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The pebbling number of a graph G, f(C), is the least m such that, however m pebbles
are placed on the vertices of G, we can move a pebble to any vertex by a sequence of
moves, each move taking two pebbles off one vertex and placing one on an adjacent
vertex. We give another proof that f(Q") = 2" (Chung) and show that for most
graphs f(G) = |[V(G)| or |[V(G)|+ 1. We also find f(G) explicitly for certain classes
of graphs (i.e. for odd cycles and squares of paths), characterize efficient graphs,
show that most graphs have the 2-pebbling property, and obtain some results on
optimal pebbling.

I. Introduction

Throughout thic paper, unless stated otherwise, G will denote a simple con-
nected graph on n vertices and f(G} will denote the pebbling number of G {defined
below).

Suppose p pebbles are distributed onto the vertices of a graph G. A pebbling
move (step) consists of removing two pebbles from one vertex and then placing one
pebble at an adjacent vertex. We say a pebble can be moved to a vertex v, the
target vertex, if we can apply pebbling moves repeatedly (if necessary) so that in
the resulting configuration the vertex v has one pebble. In this paper, the letter v
will frequently be used to denote the target vertex of the graph under consideration,
context should make it clear. For a graph G, we define the pebdbling number f(G) to
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be the smallest integer m such that for any distribution of m pebbles to the vertices
of G, one pebble can be moved to any specified vertex v.

The first paper on pebbling [1] was motivated by the following question of
Lagarias and Saks: Is f(Q") = 2"?7 (Here Q™ denotes the n-dimensional hyper-
cube.} Chung answered this question in the affirmative, by proving a stronger
result. Before we state Chung’s result we need two definitions. For any two graphs
G and G, we define the cartesian product G1 x G3 to be the graph with vertex
set {(vy,v2) : v; € V(G,), v9 € V(G2)} and there is an edge between (v;,v7)
and (v}, v}) if and only if (v, = v} and (ve,vl) € E(G2))or({vi,v}} € E(G,) and
vy = v}). It is easy to see that the 1—cube is K3; the 2—cube is K3 x K2; and the
n—cube Q™ is Q™! x K.

We say a graph G satisfies the 2-pebbling property if two pebbles can be moved
to a specified vertex when the total starting number of pebbles is 2f(G) - ¢ + 1,
where g is the number of vertices with at least one pebble. Chung proved the
following results.

Theorem 1. (Chung [1}) Suppose G satisfies the 2-pebbling property. Then the
following holds: (i) f(G x K;) < tf(G)
(ii) If f(G x K,) = tf(G), then G x K, salisfies the 2~-pebbling property.

Corollary 1. f(Q") = 2™

Chung used her theorem to give a novel proof of a number theoretic result of
Lemke and Kleitman [3]. See [1] for details.

In section 2 below we give a very simple proof of Corollary 1. In section 3,
we show that most graphs have the 2-pebbling property and that for most graphs
J(G) = nor n+1. We also show that if |E{(C)] > (";1) + 2 then f(G) = n. In
section 4 we discuss efficient graphs, this involves & variant of the original pebbling
problem; here we assign fractional weight to the pebbles. In section 5 we find f(G)
explicitly for certain types of graphs, for example, when G is an odd cycle.

In section 6 we introduce the notion of an optimal pebbling number of(G) of a
graph. In this case, one is allowed to choose where the pebbles may be distributed
as long as a pebble can be moved to any desired vertex. We conclude our paper
with several conjectures and open problems.

2. £(Q") = 2"

The n—cube Q" can be considered as the graph whose vertices are labeled by
the binary n-tuples and such that two vertices are adjacent if and only if their
corresponding n-tuples differ in precisely one position. We may also designate the
vertices of Q" by subsets of {rn] = {1,2,...,n}. In our proof below we will use this
second interpretation. A collection 1, of subsets of a finite set X, is called an ideal
(hereditary family) if A € I, B C A = B € 1. Thus ideals can be interpreted as
induced subgraphs of Q™. Keeping this in mind we can now prove our first theorem.

Theorem 2. Let I be an ideal of an n~element set with |I| = p.
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(i) No matter hou p pebbles are placed at the vertices of I one pebble can always
be moved to @ (the empty set).

(11} Suppose we have placed p + h + 1 pebbles at the vertices of I such that h
vertices contain no pebbles at all. Then two pebbles can be moved to Q.

Proof. Let k denote the maximum size of an element in /. We will proceed by
induction on {/{. Clearly. our claims are true if n = l or if K = 0 or 1 (for anv
n). Let I be a minimal counterexample. Let S be those subsets of 7 that do not
contain n apnd let T be those subsets of I containing n. Clearly S is an ideal with
|S| < ] and T is isomorphic to an ideal (with {n} =0) and |T| < |I]. Let |S|=s
and {T{=t,s0s+1t=p

Proof of {i). Note that each vertex in T is adjacent to at least one vertexin S. 1f s
pebbles are placed on the vertices of S we are done by induction. So assume that
s—r (r > 1) pebbles are placed on the vertices of § hence t + r pebbles are placed
on the vertices of T. By (i1} we see that T must contain at least r “empty” vertices
(otherwise we could move two pebbles to {n} and then one pebble to ).

Let U/ be the set of vertices in T that contain 2 or more pebbles each. The
total number of pebbles at the vertices of U is at least {U/{ + 2r. It is easy to see
that at least 7 pebbles can be moved from U to S and we are done.

Since [ satisfies (i} it must fail at (i1). Suppose we have placed p+h+1 pebbles
at the vertices of I such that h vertices contain no pebbles at all. Let S and T be
defined as before. Let hs be the number of vacant vertices in S and let At be the
number of vacant vertices in 7', so h = hg + hr.

First, suppose that s—r (r > 1) pebbles are assigned to the vertices of S. Then
t+h+1+7 pebbles are assigned to the vertices of T. Now h = hs+hr and r < kg,
so T has t + hy + 1 4+ (r + hg) pebbles and hr vacant vertices. Let A,1 €7 <t
be the elements in [ that contain n and let Tp = T = {A;,As,..., A, = {n}}
and let T; = T,y — {4} for 1 €7 < ¢t~1. We may assume that the A, have
been labeled so that each 7, is isomorphic to an ideal. {We think of each 7; as an
ideal {induced subgraph) of T,_;.) For all i. we have {n} € V(T;} and {n} = 0.
Llet ¢ = 2m, + 7, (0 < r, € 1) be the number of pebbles at A;. Let j be the

7
least integer such that Z m, > r (recall that T has at least t + 2r pebbles). First,

1=1

J
suppose Zm, = 7. Then r pebbles can be moved from A,, Ag,... 4, to 5, leaving
1=]
;14 A1, + 1 pebbles at the vertices of T; (here hr, is the number of vacant vertices
of T;) and s pebbles at §. By induction we are done. A similar argument can be
3 ,
given if Z mi > 7 (herc we work with T, instead of T;) and we are done.
1=1
Therefore, we may assume that S contains s+ (r > 0) pebbles and hs empty
vertices. Then by induction r € hg. so T has at least { + Ay + 1 pebbles. By
induction, we can move one pebble to @ in S and we can move two pebbles to {n}
in T (hence one additional pebble to #) and we are done.

67



Corollary 1. f(Q") = 2".

3. The 2-pebbling property and f(G) = n or n+ 1.

We will show that having diameter 2 is a sufficient, but not necessary condition
for & graph to satisfy the 2-pebbling property. We will make use of the following
simple facts.

Fact 1. f(C) > maz{2%e™(G) n}
Proof. Obvious.

Fact 2. 1f G contains a cut vertex then f(G) 2 n+ 1.

Proof. Let u be a cut vertex of G and let C; and C5 be two distinct components
of G —u. Let z € V(C,) and let v € V(C;)} (v is our target vertex). Place one
pebble at each vertex of V(G) — {u,z,v} and place 3 pebbles at z. Clearly no
pebble can be moved tov. [J

Theorem 3. Let G be a graph with diameter (G) = 2. Then G has the 2-pebbling
property.

Proof. Throughout this proof we will assume that v is our targent vertex. It is
easy to verify that our theorem is true if [V(G)| = n < 4. Therefore we will assume
that |[V(G)| = n 2 5. Let q be the number of vertices with at least one pebble. If v
has a pebble on it we are done {g < n < f(G) 50 2f(G) — ¢ > f{C)). Therefore we
may assume that v contains no pebbles and hence that ¢ < n — 1. Next, suppose
that a neighbor of v, say u, contained 2 or more pebbles. Then we see that we
can move a pebble from u to v leaving us with 2f/(G) — ¢+ 1 ~ 2 > f(G) pebbles
that haven’t been moved and we are done. Therefore, we may assume that every
neighbor of v contains at most one pebble.

Case (i): G has a cut-vertex.

Assume u is a cut-vertex of G. Since G has diamter 2, u has degree n — 1.
If u = v our proof is trivial (deg(u) = n — 1 and (f{(G) > n + 1). Thus, we may
assume that u # v. Suppose u contains a pebble. Then since deg(u) = n - 1
we can move & pebble to u and then move one pebble to v. This leaves us with
2f(G)—q+1~3 2> f(G) pebbles in G that have not been moved and we are done.
Therefore we may assume that there are no pebbles on u, hence ¢ < n — 2. Thus
there are at least ¢ + 7 pebbles on G. No matter how we try to distribute the seven
“extra” pebbles onto the ¢ “occupied” vertices we see that at least four pebbles can
be moved to u, hence at least 2 pebbles can be moved to v and we sre done.

Case (ii): G is 2-connected.

First assume that ¢ = n —1 (hence every neighbor of v has exactly one pebble).
Now there are at least ¢ + 3 pebbles on G. Suppose that some vertex, say w,
contained four pebbles. Then since G is 2-connected we see that we can move one
pebble from w to some neighbor of v, say z;, and another pebble from w to another
neighbor of v, say z3 (z2 # z;). This gives us two neighbors of v each containing
two pebbles and we are done. Therefore, we may assume that G contains two
vertices, say w; and wa, such that each one contains at least two pebbles. Using
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the 2-connectedness of G again, we see that we can move pebbles so that v has two
neighbors each one of which contains at least two pebbles and we are done.

Therefore, we may assume that ¢ < n — 2. Let z;,z9,...,2z; be the neighbors
of v. After relabeling, we may assume that the vertices z,,2z3,...,z; each contain
a pebble and that the remaining neighbors of v do not. Assume j = i (i.e. all
neighbors of v contain a pebble). We know that G contains at least ¢ + 5 pebbles,
hence at least three more pebbles can be moved to the neighbors of v (diameter(G) =
2) and we are done. Whence, we may assume that ¢ < n — 2 and that j < i.

Suppose g = n—2, then by our above remarks we know that v and z; (a neighbor
of v) are the only vertices without pebbles. Let w be a vertex containing two or more
pebbles and suppose w is adjacent to z; with j < i. Then we can move a pebble from
w to z; and then to v leaving 2f/(G)~q+1-3=2f(G)-g¢-2=2f(G)—n 2 f(G)
pebbles on G that have not been moved and we are done. Hence, if g = n — 2, then
all vertices containing two or more pebbles must be adjacent to z; (the one neighbor
of v that doesn't contain any pebbles). Remember that G contains at least ¢ + 5
pebbles (¢ = n — 2).
There are 3 cases to consider.

Subcase (a). Some vertex of G, say w, contains 6 or more pebbles.

Proof. Since G is 2—connected, G must contain a path of the form w—y—z; (j <
i), where y and z; each contain one pebble. Thus we can move one pebble from w
to z;, leaving four pebbles at w and two pebbles at z;. Now move two pebbles to
z; from w. Thus v has two neighbors each containing two pebbles and we are done.

03

Subcase (b). Some vertex of G, say w, contains four or more pebbles and
another vertex, say z, contains at least two pebbles.

Proof. G must contain a path of the form z —y — z; (j < i), where y and z;
each contain one pebble. Thus we can move a pebble from z to z;, and two pebbles
from w to z;, hence we are done. [

Subcase (c). Three vertices of G, say w;, w3, w3, each contain two or more
pebbles.

Proof. G must contain a path of the form w; —y — z; (j < i) where y and
z; each contain one pebble. Move one pebble from w; to z; and two pebbles to z;
(one from w2 and one from w3). Again, it is easy to see we are done. [

Therefore, we may assume that ¢ # n — 2 hence ¢ < n — 3. This means that G
contains at least 2f(G)—qg+1 > ¢+7 pebbles and also that 2f(G)—g+1—-4 > f(G).

As before, we see that if z; is a neighbor of v containing & pebble then z; is
not adjacent to a vertex containing two or more pebbles. Now let u be a neighbor
of v without any pebbles. If u is adjacent to a vertex containing four pebbles or
two vertices (each containing at least two pebbles), then we can move a pebble to v
(through u) at a “cost” of 4 pebbles. This leaves 2f(G)—g+1—4 > f(G) pebbles on
G that have not been moved and we are done. Whence, we conclude that G cannot
have any vertices with more than 3 pebbles on it and furthermore, if u is a neighbor
of v without any pebbles, then u is adjacent to at most one vertex containing 2 or
more pebbles. Therefore, we can assume that the number of vertices with 2 or more
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pebbles {(but at most 3 pebbles) is less than or equal to the number of neighbors of
v that contain no pebbles at all. Now suppose v has k& (k > 1) neighbors that fail
to have any pebbles. Theng<n—(k+1)and 2f(G)—g+12 ¢+ 2(k+1)+1.
Hence at least k + 2 vertices in G contain 2 or more pebbles (but at most 3 pebbles)
and this contradicts our previous statement. M

Next, we will show that if diam{G) = 2 then f(G)=nor n+ 1.

Lemma 1. Let G be a graph with diam(G)= 2 and |V{(G}| = n 2 6. If we pedble
G with the additional requirement that at least three vertlices receive {wo or more
pebbles each, then only n pebbles are needed so that a pebble may be moved to any
desired vertezr v.

Proof. Assume that n pebbles are distributed on the vertices of G so that at least
three vertices have two or more pebbles. If G has a cut-vertex our proof is trivial.
Therefore assume G is 2~connected and that v is our target vertex. Clearly, no
neighbor of v may contain 2 or more pebbles.

Let z;,2q,...,z% (k > 3) be the vertices in our pebbling of G that contain 2
or more pebbles. Then each z; must be adjacent to a neighbor of v, say y;. Clearly,
vi # y; (1 # j) and the y;'s are without pebbles. Since v is without pebbles we
see that some z; must contain 3 pebbles. (No z; may contain four pebbles since
diam(G) = 2.) After relabeling, if necessary, we may assume that z; has 3 pebbles.
Now z, cannot be adjacent to any other z,, therefore, there must exist k — 1 distinct
vertices 239, 213,...,21x that are not neighbors of v and such that z,; is adjacent to
both z; and z;. Clearly, the z;;'s are without pebbles.

Thus z; (j 2 2) is adjacent to at least two vertices (y; and z;;) that fail to
have any pebbles. Hence we may assume that each z; (1 < ¢ < k) has exactly
three pebbles. Therefore none of the z;’s may be adjacent. Thus there must exist
a vertex zj3 distinct from z1,z2,...,2k,¥1,¥2,--.,¥ks 212, 213, ---, 21k &nd v, that
is adjacent to both zo and r3. Clearly, z73 is without pebbles. But this leaves us
with one more pebble to add to some z; (1 <i < k) and we are done. 1§

Lemma 1 will be used to prove our next theorem.
Theorem 4. Let G be a graph with diam(G)= 2, then f(C)=n orn + 1.

Proof. Assume that v is our target vertex and that n + 1 pebbles have been
distributed on the vertices of G. Our proof is trivial if G contains a cut vertex.
Therefore assume G is 2—connected and that {V(G)| =n > 6. (The cases n = 2,3, 4
and 5 can easily be checked.) Clearly, v and at least one neighbor of v, say u, fail to
have any pebbles. By our previous lemma we may assume that at most two vertices
in G have 2 or more pebbles. Let z,,z7 denote the vertices in G containing 2 or
3 pebbles. We may assume that z; has exactly three pebbles and z; has at least
two pebbles. Now z; and z7 are adjacent to distinct neighbors of v, say y; and y2
{(note that y, and y; are free of pebbles). Furthermore, there must exist a vertex
212 ¥ y1.y2 that is adjacent to both z; and z2. Note that 2{7 cannot have a pebble
on it, else a pebble can be moved to x| causing z, to have four pebbles. This gives
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us four distinct vertices that fail to have pebbles, they are v, y),y2, and z32. This
means we have at least five “extra” pebbles; i.e., at least one of z;,z9 must receive
four pebbles and we are done. i

Our next theorem tells us that if |E(G)| is large enough then f(G) = n.

Theorem 5. Let G be a connected graph with n > 4 vertices and ¢ edges. If

g > (n;l) +2, then f(G) = n.

Proof. One can easily check that G is 2—connected. Our proof will be by induction
on n. By inspection we see that our claim is true for n = 4. Now suppose our
theorem is true for every graph with n’ vertices where 4 < n’ < n. Let G be a
graph on n vertices and let v be our target vertex.

Case (i). Suppose v has degree n ~ 1. If v has a pebble on it we are done. Therefore
G — v has n pebbles but only n — 1 vertices. Hence some vertex, say w, contains
two pebbles and we are done.

Case (ii). Suppose v has degree less than n — 1. If some vertex adjacent to v has
two pebbles on it we are done. Therefore assume that a neighbor of v, say u, has

-2
pebble on it. Note that |[E(G — v)| > " 9 + 2 and G - v is 2-connected. Now

the number of pebbles on the vertices of G — v (ignoring the pebble at u) is n — 1,
so by induction another pebble can be moved to u and we are done.

The last case to consider is that all of the vertices adjacent to v have no pebbles
on them. Let w be a neighbor of v. If the degree of w is less than n — 1 then by
induction we can move a pebble to v in G — w. Hence assume deg(w) = n ~ 1 and
note that there are n pebbles among the vertices of G — w —v. By the 2-connectivity
of G (and the fact that we are assuming no neighbor of v has a pebble) we see that
G — w — v contains a vertex without pebbles. Therefore G — w — v contains at least
two vertices with 2 or more pebbles each or else some vertex with 4 pebbles. In
either case 2 pebbles can be moved to w, hence one pebble can be moved to v and
we are done. H

To see that Theorem 5 is best possible just take K, _; and adjoin to it some
vertex v by a single edge. Call this new graph G. Since G has a cut vertex we must
have f{(G) > n + 1.

It would be interesting to know the fewest possible edges a graph G could have
with f(G) = n. To this effect we mention one interesting result.

Fact . Let G be a connected graph on n > 6 vertices. If u,v € V (G}, deg(u) =deg(v)
2, and dist(u,v) > 3 then f(G) > n+1.

Proof. Let u and v be as mentioned above. Let z;,z7 be the neighbors of
u and let y;,y; be the neighbors of v. Place one pebble at every vertex of G —
{u,v,z,z9,y1,y2}, 8nd six pebbles at u. It is easy to see that no pebbles can be
moved to uv. O
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4. Efficient graphs.

Instead of pebbles, suppose we had a substance that was divisible into infinites-
imal amounts. Call such a substance sand. Let G be any connected graph and let
D = diam(G). Suppose we place our sand (in piles) at the vertices of G and that
as we move sand across an edge (i.e., move one unit distance) we lose half the sand
we started with. Then no matter how we distribute 2P units of sand among the
vertices of G it is easy to see that we can move “one unit” of sand to any vertex of
G.

Now let’s modify our problem. Let € be of the form § (i.e., e = 4.t €Z") and
place 27 units of sand randomly on the vertices of G. Here we require the piles of
sand to be in multiples of e&. A move now consists of moving 2 - ¢ units of sand at
a time with half of the sand lost as an edge is transversed. It is not at all clear for
which graphs G it is possible to move “one unit” of sand to any vertex in G. We
can rephrase this problem in terms of pebbling. As before, let G be a connected
graph with diameter D, let t be the smallest positive integer such that no matter
how t22 pebbles are distributed among the vertices of G, at least t pebbles can be
moved to any vertex in G, then we define e = % If no such t exists we define
eg = 0. Noteeggn = 1.

From physics, we know that energy comes in quanta (discrete “packets”). This
motivates our next definition.

Definition. Let G be a connected graph. If ¢ > 0, then we call G an efficient
graph. That is, if 20 units of energy are distributed among the vertices of G and
if it comes in small enough quanta (¢}, then one unit of energy can be moved to
any desired vertex. A graph with eg = 1 is called a very efficient graph.

Two questions naturally arise, they are:
Question 1. Can one characterize those graphs G with e > 07

and

Question 2. For every ¢ of the form ¢ = % does there exist a graph G witheg = €?

We answer both of those questions below.

Definition. Let G be a connected graph and let v, v/ € V(G). If dist(v,v') =
diam(G} then we will call the vertices v and v’ antipodal vertices.

Definition. Let G be a connected graph and let v € V(G). Let m = max{dist(v, y),
y € V(G) — {v}}. Clearly, every vertex y € G lies on a v — y path P,, with
[V (Pyy)| < m + 1. A path covering of G rooted at v, denoted by P,, is a smallest
collection of paths {Py, P;,...,P;} such that P, = VY, Yiy---¥i, (K < m) and
given any y € V(G) there exists some P; € P, with y € V(P;). (Note that if
P, = V¥i, Vi, . .- ¥4, then dist(v,yij) = J)

Definition (The Antipodal Property). We say that a connected graph G has
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the antipodal property if given any v, v’ € V(G) such that dist{v, v') = diam(G) then
for any y € V(G) — {v,v'}, y lies on a v — v/ path P with |V (P)| = diam(G)} + 1.

We can now characterize those graphs G with e > 0.

Theorem 6. Let G be a connected graph. Then G is an efficient graph (i.e. eg > 0)
if and only if G has the antipodal property.

Proof. Assume that diam(G) = D. First, we prove necessity. Suppose G fails to
have the antipodal property. Then there exist antipodal vertices v and v/ and a
vertex u such that u fails to lie on a v — v/ path P with |V (P)| = diam (G) 4+ 1. Let
¢ be any positive integer. Distribute t22 pebbles on the vertices of G by placing
one pebble at u and the remaining t2° — 1 pebbles at v/. Then it is easy to see that
at most t — 1 pebbles can be moved to v and we are done. Now assume that G has
the antipodal property, and let f(u) denote the number of pebbles at the vertex
u{u € V(G)}). Let A be the set of all antipodal vertices in G. For v € A let P, be
a path covering of G — v’ rooted at v. (Here v’ is the unique vertex of V (G) such
that dist{v,v’) = D.) For all other vertices v € V(G) — A, let P, be a path covering
of G rooted at v. Let t = max{|P,|: v € V(G)}. We will show that eg > 51?

Case (i) v € V(G) ~ A. Suppose our target vertex v is in V(G) — A. Then
|Py| < t and each P € P, has length < D — 1. Let P, = {P,,P,,...,P;} (i < ¢t)
and assume that P; has m;2P~1 4 r; (0 < r; < 2P-1) pebbles on it. (Note that if
some vertex u is in several of the paths of Py, say Py, Pi,,..., P;,, we arbitrarily
partition the pebbles at u so that f(u) = p +pi, +...+ pj, and think of Pi, of
the pebbles at u as belonging to the path P;, but still positioned at the vertex u.)

J J

Clearly Zr.' < t?D—l, hence Zm‘- > 3t (we have 4t - 2D-1 = 2¢. 2D pebbles to
=1 =1

work with). Hence we are done since the pebbling number of each path P; € P, is

at most 2P7!, thus we can move at least 3t pebbles to v.

Case (ii)v € A. Suppose our target vertex v € A. Let P, = {Py,Pa,...P;} {j <
t) and let v’ be v’s antipodal vertex. Suppose f(v') < 20 (i.e. half or less of the
pebbles are placed at v}, and assume that P; (1 < i < j) has m;2P~1 4+ r, (0 <
ri < 2P=1) pebbles on it. Then by moving pebbles from v’ to its neighbors we can
be assured that the vertices in G — v* will have at least 3t2P~! pebbles and we can
argue as before. Therefore, we may assume that f(v') > 12D,

Since G has the antipodal property we may assume that diam(P;) = D -1 for
1<i<j. Foreachi(l <i< j)move (2P-1_r;) pebbles from v’ to P;. Now we can
move j pebbles to v leaving m,2P~! pebbles on P; (1 < i < j) and at least f(v’) -

720 pebbles at v/. Note that (f(v )~ 520 4 (Zm) (2P~1) > 2P + (¢ - j)2 )

1=1
J
Let Zm,v = k. Then we can move k more pebbles to v leaving us with at Jeast
=1
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f(v') = j20 > 20 4 (¢t — ;)20 — k2P-1 pebbles at v’ and j + k pebbles at v. If
j+k < t then v’ has at least 2P + (t — (7 + k))22 pebbles that haven't been moved
and we are done.

Ift < j+ k < 2t then v’ has at least (¢t — i)20 pebbles (where i +t = j + k)
that haven’t been moved and we are done. B

Next, we answer question 2 above.

Theorem 7. Let G = K, —e. Theneg = % where t is the smallest integer such
that 2t > (n - 2).

Proof. We do not explicitly state the pebbling moves - these should be obvious to
the reader since diam(G) = 2. Let V{(G) = {z1,z2,...,2n} and let e = (zn_1,2zn).
First we prove that 2t cannot be less than n — 2. Assume that 2t < n — 2. Place
one pebble at z; for 1 < i < n — 2 and then place the remaining 4t — (n — 2) < 2t
pebbles at z,_;. It is easy to see that it is impossible to move t pebbles to z,,.
Therefore we must have 2t > n — 2.

Case (i): Assume v = z; (i < n — 2) is our target vertex. By symme-
try, we may assume that v = z;. Let ¢; = 2m; +r; (0 < r, < 1) denote the

number of pebbles at z; for ] < 1 < n. First, assume that Zr‘ =n-1>2t
=2
Then we must have g; > 1 sincen — 1 is odd (2t > n — 2) We know that at

least ¢1 + zm. pebbles can be moved to z; and that ¢q; + 2 Zm +2t+1 =4t
=2 =2

Hence ¢; + 2Zm,- =2t—1=2(t— 1)+ 1= at least t pebbles can be moved to
1=2

n
z; and we are done. Thus we may assume that Zr,- <n-2<2t But then
=2

q1 +2 Zm,- = 2t which implies that at least t pebbles can be moved to z;.
=2

Case (ii): v = z,-y or z,. By symmetry we may assume that v = z,,.
n—-2

Let g; be defined as before. If }:m,' =m >t ~gq, we are done, thus assume

n—-2 = n-2
that 3 mi=m <t-g, andlet j =t — (gn +m). Let 3 r;=r<2t Now
i=1 i=1
gn-122(t =m) ~ g, and 2t = 2(m + g + j), 50 gn—1 > 2j. Thus if r > j then we
are done. Therefore r < ;.
Let k =t—(m+g4q,+r) 2> 1 and note that we can move m +r + ¢,, pebbles to
zy (at “cost” of at most 2m + 3r + g, pebbles) leaving at least 4k pebbles at z,_;
that haven’t been moved. After moving k of these to z,, we are done. §

5. Known values of f(G)
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Very little is known about the exact value of f{G) except for some trivial cases
such as paths (f(Pn) = 2"), complete graphs (f(Kn) = n}, and the results of Chung
[ ] (Chung shows that f(Pn, X Pp, X ... x P, ) = 2M+n2++% and also gives a
method for finding f(T) when T is a tree.) In this section we find f(G) explicitly
for several types of graphs. First, we find the pebbling number of odd cycles.

2k+l
1.
3J+

Proof. Let Cox41 = Tag_1ak-2...a2a1vb1bo ... bi_1yz and let v be our target ver-

tex. Let P4 bethe pathvajay...ax.2ax—1 8ndlet Pg bethe pathvbiby ... bx_obr—1.

Let f(u) denote the number of pebbles at vertex u € V(Cax+1). Note that f(P4) =

‘ . 2k+1

f(Pg) = 2*~1. First, we will show necessity. Suppose we are given only 2|.——§--J
k+1 k+1

J pebbles at z and lT.l pebbles at y. 1t is easy to

see that at most 25~ — 1 pebbles can be moved to ax—; (or bx—1) and we are done.
k+1

Now suppose that we have placed 2 t—3——-J + 1 pebbles at the vertices of Caix 4

k-1 k-1
but that we cannot move a pebble to v. Let j4 = Zf.(a,-) and let jg = Zf(b,)

Theorem 8. f(Caxs+1) = 2[

pebbles. Then place |-

Then we must have

JA+I. - 2 JJ<2'€—1_1 (1)
and also ) fe)
JB+{_I()+2|‘2JJ<2'°"I"1 (2)
Hence,
jA+jB+[f( )+2[ 2 JJ+[””)+2l 2 JJ <2k-2  (3)

Equation (1) above results from moving as many pebbles as possible from z
and y to ax_) and equation (2) results from moving as many pebbles as possible

from r and y to bx_;.
2k+~1

Note that js + jp + f( )+ f(y = Q[TJ + 1. Thus to minimize the LHS

of (3) it is sufficient to assume that j4 = jp = 0 (i.e. we may assume that all the

pebbles are at z and y).
k41

Now 2‘.—3-—-‘ +1 is odd so exactly one of f(z), f(y) is even. Without loss of

generality assume f(z) is even.
Now suppose that as many pebbles as possible are moved from z and y to ax_;.
When we are done we could still have a pebble left at > and a pebble left at y (i.e.
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f(y) = 3 mod 4) but since f(:r) is even we may think of both of these pebbles as
coming from y. Similarly, if we move as many pebbles as possible from z and y to

bx—1, we see that r will have no pebbles (f(z) is even) and y will have at most one
pebble (i.e. f(z) =0 mod 4) and we can think of this pebble as originating from y.

3 - 3. S )
Thus from (3) we have Zf(:r) + Zf(y) ~ 1 < 2% _2 (The —4 comes from
‘ . N 2k+1
the possible pebbles left behind at z and y.) But f(z) + f(y) > 2[——3—*J +12>2

2k+1 2 _ 4, 3/ : 5 ok 3 5 _
(—é——)+l—§(2 -1)+1 Soz(f(z)-ff(y))*ZZ(? ——1)+4-4—-

2k 2 and this is a contradiction. B

Using a similar method of proof as in Theorem 8 it is easy to see that f(Cax) =
2k,

Let G = (V(G), E(G)) be a connected graph. Then G? (p > 1) (the pth power
of G) is the graph obtained from G be adding the edge (u,v) to G whenever 2 <
dist(u,v) < p in G. Hence G? = (V(G), E(G) U {{u,v); 2 £ dist{u,v) < p in G}).
If p =1, we define G! = G.

Our next result involves squares of paths. In what follows, we assume 0 < r < 1.

Theorem 9. f(P%,, )=2"+r

Proof. First, we will show that f(ngH) >25+ 1. Let P, ., = 2172...2oxT2k41
(the edges between z; and z,;2 are implied for 1 £ i € 2k — 1) and place 2k _1
pebbles at r9:4) and one pebble at zox. It is easy to see that a pebble cannot be
moved to zi, therefore f{P3,,,) > 2% + 1. Since the diameter of P}, is k, we have
f(P3) > 2%. . As before f(u) will denote the number of pebbles at vertex u.

We proceed by induction on 2k + r. Clearly, our theorem is correct if 2k +r =
1,2,3,4, or 5.

Case (i) r = 0. Suppose that for all 2¥' + r with 5 < 2¥ + r < 2k we have
f(Pa...) = 2 +r. We will show that f(P3) = 2*. Place 2* pebbles at the
vertices of Pfk = 11Z3...x29; and assume (first) that v # z, or zo.

Note that dist(u,z;) < k—1 for all u € V(P2 ) — {z2x} and that dist{u,z9;) <
k—1for all u € V(P3) — {z1}. Whence, if flzax) 2 2% Y or if f(z,) > 2%!
we are done. Thus we may assume that f(z;) + f(z2x) < 2% — 2. By moving as
many pebbles as possible from z, to z5 and from zx to z9x-; we see that the
subgraph zoz3... 22k = Pg(k_,l) contains at least 2¥~! pebbles and we are done
by induction.

Therefore, we may assume that v = z; or z5;. By symmetry, we may assume
2k -2

that v = ;. Suppose that Z f(z;) =p>2 Then f(zos-y) + flza) =2 —p <
=2

2k — 2 and it is easy to see that pebbles can be moved from z9x.; and z9x so

that the subgraph z,z;...z2x_2 contains at least 25~ pebbles. Therefore, assume
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that Qiz f(.r,-) < 1. Recall that dist(zox—1,2z1) = dist(z9x-2,2z,) = k — 1. Thus if
f‘(zgk:i > 2 then 2%~ ! pebbles can be moved to T2x-) (f(z2k-1) .+f(:r2k) > 2k_1)
and we are done. Therefore, assume that f{z2x_1) < 1 and that f(zg) > 2¥-2. If
2i-:?j:(:z:i) = 1, then using the pebbles at o5 we see that at least 2*~! — 1 pebbles
c‘;: be moved to z9x_2 and we are done (2123 ... 2952 = Pf}k_z). Whence, we may
assume that 2"2"2 flzi) = 0= f(z2x) > 2* — 1 and that f(zoxk—1) < 1. This case is
also very ea.syi=t<2; handle.

Case (ii)r = 1. Suppose that for all 2k’ 4+ r with 5 < 2k’ + r < 2k 4+ 1 we have
f(P},..,) = 2% +r. We will show that f(P3,) = 2% + 1. Place 2% + ] pebbles at
the vertices of Pi?k-q—l = rr9...T0kZT2k+1 (k > 3). First, suppose our target vertex
v # x)0r roxyy. I if(zi) > 3 then by moving pebbles from z, to z; and from
Zogy LO Tox We see tr:t the subgraph z2z3...z24 contains at least 27! 4+ 1 pebbles
and we are done. Therefore, we may assume that if(z.') <2 If if(:i) =2,
then oniy one of f(z) and f(z2x+1) can be odd - t:: case is also ea;;Qto handle.

Therefore, assume that if(zi) < 1. If v # 29, 29x then we can move at least
2%¥-1 _ 1 pebbles to z3z4. ;‘=22k._1 = Pg(k-2)+1 and we are done. Thus assume (by
symmetry) that v = z5 and that if(z,—) < 1. If f(z1) > 2 we are done. Hence

=2
2k

assume that f(z,) < 1. If Z](x,) = 0 then f(z3x) > 2* and we are done. Thus,
=2

2k

assume that Zf(z‘-) =1. Now f(zgx+1) 2 25 — 1 which implies that 25¥~1 - 1
i=2

pebbles can be moved to z9x_; (from z344,) and we are done {z9z3...22k-] =

Pl—yy)-

Therefore, we may assume {by symmetry) that v = z,. Arguing as before, we

2k—1 , 2k—1

see that if 2: f(zi) > 2 then we are done. (If Z S(zi) = 2 use the fact that one
f=2 =2

_ ' ) k-1 2%-1
of f(z2x) or f{Tox,1) is even.) Thus, we have Z f(xzg)=1(f Z f(z;) = 0 then
1=2 =2
move 25-1 pebbles to z95_, and use the fact that dist(zoxk—1,2,) = k — 1.) Let
Z; be the unique vertex in {z2,...,T2x—1} that contains a pebble and note that
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2%=1 _ 1 pebbles can be moved to zx.) (from zox and zk41). If j is odd we are
done since z1z3zs...2j...22xk—1 = Px and f(Px) = 2k

So we may assume that j is even and that dist(z;,z2x) = i. Let flzar) = Pm+
g where 0 < ¢ < 2°. First, assume m is odd and note that f(:t‘gk+1) >2k - 2'(m + 1)

(m+1) (m+1)

= 2+l ) (here i+1+! = k). This tells us that we can move 2° — 5

pebbles from zgx4y to ;- (dist(zgk+1,2;-1) =i+ 1). We can then move m peb-

bles from z4, to z; giving us m +1 pebbles at z; (f(:c_,-) = 1). Hence, we can move
m+ 1

an additional pebbles to z;_;. This gives us a total of 2! pebbles at T

and we are done (dist(z;,z,_1) = 1).
Now assume that m is even. First move 2' — g pebbles to zax from zax4,.
. . +2
This leaves at least 2¥ — 2'(m +2) = 2°+1(2' - (—T—n;—)
(m + 2)

)} pebbles at zo5,,;. Move

2! — of these pebbles to z,_.; (from z344,). Now move m + 1 pebbles to

z; (from z2x) and note that z; now contains m + 2 pebbles (f(::j) = 1). Arguing
as before, we see that 2! pebbles can be moved to z;—) and we are done. 1

We know that if p is large enough (i.e. p > n — 1) then GP = K,,. Define the
pebbling ezponent of a graph G (denoted by pg) to be the least power p such that
1(G?) = n.

Question 3. What is pgc when G is a cycle?
6. Optimal Pebbling

Consider the problem of placing pebbles at the vertices of a graph G so that a
pebble can be moved to any desired vertex, and as few pebbles are used as possible.
Such a pebbling of G is called an optimal pebbling and the number of pebbles used
is called the optimal pebbling number of G (denoted by of(G)). Finding the optimal
pebbling number of an abritrary graph G appears to be more difficult than finding
its pebbling number; of(Q") is unknown and to find of(P,) requires a little work
as demonstrated below.

In what follows, we assume that 0 < r < 2.
Theorem 10. The optimal pebbling number of Py, 15 2t + r.

First some remarks on notation. Let Py, = z,2,...23,4,. Let P be an opti-
mal pebbling of P3;., and let fp(z;) denote the number of pebbles at z;. Suppose
that fp(z;} = 0 and that i < j, then we say that vertez z, can be reached from z; if
the subpath z;z;4,...z; has enough pebbles so that a pebble can be moved to z;.
If fp(z;) > 0 and i < j, then we say that vertex z; can be reached from z; if two
pebbles can be moved to z;_; in the subpath z;z,,,...z;_,. A similar definition
applies if i > j.
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We will use the notation z; to designate the fact that fp(z;) > 1 (i.e., that z,
has a pebble). The notation z;, will be used to denote the vertex closest to z3;,,
such that 3,4, can be reached from z;,. Thus z1z5 ...z, _, 2} 2% . ...z} Zx 41 ...
:j,_lzgz...xigxkﬁl e T Tj, =15, o Tp Tk,41...Tater (1) denotes the fact
that fp(z,) > 1if and only if j is in one of the following intervals 5y, k1], [j2, k2], ...,
[js, k4], and the fact that z3;,, can be reached from z;, but not by any z,; with j >
i9. We call (1) the pebbling scheme of P, the subpaths [j;, k] = =z}, ...z} (1<
i < 5) closed intervals and the subpaths (1,7, —1) = z1z2... 2,1, (ki+1, jig1—1) =
T4t - Zj—1 (1 €1 < s—1), (k, + 1,3t +71) = 24,41...2304r Open inter-
vals. Hence, the symbol [j;, k;] will refer to either a collection of integers or else
a subpath of Pasy., context should make it clear. Thus (1) can be rewritten as

(1,j1 - I)Ul!kll(kl + 1,j2 - 1) ...I:o . .[j,,k,](k, + 1,3t + 'l‘).

Now for a proof of our theorem.

Proof of Theorem 10. First, we will show that of (P3;4,) < 2t +r. It is easy to
check that our theorem is true when 3t+r = 1, 2, 3, 4, or 5. Therefore, assume that
3t+r > 6, let Patyr = 7122...231+, and place 2 pebbles at z3,z349,...,Z31-1)+2-
We are done if r = 0. If r = 1 place an additional pebble at £3;,, and if r = 2 place
another additional pebble at r3,,2 and we are done.

Our proof will be by induction on 3t + r. Suppose at some point our theorem
is false and let 3t + r be the least number where this occurs. Clearly, we must have
0f(Pat4r) 2 0f(Patyr—1). This tells us that r # 0.

Case (i} r = 1. Suppose r = 1. Then we must have of(P3;4+1) = 2t = of(P3y).
Let P be an optimal pebbling of P3;,,. Clearly, fp(z3:41) = 0, otherwise we would
have of {P3,) < 2t - a contradiction. Furthermore, we claim that fp(za) < 1.
Suppose fp(ra) > 2, then by moving as many pebbles as possible from z3; to
r3—) we get an optimal pebbling of P3;_; that uses at most 2t — 1 pebbles - a

contradiction. Therefore fp(z3) < 1. Let P = {P;,P,,...} be the collection
3t+1

of all optimal pebblings of P3;, ;. Let P; € P and let a;- = Z Jp.(zx) for
k==3t142—j
1 <j<3t+1 andlet A(P;) = (a},a},...,a%,,). We will use the A(P,)’s to
order the elements of P. Consider P,,P; € P and let k be the least integer such
that a} # ai. If a} > ai then we say that P; > P, (otherwise P; > P;). Now let
P € P be the greatest such optimal pebbling of P31 under this ordering and let
(L, i1 — DU kal. ..z ... [s ksl (ks + 1,3 + 1) be its pebbling scheme.
Suppose z] € [j,, k,]|, then by our choice of P we see that Jp(zx,) 2 2, hence
k, < 3t — 1. But then some vertex in [j,, k,] must contain 3 or more pebbles since
fe(z3) = fe(zas1) = 0. Let j € l4,, k,] be the largest integer such that fp(z;) >
3. We can create a new optimal pebbling P’ of P34, by letting fp(z:) = fp(z;)
for 1 €1 <3t+1(i#j—1,5,7+1) and by letting fp(z;_1) = fp(zj-1) + 1,
fpi(z;) = felz;) — 2, and fp(z;41) = fplz;41) + 1. A little thought should
convince the reader that “all” vertices that could be reached using pebbles from
[Js, k5] in P can still be reached in P'.

But now we have P’ > P - a contradiction. Therefore zj ¢ [j,,k,]. Let
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z7, € lii,ki] (i < 8). By our definition of z} we see that some vertex in l7s ki)
must contain at least three pebbles. Let j be the largest integer in [j;, ki) such
that fp(z;) > 3. Now arguing as before we see that there exists another optimal
pebbling P’ of Py such that P’ > P and we are done.

Case (ii) r = 2. This case is similar to the previous case and will be omitted.

After examing the optimal pebbling number for all trees with 7 vertices or less,
the following conjecture seems reasonable.

Conjecture. Let T, ;; be the collection of all trees on n vertices with i vertices
ZTE‘J-(“.() of(T)
tin.i)

of degree one. Let t(, ;) = [T, )| and let a(n ;) = . Then a(, 2) 2

0(n3) 2 -+ 2 B(n,n-1)

What about of (Q™)? We will show that if n = 2k + 1 then of(Q™) < 2**! and
if n = 2k then of(Q™) < 2542%-1, It is best to think of the vertices of Q™ as subsets
of an n-element set. If n = 2k + 1, then place 2* pebbles at [n] = {1,2,...,n} and

2% pebbles at . If n = 2k, then place 2* pebbles at [n] and 25! pebbles at . In
either case it is easy to see that a pebble can be moved to any vertex v.

Problem. Find of(Q"™).
7. Conclusion

Probably, the most interesting conjecure about pebbling graphs is the following.
Conjecture. (Graham) f(G x H} < f(G)- f(H).

See (1], {4] and {5] for partial results pertaining to this conjecture.
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