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PEBBLING IN HYPERCUBES*

FAN R. K. CHUNG]"

Abstract. This paper considers the following game on a hypercube, first suggested by Lagarias and Saks.
Suppose 2 pebbles are distributed onto vertices of an n-cube (with 2 vertices). A pebbling step is to remove
two pebbles from some vertex and then place one pebble at an adjacent vertex. The question of interest is to
determine if it is possible to get one pebble to a specified vertex by repeatedly using the pebbling steps from any
starting distribution of 2 pebbles. This question is answered affirmatively by proving several stronger and more
general results.
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1. Introduction. An n-dimensional cube, or n-cube for short, consists of2 vertices
labelled by (0, )-tuples of length n. Two vertices are adjacent if their labels are different
in exactly one entry. Because of its highly parallel structure, the n-cube possesses many
nice properties and is an ideal model for games ofvarious distributive types. In this paper
we investigate the following game that was first proposed by Lagarias and Saks [4], [7].

Suppose 2 pebbles are distributed onto vertices of an n-cube. A pebbling step
consists of removing two pebbles from one vertex and then placing one pebble at an
adjacent vertex. We say a pebble can be moved to a vertex ifwe can apply pebbling steps
repeatedly (if necessary) so that in the resulting configuration the vertex has one pebble.
The question of interest is to determine if it is always possible to move one pebble to a
specified vertex from any starting distribution of 2 pebbles.

In this paper we answer this problem affirmatively. Independently, Guzman also
solved the same problem by a different proof.

THEOREM 1. For any distribution of 2 pebbles to vertices ofthe n-cube, onepebble
can be moved to any specified vertex.

Theorem turns out to be an immediate consequence of some stronger and more
general results that lead to an alternative proof for the following result (due to Lemke
and Kleitman [5] through a different method).

For any given integers a l, a2, ad there is a nonempty subset

X_ {1,2, ,d}

such that

d[ ai and , gcd( ai, d) <= d.
iX iX

For any partially ordered set, the set of order ideals (downward closed subsets)
ordered by inclusion is a distributive lattice. The Hasse diagram of the lattice can be
viewed as a graph where the ideals u and v are adjacent if u contains v and u is exactly
one larger than v. One of many variations of our result is the following.

Consider a given partially ordered set S in which each element is assigned an integer
weight. In the corresponding finite distributive lattice, an admissible move involves two
adjacent vertices u and v, say u < v. That is, to remove w pebbles from v (where w is
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the weight of the element in v but not in u) and to place one pebble on u. If I-Ixs w(x)
pebbles are assigned to vertices in the distributive lattice, then by repeatedly applying the
admissible steps, one pebble can be placed on the empty set in the lattice.

2. Stronger and more general versions. We will first prove the following theorem.
THEOREM 2. In an n-cube with a specified vertex v, thefollowing are true:
(i) If 2 pebbles are assigned to vertices of the n-cube, one pebble can be

moved to v.
(ii) Let q be the number ofvertices that are assigned an odd number ofpebbles. If

there are all together more than 2 + q pebbles, then two pebbles can be moved to v.
Proof. The proof is by induction on n. It is trivially true for n 0. Suppose it is

true for n’ < n. The n-cube can be partitioned into two (n )-cubes, say M and M2,
where v is in M. Let v’ denote the vertex in M2 adjacent to v. The edges between M
and M2 form a perfect matching. Suppose Mi contains .Pi pebbles with qi vertices having
an odd number of pebbles, for l, 2.

Suppose there are p >_- 2 pebbles assigned to vertices of the n-cube. We will first
show (i) holds. Ifp >_- 2-, then by induction, in M, one pebble can be moved to v.
We may assume p < 2- and we consider the following two cases.

Case (al). q2 > P.
Since P2 P Pl > 2" q2, by induction from (ii) in m2 two pebbles can be moved

to v’. Therefore one pebble can be moved to v.
Case (a2). q2 =< Pl.
We apply pebbling steps to all vertices in M2 and we can move at least (P2 q2)/2

pebbles to vertices of M. Therefore, in M1 we have all together pl + (P2- q2)/2 >=
P + (P2 Pl / 2 (Pl + P2) / 2 2 pebbles. By induction, we can then move one
pebble to v. This establishes (i).

It suffices now to prove (ii). Suppose there are p p + P2 > 2" + q q2 pebbles
assigned to vertices of the n-cube. We want to show that two pebbles can be moved to
v. We consider the following three possibilities:

Case(bl). p > 2"- q.
By induction from (ii) in M1, two pebbles can be moved to v.
Case (b2). 2" ql >= P ;>-- 2"- 1.
Since p >_- 2"-, by induction from (i) in Mj one pebble can be moved to v. Since

P P P > 2 n+l ql q Pl >= 2" q2, two pebbles can be moved to v’ using
induction from (ii) in M2. Therefore an additional pebbling step results in moving one
more pebble to v.

Case (b3). p < 2"- .
For any integer satisfying P2 q2 d- 2t, pebbles can be moved to vertices

of Ml while P2 2t pebbles remain in M.. Note P2 > 2n+1 q Pl (2" q2) +
(2" ql P) >- q2 d- (2 ql Pl ), where the last inequality follows since q2 is at
most 2"-. Thus taking to be 2-1 [(ql + p)/2], pebbles can be moved to M1
leaving more than 2" q2 pebbles in m2. In .M there are Pl + 2"- (ql + P )/2]
2 + (P ql / 2 ] >= 2 pebbles. We can then move one pebble to v in M and at
the same time move two pebbles to v’ in M2, which will result in one additional pebble
to v.

This completes the proof of Theorem 2.
We remark that Theorem 2 provides an efficient algorithm for pebbling in the n-

cube. Furthermore in all the pebbling steps, pebbles are moved toward the specified
vertex.

Theorem 2 can be slightly strengthened in Theorem 2’. This variation is useful for
proving several generalized versions.
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We say pebbles are extracted from an n-cube if pebbling steps are performed in
a way that 2i pebbles are removed, but the placement ofthe new pebbles to the neighbors
will be suspended until a later time.

THEOREM 2’. If 2 n+l r + w + pebbles are assigned to vertices of an n-cube
while r vertices have at least one pebble, two pebbles can be moved to v after w/2j
pebbles are extractedfrom the cube.

Proof. Again we will prove by induction on n and view the n-cube as the union of
two (n )-cubes M1 and M. as described in the proof ofTheorem 2, where Mi contains
Pi pebbles with r vertices having at least one pebble for 1, 2. Suppose p Pl + P2
2 + r r_ + w + pebbles are assigned to vertices of the n-cube.

We consider the following three possibilities:
Case (cl). Pl > 2
By induction in Ml, two pebbles can be moved to v after l(pl 2 + rl )/2

pebbles are extracted from M. In M2, (P2 r2)/2] pebbles can be extracted. Therefore,
altogether two pebbles can be moved to v after (Pl 2 + rl + P2 r2) / 2 J >_-
w/2 J pebbles are extracted.

Case (c2). 2 rl >-- Pl >- 2 1.
Since Pl > 2 1, one pebble can be moved to v in M1. Since P2 P P >

2 n+l rl r2 Pl + w >= 2 r2 + w, two pebbles can be moved to v’ after lw/2J
pebbles are extracted by induction in M2. Therefore one pebble can be moved to v.

Case(c3). Pl < 2
Since P2 > 2n+1 rl r2 -p + w (2n- r2) + (2n- rl -Pl) + w, by induc-

tion two pebbles can be moved to v’ after (2 r Pl + w)/2 J pebbles are extracted
from M2, among which (2 r Pl )/2 pebbles will be placed in M1. In M1 there are
Pl -t- 2 n (r + Pl / 2] 2

__
[ (Pl rl / 2 >- 2 pebbles. We can then move

one pebble to v in MI and at the same time move two pebbles to v’ in M2, which will re-
sult in one additional pebble to v after w2 pebbles are extracted from the cube.

This completes the proof of Theorem 2’.
One of the original versions of the problem proposed by Lagarias is the following

theorem.
THEOREM 3. For integers Pl, P2, "’’, Pn >= 2, suppose PlP2"’’Pn pebbles

are assigned to the vertices of an n-cube Qn. Each admissible pebbling step is to re-
move Pi pebblesfrom a vertex al, ai- l, 1, ai+ , an) and place one pebble on
(al, ai-l, O, ai+ 1, an). One can now repeatedly use the admissible pebbling
steps to place one pebble on (0, O, 0).

Proof. The proof is very similar to that of Theorem 2 except that (ii) should read
somewhat differently. We say an admissible step is of direction and cost Pi ifpi pebbles
are removed from a vertex (al, ai-1, 1, ai+ 1,’’’, an) and place one pebble on
(al, ai-1, O, ai+ 1,’", an). For a fixed constant k, an admissible step of direc-
tion 0 if k pebbles are removed from a vertex and one pebble will be kept to be placed
later in a (possible future) direction of cost k. Let q be the number ofvertices that are as-
signed at least one pebble. If there are altogether more than kPl’"Pn q + w peb-
bles, then k pebbles can be moved to v after [wo/kJ, [wl/pl], [w2/P21, [Wn/Pn],
where Wo + wl + + Wn w, are extracted from the cube in the ith direction of
cost Pi, for 0, 1, ..., n, respectively.

3. The pebbling number. For a graph G, we define the pebbling number f(G) to
be the smallest integer m such that for any distribution of m pebbles to the vertices of
G, one pebble can be moved to a specified vertex. Theorem 2 states thatf(Qn) 2 n. We
here include some facts aboutf(G), most ofwhich are quite straightforward (the proofs
are left for the reader).
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FACT 1. f(G)>=
FACT 2. (G) >- 2D where D D( G) is the diameter ofG.
FACT 3. IfG’ is a spanning subgraph ofG, then f( G’) >= f( G).
FACT 4. For a path P, + on + vertices, f( P, + 2
FACT 5. For a complete graph K,, f(K) t.
A graph H is said to be a retract of a graph G if there is a mapping from V(G) to

V(H) which preserves edges, i.e., which maps adjacent vertices in G to adjacent vertices
in H. The reader is referred to ], 3 ], 6 for various facts about retracts. The following
simple fact turns out to be very useful.

FACT 6. IfH is a retract ofG, then f( H) <-_ f( G).
Duffus and Rival [2] showed that a finite distributive lattice of height n is a retract

of the n-dimensional cube. By using Theorem 3, we immediately have the following"
THORF.M 4. Suppose S is a partially ordered set in which each element is assigned

an integer weight. In the correspondingfinite distributive lattice, an admissible move is
to remove w pebblesfrom a vertex v and place one pebble on u where w is the weight of
the element in v u. If I-[xs w(x) pebbles are assigned to vertices in the distributive
lattice, then by repeatedly applying the admissible steps, one pebble can be moved to the
empty set in the lattice.

We remark that when S consists on n pairwise incomparable points, the distributive
lattice is exactly the n-cube. Theorems 1-3 are all special cases of Theorem 4.

For any two graphs G1 and G2, we define the product G1 V-] G2 to be the graph with
vertex set { (v, v2) V e V(GI ), vz e V(G2)} and there is an edge between (v, v2)
and (v’, v) if and only if (v v’ and { v2, v } e E(G2)) or ({ v, v’ } e E(G1) and
va v). It is easy to see that the 1-cube is K2; the 2-cube is K2 F-q K2; and the n-cube
Q, is Q,_ F-] K2.

We say a graph G satisfies the 2-pebbling property if two pebbles can be moved to
a specified vertex when the total starting number of pebbles is 2f(G) q + 1, where q
is the number of vertices with at least one pebble. Clearly the n-cube satisfies the 2-
pebbling property and the paths also have the 2-pebbling property.

THeOReM 5. Suppose G satisfies the 2-pebblingproperty. Then thefollowing holds"
(i) f(G F-] K) <= tf(G).
(ii) Iff(G V1 Kt) f(G), G V] K satisfies the 2-pebbling property.

The proof of Theorem 5 is extremely similar to the proof of Theorem 2 and 2’ and will
be omitted here.

Using Theorem 5 together with Fact yields the pebbling number for all products
of cliques.

FACT 7. f(Kt, ff] Kt2 D [[] Kts) tlt2" "ts.
FACT 8. f eq + [’-] et2 + [[] [--] ets + 2 q + t2 + ts

Proof. On one hand, we have f( Pt + ff] Pt2 + Vq Pts + >= 2ti +.../ t since the
diameter is t + t2 + + ts. On the other hand, since
is a retract of the (t + t2 + + ts)-cube, Fact 8 follows from Fact 6.

FACT 9. For integers p, P2, "", Pn >= 2, o, or2, "’’, an > 1. Suppose
P IiP2 Pn pebbles are assigned to the vertices of P,,
Each admissible pebbling step is to remove Pi pebblesfrom a vertex

(al, ,ai- 1,x, ai+ 1, ,an)

and place one pebble on (a, ai- 1, x 1, ai+ , an). One can repeatedly apply
the admissible pebbling step to move a pebble to (0, 0).

Fact 9 follows from Fact 6 and Theorem 3. We can now use Fact 9 to give a different
proofto the result ofLemke and Kleitman 5 ]. That Theorem 3 implies Theorem 6 was
Lagarias’ motivation for formulating the problem.
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THEOREM 6. For any given integers a, a2, aa, there is a nonempty subset
X
_

{ 1, d} such that dl Zix ai and ix gcd(ai, d) <-_ d.
-,..2... -, We consider P,+I [] P,2+1 IS] IS] Pan+lProof. Suppose d p ,2 Pn

For each integer ai, we place a pebble at (bl, bn) where d/gcd(ai, d) pb,pb2
p". Suppose there are Pi pebbles corresponding to numbers x, ..., xpi at the vertex
(b, bn). There is a subset S

_
1, Pi such that Pi[ is xi y. We note that

gcd(xi, d) <-_ Pi" gcd(x, d)
iS

gcd(y, d).

We can then replace numbers x, xpi by the number y. Ifwe can repeat this process
and eventually move a pebble to (0, 0), then this implies that there is a subset
X
_

{ 1, d} such that dl iX ai and iX gcd(ai, d) <= d.
This completes the proof of Theorem 6.
Suppose Tis a tree with a specified vertex. Tcan be viewed as a directed tree denoted

by T* with edges directed toward the specified vertex v, also called the root. A path
partition is a set of nonoverlapping directed paths the union of which is T. A path-
partition is said to majorize another if the nonincreasing sequence of the path size ma-
jorizes that of the other. (That is (a, a2, ai) > (bl, b2, bt) if and only ifai >
bi where min { j" ai =/= b; ).) A path-partition of a tree T is said to be maximum if it
majorizes all other path-partitions.

We define the pebbling numberf( T, v) to be the smallest integer m such that if m
pebbles are assigned to the vertices of T, then one pebble can be moved to v.

FACT 10. The pebbling number f( T, v)for a vertex v in a tree T is 2 al + 2 a2 +
+ 2 at + where al, a2, at is the sequence ofthe path size (i.e., the number

ofvertices in the path) in a maximum path-partition of T*v
Fact 10 is a special case of Fact 11 that considers the following general formulation.

Let J( T, v) denote the smallest integer m such that if m pebbles are assigned to the
vertices of T then k pebbles can be moved to v.

FACT 1. The pebbling number f( T, v)for a vertex v in a tree T is k2 al _j 2 a +
+ 2 a’ + where al, a2, at is the sequence ofthe path size in a maximum

path-partition of T*
Proof. The proof is by induction on the number of vertices of T. If we remove v

from T, the resulting graph is the union of subtrees T1, T2, Ts where Ti contains a
neighbor of v, say ui. It is easy to see that for any kl / 2 + + ks21 < k we have

f( T, v)- >=f,+ l( Tl,ul)+f+ l( T2, u2) + +J,+ l( Ts, us)-S.

In fact,

f(T,v)- 1= Max {AI+ I(T1, Ul)--A2+ l(T2, u2)-t-’’’-t-As+l(Zs, us)-S }
ki

Using the fact that 2 + 2 >_- 2 a- + 2/1 if a > b, the maximum is achieved when
kl k3 ks 1, kl 2k- while T1 contains a vertex furthest from v. It is then
straightforward to check thatj( T, v) has the desired expression.

FACT 12. A tree satisfies the 2-pebbling property.
Proof. From Fact 11 we know thatf2( T, v) =f( T, v) + 2 al where al is the number

of edges in a longest directed path in T with root v. It remains to show that

f(T,v)-IV(T)[+I>=2a

which follows from Fact 11.
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4. Questions on the pebbling number. There are many problems on the pebbling
number that we will mention here.

Question 1. Is it true thatf(G) max {2n(a), V(G)l }?
Answer. False. Consider the star of 3 edges. The pebbling number is 5 while 2z

4 V(G)].
Question 2. Is it true that f(G r-q G2) f( G1 )f(G2) .9
Answer. False. Consider G K3 and G_ P3.

f(K3[-IP3)=94:f(K3).f(P3) 12.

There are many questions not resolved at this point.
Question 3 (RLG). Is it true that f( G1 E] G2) =< f( G )f(G2) ?
Question 4. Is it true that any graph has the 2-pebbling property?
If these two properties are true, the proof of Theorem 2 can be much simplified.

Recently, Lemke constructed a counterexample to Question 4. His example does not
provide a "no" answer to Question 3.

We remark that Theorem 5 can be used to determine f(G) for a variety of graphs
other than products of cliques or paths. For example, for the 5-cycle C5, it is easy to see
thatf(C) 5. Theorem 5 assertsf( K5 ffl C5 25. It would be of interest to determine
f(G G [5] [:] G).

Question 5. Is it true that

nCs’s
f(GGrq.., cG) 5n?

The following generalization of Theorem 6 was conjectured in [5].
CONJECTURE. Any sequence of lGI elements (not necessarily distinct) ofthefinite

group G contains a nonempty subsequence gl, g2, g such that gg2""g e and
E/=, (1)/Igl --< 1.
When G is cyclic, the conjecture is true as seen from Theorem 6 and [5].
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