a three-dimensional vector for the predicates
"motherInLaw(A,B)" and "wife(C,B)" in this order:

{

motherInLaw(A,B) :- parent(A,C), wife(C,B);

¬motherInLaw(A,B) :- wife(A,C)

}

The first clause maps to the vector (1,1,0), with the target output being 1.
In contrast, the second clause maps to the vector (0,0,1), with the target output
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being -1. A neural network classifier for the target predicate is then trained in the
conventional way.

One of the key challenges in neural symbolic learning is the extraction of knowl-
edge from neural networks. Although neural networks are powerful in learning
complex patterns, they are often considered "black box" models due to their lack
of transparency. CILP++ addresses this challenge by incorporating BCP, which al-
lows the systematic transformation of logical structures into neural representations.
As a result, CILP++ can perform relational learning tasks with accuracy compa-
rable to traditional ILP systems such as Aleph, while often offering better runtime
performance.

The propositionalisation approach adopted by CILP++ involves converting re-
lational learning tasks into simpler attribute-value learning tasks, making it easier
for neural networks to process and classify complex logical relationships. Empirical
results from a variety of datasets show that CILP++ achieves competitive accuracy
with existing ILP systems such as Aleph, and outperforms traditional proposition-
alisation methods such as RSD when combined with neural networks.

A major enhancement to CILP++ is the incorporation of Minimum Redun-
dancy Maximum Relevance (mRMR), a statistical feature selection method that
reduces the number of features while maintaining model performance. By elimi-
nating redundant features, mRMR helps CILP++ handle large relational datasets
more efficiently. This extension allows the system to perform feature selection that
reduces the feature space by over 90% without significant loss of accuracy, making
it more scalable for real-world applications.

In summary, CILP++ exemplifies the growing potential of neural symbolic learn-
ing systems. By effectively combining inductive logic programming with the powerful
learning capabilities of neural networks, it provides a flexible and efficient method
for relational learning in complex domains. Through innovative use of proposi-
tionalisation and feature selection, CILP++ pushes the boundaries of what can
be achieved with neural-symbolic systems, enabling them to learn and reason with
logical knowledge in ways that were previously infeasible. This makes CILP++ a
highly valuable tool in areas such as knowledge extraction, social network analysis
and graph mining.
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Chapter 5

Results and Discussions

This chapter evaluates the performance of our proposed method, BHGNN, which
uses an HGNN to represent logical programs as hypergraphs. We evaluate BHGNN
through tenfold cross-validation on different datasets and compare its performance
with several related approaches, including HGNN, GNN, BotGNN [9], CILP++ [23],
and Aleph [62].

Our implementation uses PyTorch Geometric, a library for geometric deep learn-
ing. The evaluation aims to determine how effectively BHGNN captures relation-
ships within datasets, including biological data such as mutagenesis [63], carcino-
genesis [64] , and Alzheimer’s datasets [65].

The experimental setup includes convolutional ARMA filters [66] for GNN and
optimisation with the Adam optimiser [67]. Bottom clauses are generated using
Aleph, a symbolic ILP system.

To classify graphs and hypergraphs, the aggregation method combines mean,
sum and max operations to capture different aspects of graph structure.

Our analysis uses statistical methods, including the Wilcoxon signed-rank test
[68], to compare the performance of BHGNN with other models. The results show
that BHGNN outperforms traditional HGNN and GNN approaches.

This chapter provides a detailed examination of the capabilities of BHGNN, and
the comparative performance of different methods.

5.1 Results

To assess the performance of our method using a Bottom-HyperGraph Neural Net-
work (BHGNN), we performed a tenfold cross-validation on several datasets. In
each iteration, the dataset was divided into ten parts: eight parts were used for
training, one part for validation and one part for testing. This process was repeated
ten times, with each part used once as a test set. The average performance across
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all iterations provides an estimate of the generalisation ability of the model. The
HGNN was implemented using PyTorch Geometric1.

We compared our approach, BHGNN, with pure neural methods, including
HGNN and GNN.

We also evaluated BHGNN against neural symbolic and purely symbolic ap-
proaches such as BotGNN, CILP++ and other related work.

Graphs were processed using GNN with Convolutional ARMA Filters [66], and
both HGNN and GNN were optimised with the Adam Optimiser [67]. The archi-
tectures for both HGNN and GNN comprised three layers with 128 hidden units
per layer and were trained for 500 epochs with a early stopping criterion triggered
after 50 epochs if the validation loss did not improve. The learning rate was set to
0.0001 for all models. We followed the same procedure for CILP++, using a similar
architecture and training setup.

The datasets and background knowledge were expressed in Prolog and pre-
processed using Aleph [62], an ILP system, to generate bottom clauses with a max-
imum clause depth of five. All datasets were binary classification datasets, i.e. they
contained two possible class labels. For GNN we used the mutagenesis dataset from
[69]. In cases where relational data was used, we converted the relational structure
into a bipartite graph following the procedure described in section 2.3.1.

Lower clause depths generate smaller and less specific rules, while increasing the
depth makes the rules highly specific to the selected examples. This trade-off was
evaluated empirically, and a clause depth of five was found to give good results.

Each data set was designed with a specific objective in mind:

• The Mutagenesis dataset classifies molecules as mutagenic or non-mutagenic.

• The Carcinogenesis dataset classifies the carcinogenic potential of a drug
molecule.

• The Alzheimer’s datasets target properties critical for the treatment of
Alzheimer’s disease:

– The Choline dataset aims to maximise acetylcholinesterase inhibition.

– The Scopolamine dataset focuses on scopolamine reversal.

– The Toxic dataset compares two drugs to classify which is less toxic.

– The Amine dataset aims to maximise amine reuptake inhibition.

More detailed descriptions of these datasets can be found in the appendix A.
1https://pytorch-geometric.readthedocs.io/en/latest/
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5.2 Experimental procedure

The experiments were carried out as follows:

1. Data Preparation: Each dataset was pre-processed using Aleph to generate
bottom clauses for each example with a maximum clause depth of 5. The
clauses were encoded as features for each example instance, forming the basis
of the hypergraph structure in BHGNN.

2. Cross-Validation Iterations: We ran a tenfold cross-validation on each dataset.
In each iteration, the dataset was randomly divided into ten equal parts. For
each fold, one part was used as the test set, one as the validation set, and the
remaining eight parts were used for training. We ensured that each example
appeared exactly once in the test set.

3. Model Training and Evaluation: We built a Bottom-HyperGraph for each
training fold and trained a HGNN with the pre-processed hypergraph data.
The models were trained using the Adam optimiser with a learning rate of
0.0001, a batch size of 32 and a total of 500 epochs per fold. Early stop was
applied with a patience of 50 epochs if the validation loss did not improve.
For evaluation, we recorded the accuracy on the test set for each iteration.
Hyperparameters such as number of layers (3), hidden units (128 per layer),
and ARMA filter for GNN were kept consistent across experiments.

4. Result Aggregation: After completing the tenfold cross-validation for each
dataset, we calculated the mean accuracy and standard deviation across all
folds. The final performance metrics for each model were based on these
aggregated results.

5.3 Statistical Analysis

To determine the statistical significance of the results, we performed the Wilcoxon
signed-rank test [68] to compare the relative performance of BHGNN, HGNN and
GNN across identical folds. The null hypothesis was that there was no significant
difference in performance between the models. Based on the analysis, BHGNN
outperformed both HGNN and GNN on all datasets, providing sufficient evidence
to reject the null hypothesis and demonstrate a statistically significant improvement
in performance.

The average accuracy and standard deviation for each dataset are reported in
Table 5.1. Notably, HGNN and GNN does not use bottom clauses in the hypergraph
structure, while BHGNN use bottom clauses, therefore symbolic knowledge.

55



BHGNN HGNN GNN
Muta42 75± 13.475± 13.475± 13.4 70± 9.3 68± 13.8
Muta188 90± 8.990± 8.990± 8.9 83± 6.1 79± 6.3

Carcinogenesis 64± 7.964± 7.964± 7.9 54± 6.3 54± 5.2
Scopolamine 54± 9.954± 9.954± 9.9 51± 6.6 49± 5.6

Amine 53± 8.253± 8.253± 8.2 52± 6.6 49± 4.4
Toxic 55± 8.655± 8.655± 8.6 53± 5.9 54± 4.9

Choline 54± 7.954± 7.954± 7.9 52± 5.6 50± 4.8

Table 5.1: Average accuracy results of the proposed approach (BHGNN) in compar-
ison with directly related approaches HGNN and GNN on seven data sets. BHGNN
outperforms HGNN and GNN on all data sets with statistically significant results;
HGNN does not use bottom clauses in the hypergraph and GNN uses a bipartite
graph.

BHGNN BotGNN HetSAGE CILP++ Aleph
Muta42 75± 13.4 73± 16.4 70± 14.6 73± 18.3 76± 14.576± 14.576± 14.5
Muta188 90± 8.990± 8.990± 8.9 88± 9.9 86± 10.9 87± 7.8 85± 9.1

Carcinogenesis 64± 7.964± 7.964± 7.9 62± 8.9 62± 11.9 58± 8.9 61± 8.7
Scopolamine 54± 9.9 53± 10.4 52± 12.9 52± 5.5 60± 4.760± 4.760± 4.7

Amine 53± 8.2 55± 8.7 52± 8.6 68± 6.768± 6.768± 6.7 62± 7.9
Toxic 55± 8.6 62± 8.3 54± 9.6 72± 6.172± 6.172± 6.1 65± 8.2

Choline 54± 7.9 58± 9.2 53± 10.2 53± 4.3 59± 7.759± 7.759± 7.7

Table 5.2: Average accuracy results of the proposed approach (BHGNN) in com-
parison with related work BotGNN, HetSAGE, CILP++ and Aleph. Among the
graph-based approaches (BHGNN, BotGNN, HetSAGE), BHGNN achieves the best
results in three out of seven data sets. In two cases, the use of a vector instead of a
graph representation (CILP++) produces the best results. In three cases, a purely
symbolic approach wins (Aleph). These data sets have been all studied extensively
in ILP with the use of Aleph optimizations. The results indicate the need for further
investigation and optimization of the graph-based approaches.
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The results of the Wilcoxon statistical test on BHGNN and BotGNN showed no
significant differences between the two models, suggesting that their performance
is statistically comparable. The results of Aleph and CILP++ were competitive,
demonstrating their effectiveness in handling relational learning tasks. The dif-
ferences in performance between BHGNN and Aleph and between BHGNN and
CILP++ were also not statistically significant, confirming the competitiveness of
these methods. The detailed results of the statistical comparisons are shown in
Table 5.2.

A potential limitation of our approach is the reliance on the ILP engine to gener-
ate the bottom clause. Any problems or inefficiencies with the ILP engine can have
a direct impact on the effectiveness of the method.

In BHGNN each constant in the bottom clause is represented as a separate node
in the hypergraph. In this section, we explain this design choice and propose a
hypothesis for its impact on performance.

In hypergraphs, the node representation determines how relationships between
entities are modelled. In clauses, constants represent entities or values, and assigning
one node per constant maps these entities directly into the hypergraph structure.

By representing each constant as a separate node, BHGNN preserves the struc-
ture of the logical relationships within the bottom clause, ensuring that the inter-
actions between constants are clearly represented in the hypergraph.

Another hypothesis for the performance of BHGNN with one node per con-
stant is that this approach may increase the representational power of the model.
Specifically, more nodes may lead to varied node representations during the message-
passing process in the HGNN layers.

In graph-based models, the representation of a node depends on its neighbours. If
the same constant is represented as multiple nodes in bottom clauses, each instance
of the constant is connected to different neighbours. This variability in neighbouring
nodes leads to context-dependent node representations during the message-passing
process.

• Context-dependent representations: With more nodes for each constant,
BHGNN allows these nodes to develop different embeddings based on their
neighbourhood. For example, in the mutagenesis dataset, the same constant
representing an atom may have different neighbours in different bottom clauses
or within the same clause. As the message-passing algorithm aggregates infor-
mation from neighbours, each instance of the atom develops a representation
that reflects its specific context.

• Enhanced Expressiveness: With separate nodes for constants, BHGNN
captures more detailed patterns in the data. If constants were merged into
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fewer nodes, the model might miss these context-dependent distinctions, re-
ducing its ability to model relationships.

This hypothesis is supported by the experimental results, where BHGNN out-
performed other models that did not use this node representation.

Additionally, one possible reason why our neuro-symbolic model may have out-
performed purely neural models could be the way our data is constructed, in partic-
ular through the use of the bottom clause. The construction of the bottom clause
likely infuses symbolic knowledge directly into the data, providing a structured foun-
dation that supports symbolic reasoning. This inherent structure may act as an in-
ductive bias, guiding the model to capture underlying relationships more effectively,
leading to improved performance over purely neural approaches.
In summary, the representation of each constant in the lower clause as a separate
node was motivated by the need to capture the relational structure of the data.
Empirical results showed that this approach improved performance, possibly due to
the increased representational power of context-sensitive node embeddings during
the message-passing process. The different node representations likely contributed
to the accuracy of the model.
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Chapter 6

Conclusions

The main goal of this work was to investigate different forms of graph representation
and their effect on graph-based learning. In particular, graph neural networks are
expected to handle relational data better than standard neural networks due to
their representational structure. We introduced a method that allows HGNNs to
benefit from a symbolic relational learning environment by using hypergraphs. Our
evaluation compared the performance of hypergraph neural networks, HGNNs, and
other neurosymbolic and symbolic approaches to relational learning on datasets
containing more than binary relations.

This work outlines a method for integrating domain expertise into hypergraph
networks, using saturation examples to create the most specific clause as the initial
embedding for training. Our approach is novel in that it incorporates relational
knowledge of arbitrary arity into hypergraph networks. Experimental results show
the potential of this approach and suggest the need for further testing on larger
datasets, considering variations and optimisations in graph learning methods and
algorithms.

In our future research, we intend to go beyond the use of feature vectors rep-
resenting only the binary values 0 (absence) and 1 (presence). Specifically, we will
investigate the incorporation of hypergraph information, similar to what TDIDF
does with text, and what node2vec [70] and struc2vec [71] do with graphs.

While symbolic machine learning produces a logical theory as a learning result,
GNNs do not. A logical theory is interpretable and provides explanations for results
through logical proofs. The explicability of hypergraph networks remains an area
for further investigation. A hypergraph network initialised with prior knowledge
should be easier to interpret through queries than one initialised at random. Our
goal is to post-process the learned hypergraph into a logical format.

We plan to explore variations of HGNNs, as mentioned in [72], to extend graph
optimisation efforts and to assess the explainability of decision processes in hyper-
graph classification. Based on our findings, we also aim to adapt techniques such
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as those in [73] for application to hypergraphs. In addition, as part of our future
work, we will analyse the sparsity of feature vectors within hypergraph networks
and investigate how this sparsity affects learning outcomes and model efficiency.
Understanding these dynamics could lead to improvements in both performance
and scalability, especially for large or high-dimensional datasets.
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Appendix A

Dataset

Table A.1: Dataset Statistics

Dataset Positive Examples Negative Examples Total
Muta188 125 63 188
Muta42 13 29 42

Carcinogenesis 162 136 298
Scopolamine 321 321 642

Amine 343 343 686
Toxic 443 443 886

Choline 663 663 1326
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Appendix B

TRAINS DATASET - MODE
DECLARATIONS

: −modeh(1, eastbound(+train)).

: −modeb(1, short(+car)).

: −modeb(1, closed(+car)).

: −modeb(1, long(+car)).

: −modeb(1, open_car(+car)).

: −modeb(1, double(+car)).

: −modeb(1, jagged(+car)).

: −modeb(1, shape(+car,#shape)).

: −modeb(1, load(+car,#shape,#int)).

: −modeb(1, wheels(+car,#int)).

: −modeb(∗, has_car(+train,−car)).

: −determination(eastbound/1, short/1).

: −determination(eastbound/1, closed/1).

: −determination(eastbound/1, long/1).

: −determination(eastbound/1, open_car/1).

: −determination(eastbound/1, double/1).

: −determination(eastbound/1, jagged/1).

: −determination(eastbound/1, shape/2).

: −determination(eastbound/1, wheels/2).

: −determination(eastbound/1, has_car/2).

: −determination(eastbound/1, load/3).
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Appendix C

Feature vectors

eastbound : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

closed : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

double : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

has_car : [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
jagged : [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

load : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

long : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

open_car : [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
shape : [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

short : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

wheels : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

A : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.]

B : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

C : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.]

circle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0.]

ellipse : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.]

hexagon : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0.]

nil : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0.]

rectangle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0.]

triangle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0.]

u_shape : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.]
1 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.]

2 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.]

3 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.]
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Appendix D

Algorithm for creating the Bottom
hypergraph

Require: generate_hypergraph(bottom_clause: a bottom clause from a single ex-
ample)
Remove head of the bottom clause
nodes← ∅, hyperedges← ∅
for each atom in bottom_clause do
hyperedge← ∅, hyperedge_type← ∅
extract terms into terms and extract predicate into predicate
for each t in terms do

if t not in nodes then
add t into nodes

end if
t_index← index of t in nodes # get the index of the node t in the nodes
add t_index to hyperedge

end for
Create node of type predicate and add to hyperedge
Add hyperedge to hyperedges and add predicate to hyperedges_type

end for
return nodes, hyperedges, hyperedge_type

Require: bottom_clauses: Bottom clause for all examples; preds: list of all pred-
icates; modes: modes; consts: constants that appear in the bottom clause;
node_types: type of each term of each predicate
for each bottom_clause in bottom_clause do
hypergraph← generate_hypergraph(bottom_clause)
for each node in hypergraph do
feat← array of zeros of length preds
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if node type is predicate then
feat← oneHot(predicate, preds)

end if
feat concatenate into feats
feat = array of zeros of length node_types
if node type is node_type then
feat = oneHot(node_type, node_types)

end if
feat concatenate into feats
feat = array of zeros of length consts
if node type is constant then
feat = oneHot(constant, consts)

end if
feat concatenate into feats
feat = array of zero of length 1

if node type is numeric then
feat = number

end if
feat concatenate into feats
hypergraph[node] = feats

end for
add hypergraph in hypergraphs

end for
return hypergraphs
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Appendix E

Artificial Neural Network

Artificial Neural Networks [74–76] are computational graphs of interconnected nodes,
which are arranged in layers. In the case of a feed-forward network, connections
happen only in one direction, which means, it ends up being a directed acyclic
graph with an input layer, hidden layer(s), and output layer. Figure E.1 displays an
example of a neural network.

x1

x2

x3

h15

h14

h13

h12

h11

h25

h24

h23

h22

h21

y1

y2

Figure E.1: Architecture of a Feed-forward Neural Network with two hidden layers.
The network consists of an input layer with three nodes (x1, x2, x3), two hidden
layers with five nodes each, the first hidden layer with nodes (h11, h12,h13,h14,h15),
and the second hidden layer with nodes (h21, h22,h23,h24,h25), and an output layer
with two nodes (y1, y2). Each arrow represents a weighted connection between
nodes, where the weights are learned during the training process.

Neural networks can be broken down into a few parts. Foremost, we have the
weights and bias, which are the learnable parameters. Subsequently, the activation
function introduces non-linearity into the network. Finally, we combine operations
as follows:

1. For each layer l = 1, 2, . . . , L− 1, calculate the output:

Z l = W l · Al−1 + bl
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Al = f(Z l)

2. For the output layer l = L, calculate the output:

ZL = WL · AL−1 + bL

AL = f(ZL)

For example, the forward propagation in the neural network represented in Figure
E.1 can be expressed mathematically as:

Z(1) = W (1)X + b(1)

A(1) = f(Z(1))

Z(2) = W (2)A(1) + b(2)

A(2) = f(Z(2))

Z(3) = W (3)A(2) + b(3)

Y = f(Z(3))

where X is the input vector, W (1),W (2),W (3) are the weight matrices,
b(1), b(2), b(3) are the bias vectors, Z1, Z2, Z3 are the output of layers 1, 2, 3 before
activation, f is the activation function, and Y is the output vector.

To train a neural network, we use the backpropagation algorithm. After the
forward pass, we end with the neural network’s prediction. We use this prediction
to compare with the expected output. Next, from the difference between the predic-
tions and the expectations, it computes the loss and updates the weights and biases
of all layers using the backpropagation algorithm.

Let δl represent the error term for layer l, ⊙ the element-wise multiplication,
and σ′ the derivative of the activation function.

1. Compute the error term for the output layer:

δL = ∇aLoss⊙ f ′(ZL)

2. Backpropagate the error to previous layers:

δl = ((W l+1)T δl+1)⊙ f ′(Z l)

for l = L− 1, L− 2, . . . , 2

74



3. Compute the gradients of the weights and biases:

∂Loss

∂W l
= δl(al−1)T

∂Loss

∂bl
= δl

for l = L,L− 1, . . . , 2

4. Update the weights and biases using an optimization algorithm:

W l → W l − η∂Loss
∂W l

bl → bl − η∂Loss
∂bl

where η is the learning rate.

For instance, the backpropagation algorithm in the neural network represented
in Figure E.1 can be expressed :

1. Compute the error term for the output layer:

δ(3) = ∇A(3)Loss⊙ f ′(Z(3))

2. Backpropagate the error to previous layers:

δ(2) = (W (3))T δ(3) ⊙ f ′(Z(2))

δ(1) = (W (2))T δ(2) ⊙ f ′(Z(1))

3. Compute the gradients of the weights and biases:

∂Loss

∂W (3)
= δ(3)(A(2))T

∂Loss

∂b(3)
= δ(3)

∂Loss

∂W (2)
= δ(2)(A(1))T

∂Loss

∂b(2)
= δ(2)

∂Loss

∂W (1)
= δ(1)XT

∂Loss

∂b(1)
= δ(1)

75



4. Update the weights and biases using an optimization algorithm:

W (1) ← W (1) − η∂Loss
∂W (1)

b(1) ← b(1) − η∂Loss
∂b(1)

W (2) ← W (2) − η∂Loss
∂W (2)

b(2) ← b(2) − η∂Loss
∂b(2)

W (3) ← W (3) − η∂Loss
∂W (3)

b(3) ← b(3) − η∂Loss
∂b(3)

Where η is the learning rate. Repeat these steps for each training example to
train the neural network.

This completes one iteration of the backpropagation algorithm. Repeat these
steps for multiple iterations or epochs to train the neural network.
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Appendix F

Trains dataset: Background
knowledge

% Type definitions

% Car Definitions

car(car_11). car(car_12). car(car_13). car(car_14).

car(car_21). car(car_22). car(car_23).

car(car_31). car(car_32). car(car_33).

car(car_41). car(car_42). car(car_43). car(car_44).

car(car_51). car(car_52). car(car_53).

car(car_61). car(car_62).

car(car_71). car(car_72). car(car_73).

car(car_81). car(car_82).

car(car_91). car(car_92). car(car_93). car(car_94).

car(car_101). car(car_102).

% Shape Definitions

shape(elipse). shape(hexagon). shape(rectangle). shape(u_shaped).

shape(triangle). shape(circle). shape(nil).

% Train Definitions

train(east1). train(east2). train(east3). train(east4). train(east5).

train(west6). train(west7). train(west8). train(west9). train(west10).

% Eastbound train 1

short(car_12). % 0

closed(car_12). % 1

long(car_11). % 2

long(car_13).
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short(car_14).

open_car(car_11). % 3

open_car(car_13).

open_car(car_14).

shape(car_11,rectangle). % 4,5

shape(car_12,rectangle).

shape(car_13,rectangle).

shape(car_14,rectangle).

load(car_11,rectangle,3). % 6,7,8

load(car_12,triangle,1).

load(car_13,hexagon,1).

load(car_14,circle,1).

wheels(car_11,2). % 9,10

wheels(car_12,2).

wheels(car_13,3).

wheels(car_14,2).

has_car(east1,car_11). % 11,12

has_car(east1,car_12).

has_car(east1,car_13).

has_car(east1,car_14).

% eastbound train 2

has_car(east2,car_21).

has_car(east2,car_22).

has_car(east2,car_23).

short(car_21).

short(car_22).

short(car_23).

shape(car_21,u_shaped).

shape(car_22,u_shaped).

shape(car_23,rectangle).

open_car(car_21).

open_car(car_22).

closed(car_23).

load(car_21,triangle,1).

load(car_22,rectangle,1).

load(car_23,circle,2).

wheels(car_21,2).

wheels(car_22,2).

wheels(car_23,2).
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% eastbound train 3

has_car(east3,car_31).

has_car(east3,car_32).

has_car(east3,car_33).

short(car_31).

short(car_32).

long(car_33).

shape(car_31,rectangle).

shape(car_32,hexagon).

shape(car_33,rectangle).

open_car(car_31).

closed(car_32).

closed(car_33).

load(car_31,circle,1).

load(car_32,triangle,1).

load(car_33,triangle,1).

wheels(car_31,2).

wheels(car_32,2).

wheels(car_33,3).

% eastbound train 4

has_car(east4,car_41).

has_car(east4,car_42).

has_car(east4,car_43).

has_car(east4,car_44).

short(car_41).

short(car_42).

short(car_43).

short(car_44).

shape(car_41,u_shaped).

shape(car_42,rectangle).

shape(car_43,elipse).

shape(car_44,rectangle).

double(car_42).

open_car(car_41).

open_car(car_42).

closed(car_43).

open_car(car_44).

load(car_41,triangle,1).

load(car_42,triangle,1).
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load(car_43,rectangle,1).

load(car_44,rectangle,1).

wheels(car_41,2).

wheels(car_42,2).

wheels(car_43,2).

wheels(car_44,2).

% eastbound train 5

has_car(east5,car_51).

has_car(east5,car_52).

has_car(east5,car_53).

short(car_51).

short(car_52).

short(car_53).

shape(car_51,rectangle).

shape(car_52,rectangle).

shape(car_53,rectangle).

double(car_51).

open_car(car_51).

closed(car_52).

closed(car_53).

load(car_51,triangle,1).

load(car_52,rectangle,1).

load(car_53,circle,1).

wheels(car_51,2).

wheels(car_52,3).

wheels(car_53,2).

% westbound train 6

has_car(west6,car_61).

has_car(west6,car_62).

long(car_61).

short(car_62).

shape(car_61,rectangle).

shape(car_62,rectangle).

closed(car_61).

open_car(car_62).

load(car_61,circle,3).

load(car_62,triangle,1).

wheels(car_61,2).
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wheels(car_62,2).

% westbound train 7

has_car(west7,car_71).

has_car(west7,car_72).

has_car(west7,car_73).

short(car_71).

short(car_72).

long(car_73).

shape(car_71,rectangle).

shape(car_72,u_shaped).

shape(car_73,rectangle).

double(car_71).

open_car(car_71).

open_car(car_72).

jagged(car_73).

load(car_71,circle,1).

load(car_72,triangle,1).

load(car_73,nil,0).

wheels(car_71,2).

wheels(car_72,2).

wheels(car_73,2).

% westbound train 8

has_car(west8,car_81).

has_car(west8,car_82).

long(car_81).

short(car_82).

shape(car_81,rectangle).

shape(car_82,u_shaped).

closed(car_81).

open_car(car_82).

load(car_81,rectangle,1).

load(car_82,circle,1).

wheels(car_81,3).

wheels(car_82,2).

% westbound train 9

has_car(west9,car_91).

has_car(west9,car_92).
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has_car(west9,car_93).

has_car(west9,car_94).

short(car_91).

long(car_92).

short(car_93).

short(car_94).

shape(car_91,u_shaped).

shape(car_92,rectangle).

shape(car_93,rectangle).

shape(car_94,u_shaped).

open_car(car_91).

jagged(car_92).

open_car(car_93).

open_car(car_94).

load(car_91,circle,1).

load(car_92,rectangle,1).

load(car_93,rectangle,1).

load(car_93,circle,1).

wheels(car_91,2).

wheels(car_92,2).

wheels(car_93,2).

wheels(car_94,2).

% westbound train 10

has_car(west10,car_101).

has_car(west10,car_102).

short(car_101).

long(car_102).

shape(car_101,u_shaped).

shape(car_102,rectangle).

open_car(car_101).

open_car(car_102).

load(car_101,rectangle,1).

load(car_102,rectangle,2).

wheels(car_101,2).

wheels(car_102,2).
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