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Abstract

Consider a configuration of pebbles distributed on the vertices of a connected graph of order n. A pebbling step consists of
removing two pebbles from a given vertex and placing one pebble on an adjacent vertex. A distribution of pebbles on a graph is
called solvable if it is possible to place a pebble on any given vertex using a sequence of pebbling steps. The pebbling number of a
graph, denoted f (G), is the minimal number of pebbles such that every configuration of f (G) pebbles on G is solvable. We derive
several general upper bounds on the pebbling number, improving previous results.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Definitions

Given a connected graph G = (V , E), let D : V → N be a distribution of
∑

vD(v) identical pebbles on the vertices
of G. A pebbling step consists of removing two pebbles from a given vertex and placing one of these pebbles on an
adjacent vertex (the other pebble is removed from the graph.) Given a root vertex v ∈ V , we say that D is v-solvable
if we can place at least one pebble on v after some number of pebbling steps. D is called solvable if D is v-solvable
for all v ∈ V . Let the size of a distribution D be |D| =∑

vD(v), the total number of pebbles on the graph. Then the
pebbling number f (G) is defined to be the smallest integer N such that any distribution of size N is solvable. Also, we
define f (G, v) to be the smallest integer N such that any distribution of size N is v-solvable. Throughout this paper,
G= (V , E) denotes a simple, connected graph, n=|V | is the number of vertices in G, and d =diam(G) is the diameter
of G.

1.2. Known bounds on the pebbling number

First we state an elementary bound on f (G), given in [4]: clearly, if D(v) = 0 for the root vertex v and D(w) = 1
for all other vertices w, then D is unsolvable. Also, given vertices v1 and v2 at distance d = diam(G) from each other,
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if D(v1) = 2d − 1 and D(w) = 0 for every other vertex, then vertex v2 cannot be pebbled and D is unsolvable. These
facts were noted by Chung [2]. For an upper bound, note that if |D| = (n − 1)(2d − 1) + 1, then either each vertex has
at least one pebble on it, or, by the pigeonhole principle, there exists a vertex with 2d pebbles on it, and in either case
D is solvable. To summarize,

max{n, 2d}�f (G)�(n − 1)(2d − 1) + 1. (1)

Note that the upper bound in (1) is sharp if G is the complete graph Kn, but is way off target if G = Pn, the path on n
vertices.

2. New upper bounds

In this section, we prove four new upper bounds on the pebbling number, two of which always improve the bound
stated above, and with the rest doing better than (1) in most cases.

Theorem 1. f (G)�(n − d)(2d − 1) + 1.

Proof. Chung [2] first noted that for the path Pn on n vertices, f (Pn) = 2n−1. A simple proof of this result can be
found in [4]. Now, given any root vertex v ∈ V , consider a set Sv = {Q1, . . . , Qm} of m paths on G, with the following
two properties:

• each path has one endpoint at v; and
• each vertex in G is on at least one path.

These paths may overlap, although that is not necessarily the case. Let qi be the length of the path Qi . If some path Qi

has 2qi pebbles on it, then v can be reached using that path. Thus, the pigeonhole principle guarantees that

f (G, v)�
(

m∑
i=1

(2qi − 1)

)
+ 1.

To construct one such path set, let Q1 be the path from v to some vertex w at maximum distance from v, that is,
dist(v, w)= e(v) where e(v)=max{dist(v, w)} is the eccentricity of v. Then there are n− e(v)−1 vertices not on that
path. In the worst case, i.e., in the sense of maximizing the number of paths, each of those vertices requires a distinct
path of length no longer than e(v) to connect it to v. Thus, we have in total n − e(v) paths of length at most e(v), and

f (G, v)�

⎛
⎝n−e(v)∑

i=1

(2e(v) − 1)

⎞
⎠+ 1

= (n − e(v))(2e(v) − 1) + 1.

It follows that

f (G) = max{f (G, v)}
� max{(n − e(v))(2e(v) − 1) + 1}
= (n − d)(2d − 1) + 1,

where the last equality above follows from the fact that the function (n − j)(2j − 1) is monotone increasing for
integers j with 1�j �n − 1; to see this, we set �(j) = (n − j)(2j − 1) and note that �(j + 1)��(j) if and only if
(n − j)2j �2j+1 − 1, and thus if n − j �2, or j �n − 2.

Note that the upper bound of Theorem 1 obviously improves (1), and is sharp for both G = Kn and G = Pn. �

Theorem 2.

f (G)�
(

n +
⌊

n − 1

d

⌋
− 1

)
(2d−1) − n + 2.
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Proof. Given a root vertex v ∈ V and k�1, let {w1, . . . , wk} ⊂ V be a set of vertices such that dist(wi, v) = e(v) and
there exists a set {p1, . . . , pk} of length-e(v) paths, with path pi connecting wi and v, such that no two paths share any
vertex except v. Such a set of vertices must exist for, in the worst case we may have k = 1. Then the number of such
paths, k, must satisfy k�c, where c = �(n − 1)/e(v)�.

Now, we claim that

f (G, v)�(n − 1)(2e(v)−1 − 1) + c(2e(v)−1) + 1.

To see this, observe that if v already has a pebble on it or if any vertex has 2e(v) pebbles on it, then we know that D is
v-solvable. If neither is the case, then (with |D| = (n − 1)(2e(v)−1 − 1) + c(2e(v)−1) + 1), the pigeonhole principle
guarantees that there exists a set of c+1 vertices with at least 2e(v)−1 pebbles each. This is because we get a contradiction
if v has no pebbles, there are at most c vertices with at most 2e(v) − 1 pebbles each, and the remaining vertices have at
most 2e(v)−1 − 1 pebbles each.

If any of these c + 1 vertices is at distance at most e(v) − 1 from v, we are done. If all c + 1 vertices are at distance
e(v) from v, then there must exist vertices u1 and u2, each with at least 2e(v)−1 pebbles, with length-e(v) paths pu1

and pu2 to v that both pass through some vertex w adjacent to v. Then we can place 2 pebbles on w, and hence we can
place 1 pebble on v. Thus, D is v-solvable and we have

f (G) = max{f (G, v)}
� max

{(
n +

⌊
n − 1

e(v)

⌋
− 1

)
(2e(v)−1) − n + 2

}

=
(

n +
⌊

n − 1

d

⌋
− 1

)
(2d−1) − n + 2,

as asserted. �

Note that Theorem 2 is sharp if G = Kn, but not if G = Pn; in general, it is easy to verify that Theorem 2 performs
better than Theorem 1 whenever d is small and n is large enough. Also, it is easy to check that Theorem 2 always
improves the upper bound given by (1): to see this, we simply rewrite the latter as (2n − 2)2d−1 − n + 2 and note that

(2n − 2)2d−1 − n + 2�
(

n +
⌊

n − 1

d

⌋
− 1

)
(2d−1) − n + 2,

with equality holding if and only if d = 1.
A set S ⊂ V is said to be a dominating set if each vertex v ∈ V is a member of S or is adjacent to at least one

member of S. S is said to be a perfect dominating set if each vertex v ∈ V is a member of S or is adjacent to exactly
one member of S. An independent dominating set is a dominating set whose vertices are independent. In Theorem 3,
we will need the set S to be independent as well as perfect; in other words, we must have an efficient dominating set
(see [3] for more on perfect, independent, and efficient domination.) Both Theorems 3 and 4 will make use of a result
of Moews [5]: the k-pebbling number fk(G) of a graph G, first defined in [2], is the minimum number of pebbles that
must be placed on G so that any vertex can have k pebbles placed on it in a series of pebbling moves, regardless of the
initial configuration of pebbles. Moews’ result on the k-pebbling number of trees reduces in the special case of the star
K1,r to

fk(K1,m−1) = 4k + m − 3. (2)

Theorem 3. Suppose G has an efficient dominating set of size �. Then

f (G)�2d+1� + n − 4� + 1.

Proof. Let S ={s1, . . . , s�} be an efficient dominating set. For each si , let Ai ={si}∪{w : w is adjacent to si}. The Ais
partition the vertex set V, with each Ai having diameter at most 2. Also, each Ai contains K1,|Ai |−1 as a subgraph. Thus
by (2), if there exists a set Ai containing at least 2d+1 + |Ai |—3 pebbles in total, then we may place 2d−1 pebbles on
any vertex in Ai . Furthermore, for v /∈ Ai , v is at distance at most d from si , so v is at distance at most d − 1 from some
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vertex in Ai—since S is an efficient dominating set. Therefore, we may place a pebble on any v ∈ V . The pigeonhole
principle now guarantees that

f (G)�
( �∑

i=1

(2d+1 + |Ai | − 4)

)
+ 1

= 2d+1� + n − 4� + 1,

as required. �

Note that Theorem 3 yields a better bound than that given by (1) if and only if

�� (2d − 2)n − (2d − 1)

2d+1 − 4
= n − 1

2
+ 1

2d+1 − 4
. (3)

Now (3) fails to hold on a non-trivial connected graph only if d = 1, when the right side is meaningless, or d �2 and
��n/2, i.e., for graphs where every vertex in the dominating set has exactly one neighbor. In the former case, (1)
does do better than Theorem 3—but only because the proof of Theorem 3 only used the star structure of the sets Ai ,
and did not exploit the fact that there might be edges between the vertices w adjacent to si , thus causing the diameter
of Ai to conceivably equal one. Consider the case where � = n/2. Since the only connected graph with an efficient
dominating set and domination number n/2 is the corona G ◦ K1 (see pp. 41–42 of [3] for a further discussion), we
see that Theorem 3 does better than (1) “almost all” the time.

Our final result shows how Theorem 3 may be generalized, at little cost, to graphs that do not admit a perfect
independent dominating set.

Theorem 4. Suppose G has a dominating set of size �. Then

f (G)�2d+1� + n − 3� + 1.

Proof. Let S = {s1, . . . , s�} be a dominating set. For a fixed vertex v, pick paths P1, P2, . . . , P� (of length at most d)
of the form Pi = va1a2 . . . aLi

wisi . (In case v is a neighbor of si or is si itself, the path reduces to vsi or si , and wi is
defined to be si in either case. If dist(v, si) = 2, there are no aj s in the path.) Now define

A1 = Ns1 ∪ {w1, s1};
A2 = (Ns2\Ns1) ∪ {w2, s2};
A3 = (Ns3\(Ns1 ∪ Ns2)) ∪ {w3, s3};
...

Ai =
⎛
⎝Ns1

∖
i−1⋃
j=1

Nsj

⎞
⎠ ∪ {wi, si};

...

A� =
⎛
⎝Ns�

∖�−1⋃
j=1

Nsj

⎞
⎠ ∪ {w�, s�},

where Nx consists of all neighbors of x that do not belong to the set S. Notice that the Ais are again sets of diameter
at most 2. The rest of the argument follows the proof of Theorem 3 very closely: if there exists a set of vertices Ai

containing at least 2d+1 + |Ai | − 3 pebbles in total, then we may place 2d−1 pebbles on any vertex in Ai . Now v
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is at distance at most d − 1 from at least one vertex in Ai , namely wi . Therefore, we may place a pebble on v. The
pigeonhole principle now guarantees that

f (G, v)�
( �∑

i=1

(2d+1 + |Ai | − 4)

)
+ 1

= �2d+1 − 4� + 1 +
�∑

i=1

|Ai |

��2d+1 − 4� + 1 +
�∑

i=1

⎛
⎝
∣∣∣∣∣∣
⎛
⎝Nsi

∖
i−1⋃
j=0

Nsj

⎞
⎠ ∪ {si}

∣∣∣∣∣∣+ 1

⎞
⎠

= �2d+1 − 3� + 1 + n,

and thus that f (G)�2d+1� + n − 3� + 1, as claimed. �

As with Theorem 3, Theorem 4 might not always yield a bound better than that given by (1). It is easy to verify,
however, that this occurs whenever

�� (2d − 2)n − (2d − 1)

2d+1 − 3
. (4)

Even for d = 2, (4) holds if ��(2n − 3)/5, which is encouraging since ��2n/5 for “most” connected graphs with
minimum degree at least 2 (see pp. 41–42 of [3]). As d increases, moreover, we see that (4) holds unless � is close to
n/2. Thus, Theorem 4 improves on (1) in many cases.

In a similar fashion, Theorems 3 and 4 may, respectively, be checked to outperform Theorem 1 if

�� (2d − 2)n − d(2d − 1)

2d+1 − 4

and

�� (2d − 2)n − d(2d − 1)

2d+1 − 3
,

while Theorems 3 and 4 do better than Theorem 2 if, respectively,

�� (2d−1 − 2)n − (�(n − 1)/d� − 1) 2d−1 + 1

2d+1 − 4

and

�� (2d−1 − 2)n − (�(n − 1)/d� − 1) 2d−1 + 1

2d+1 − 3
.

Theorems 3 and 4 thus often do better than Theorems 1 and 2, but are they ever tight? This question was raised by
one of the referees. We provide a partial answer. For the complete graph, our baseline test case, we have f (Kr) = r

but using Theorem 3 with � = 1 and d = 1 yields a bound of r + 2d+1� − 4� + 1 = r + 1. The next obvious case to
check is K1,r , whose pebbling number equals r + 2. With d = 2 and � = 1, however, we see that the upper bound of
Theorem 3 is r + 6, so we only have asymptotic tightness. The same asymptotic tightness holds if we consider the
graph G consisting, for even r, of two K1,r/2’s connected at their roots by an edge v1 − v2; it is easy to verify that
f (G) = r + 6, with the worst case configuration being no pebbles on v1 or v2, one pebble at each of (r/2) − 1 vertices
on the K1,r/2’s and 8 pebbles on any other vertex. However Theorem 4 applied with � = 2 yields a bound of r + 29
for this diameter 3 graph on r + 2 vertices. In general we believe that the nature of the proof of either theorem, which
uses the pigeonhole principle in a worst case scenario fashion, is unlikely to result in a tight result. Possible directions
for improvement are suggested below.
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3. Open problems

It would be interesting to develop general bounds on the pebbling number that are not in terms of the diameter of
the graph. We have made some progress in this matter by proving a hybrid bound that depends also on the domination
number, but much more needs to be done in this regard. Of particular interest would be bounds that depend on the
girth of the graph, or are expressed in terms of more robust graph invariants such as the tree width (see Robin Thomas’
NSF-CBMS lecture notes at http://www.math.gatech.edu/∼thomas/SLIDE/CBMS/ (a book [7] is forthcoming) for an
exposition of tree decompositions and tree width).

Also, how much of an improvement can be made in Theorems 3 and 4 by considering decompositions into sets of
(even) diameter four or higher, rather than into the diameter two sets Ai considered in the proofs of these theorems?
This would be necessary if one considers distance k-domination, k�2. Progress along these lines might be contingent
on obtaining tight upper bounds, analogous to those obtained in [6] for d = 2, on the pebbling numbers of graphs with
diameter four or higher (the diameter three case has been solved recently by Bukh [1]). Or perhaps we might be able
to use the embedded tree structure of the k-domination graph of a vertex v, together with results in [5] along the lines
of (2), to make the needed improvements.
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