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a b s t r a c t

Graph pebbling is a game played on graphs with pebbles on their vertices. A pebbling
move removes two pebbles from one vertex and places one pebble on an adjacent vertex.
The pebbling number π (G) is the smallest t so that from any initial configuration of
t pebbles it is possible, after a sequence of pebbling moves, to place a pebble on any
given target vertex. In this paper, we provide the first results on the pebbling numbers of
snarks. Until now, only the Petersen graph had its pebbling number correctly established,
although attempts had been made for the Flower and Watkins snarks.

© 2024 Elsevier B.V. All rights are reserved, including those for text and datamining, AI
training, and similar technologies.

1. Introduction

Graph pebbling is a mathematical game or puzzle that involves moving pebbles along the edges of a connected graph,
ubject to certain rules. The objective of the game is to place a certain number of pebbles on specific vertices of the graph,
ypically with the aim of reaching a particular configuration of pebbles or minimizing the number of moves required to
chieve a given configuration. Various forms of graph pebbling have applications in number theory, computer science,
hysics, and combinatorial optimization, and have been studied extensively in mathematics (see [10]).
In this paper, G = (V , E) is always a simple connected graph. The numbers of vertices and edges of G and its diameter

are denoted by n(G), e(G), and D(G), respectively. For a vertex w and a positive integer k, denote by Nk[w] the set of all
vertices that are at a distance at most k from w. The girth is the length of a shortest cycle in the graph.

1.1. Pebbling number

A configuration C on a graph G is a function C : V (G) → N. The value C(v) represents the number of pebbles at vertex
v. A vertex with zero, one, at most one, or at least two pebbles on it is called empty, a singleton, small, or big, respectively.
The size |C | of a configuration C is the total number of pebbles on G. A pebbling move consists of removing two pebbles
from a vertex and placing one pebble on an adjacent vertex. For a target vertex r , C is r-solvable if one can place a pebble
n r after a sequence of pebbling moves, and is r-unsolvable otherwise. It was shown in [11,12] that deciding if C is

r-solvable on G is NP-complete. The pebbling number π (G, r) is the minimum number t such that every configuration of
ize t is r-solvable. The pebbling number of G equals π (G) = maxr π (G, r).
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Fig. 1. The graph J5 and its (green) v0-unsolvable configuration C of size 22, which equals the configuration C∗ with an extra pebble on z−1 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Bounds on the pebbling numbers of several well known snarks.
Snark n(G) D(G) π (G)

Petersen 10 2 10
Flower J3 12 3 12 ≤ π (J3) ≤ 13
Flower J5 20 4 23 ≤ π (J5) ≤ 30
Flower J7 28 5 41 ≤ π (J7) ≤ 61
Flower Jm (m = 2k + 1 ≥ 7) 4m k + 2 2k+2

+ 9 ≤ π (Jm) ≤ ⌊2k+29/5 + 2k − 18/5⌋ + 1
Blanuša (1 and 2) 18 4 23 ≤ π (G) ≤ 34
Loupekine (1 and 2) 22 4 24 ≤ π (G) ≤ 271
Double-Star 30 4 32 ≤ π (G) ≤ 391
Szekeres 50 7 128 ≤ π (G) ≤ 5462
Watkins 50 7 183 ≤ π (G) ≤ 5462

The basic lower and upper bounds for every graph are max{n(G), 2D(G)
} ≤ π (G) ≤ (n(G) − D(G))(2D(G)

− 1) + 1 [4,7]. A
raph is called Class 0 if π (G) = n(G). Complete graphs, cubes, the Petersen graph, and many other graphs are known to
e Class 0, whereas the cycle graphs Cn satisfy: π (C2d) = 2d and π (C2d+1) = ⌈(2d+2

− 1)/3⌉. It is not yet known whether
r not there exist necessary and sufficient conditions for a graph to be Class 0.

.2. Snarks

We define the important family of snark graphs which are cubic, bridgeless, 4-edge-chromatic graphs. They are
mportant for being related to the Four Color Theorem, which holds if and only if no snark is planar [17]. In [1] we find
he origins of the study of the pebbling numbers of chordal graphs. Here we begin the systematic study of the pebbling
umbers of snarks.
The Petersen graph is the smallest snark, having 10 vertices, and was discovered in 1898 [14]. Since then, many others

ave been discovered. There are no snarks of order 12, 14, 16, whereas snarks exist for any even order greater than 16. The
lanuša snarks are the two snarks discovered by Danilo Blanuša in 1946 [3], when only the Petersen snark was known [3].
oth Blanuša 1 and Blanuša 2 snarks have 18 vertices, diameter 4, and girth 5. In this work, they will be denoted by B1
nd B2, respectively. Myriam Preissmann proved in 1982 that there are exactly two snarks of order 18 [15]. We depict in
ig. 3 the Blanuša 2 snark together with a vertex labeling that makes clear that the graph was obtained from two copies
f the Petersen snark. See [3] for a thorough history and Table 1 for a list of several well known snarks.
For odd m = 2k + 1 ≥ 3, we define the mth Flower snark Jm as follows (see Fig. 1 for an example with m = 5) [2]. For

ach i ∈ ±{0, 1, . . . , k} we have vertices vi, xi, and yi all adjacent to zi. Thus the number of vertices of the mth Flower
nark is n(Jm) = 4m. The vertices {vi} form the cycle Cm, with adjacencies given by consecutive indices modulo m. The
ertices {xi} (resp. {yi}) form a path given by the cycle without the edge xkx−k (resp. yky−k). Finally, we add the edges
ky−k and ykx−k so that the two paths now form one cycle C2m. It is easy to see that Jm has m-fold rotational symmetry,
ith a necessary twist, along with the reflective symmetry that negates subscripts; that is, the automorphisms of J yield
m
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three vertex orbits. Thus the only targets necessary to contemplate are, without loss of generality, v0, z0, and x0. Thus the
lower snark Jm (m = 2k + 1) has diameter k + 2, as well as girth m for m ∈ {3, 5} and 6 if m ≥ 7.
The Watkins snark is the snark with 50 vertices discovered by John J. Watkins in 1989 [18] depicted in Fig. 4. The

Watkins snark has diameter 7 and girth 5.

1.3. Motivation

Studying the pebbling numbers in specific snarks is important because it helps to explore the boundaries of graph
properties in complex and challenging contexts. The importance of snarks arises from the fact that famous conjectures
would have snarks as minimal counterexamples, for instance Tutte’s 5-Flow Conjecture, the 1-Factor Double Cover
Conjecture, and the Cycle Double Cover Conjecture. Evaluating pebbling numbers in snarks provides important insights
into how pebbling problems behave on graphs with extreme properties, helping to refine and expand understanding
of the limits and capabilities of pebbling algorithms. Furthermore, Pebbling concepts can be applied to communication
networks and distributed computing. Understanding pebbling in extreme graphs like snarks can improve algorithms and
techniques in these areas. Studying pebbling in snarks also tests the limits of current pebbling methods. With infinite
families such as powers of paths, k-paths, and interval graphs, one can leverage inductive methods because of hereditary
properties. With non-hereditary infinite families such as Kneser and Johnson graphs, there is much symmetry that one
can exploit to obtain results. One can hope to be pushed into developing new tools by expanding to well-studied families
with less symmetry but still sharing some implicit structure. This work is a preliminary step in that direction, first finding
the limits of current pebbling methods on such a family. Hence, this study’s importance lies in expanding theoretical
knowledge about complex graphs and in the potential application of pebbling concepts in practical contexts and more
general algorithms.

1.4. Results

It is known that the Petersen graph is Class 0 [7]. It is the smallest snark and was the only one whose pebbling number
was known. We use the Small Neighborhood Lemma presented in Section 2 to prove that the Petersen graph is the only
Class 0 snark with at least 23 vertices or girth at least 5.

Theorem 1. The only Class 0 snark of girth at least 5 is the Petersen graph. Moreover, if G is a Class 0 snark with girth at
most 4, then n(G) ≤ 22.

We also prove the following bounds on the pebbling numbers of snarks. Recall that the basic lower and upper bounds
for a graph are max{n(G), 2D(G)

} ≤ π (G) ≤ (n(G) − D(G))(2D(G)
− 1) + 1. For the Flower snarks, this means that

2 ≤ π (J3) ≤ 64, 20 ≤ π (J5) ≤ 241, and 32 ≤ π (J7) ≤ 691. Theorem 1 improves the J5 lower bound to 21 ≤ π (J5).
heorem 2 provides much tighter bounds, and corrects a claim of [13] that, for m ≥ 5, π (Jm) = 4m+1. In fact, Theorem 2
dentifies the correct order of magnitude (2k+2) of π (Jm) as m grows, up to some constant between 1 and 1.8.

heorem 2. We have π (J3) ≤ 13, 23 ≤ π (J5) ≤ 30, 41 ≤ π (J7) ≤ 61, and for all k ≥ 3 with m = 2k + 1, we have
k+2

+ 8 ≤ π (Jm) ≤ ⌊2k+29/5 + 2k − 18/5⌋ + 1.

For the Blanuša snarks the basic bounds give 18 ≤ π (Bi) ≤ 211. Theorem 1 improves the Bi lower bound to 19 ≤ π (Bi).
heorem 3 provides much tighter bounds for Bi.

heorem 3. We have 23 ≤ π (Bi) ≤ 34.

For the Watkins snark W the basic bounds give 128 ≤ π (W ) ≤ 5462. Theorem 4 provides a tighter lower bound, and
orrects a claim of [16] that π (W ) = 166.

heorem 4. The pebbling number of the Watkins graph W satisfies 183 ≤ π (W ).

. Techniques

.1. For lower bounds

Given a graph G with vertices u and v such that Na[u] ∩ Nb[v] = ∅ for some non-negative integers a and b. Define the
onfiguration C∗

= C∗
u,v by C∗(v) = 2a+b+1

− 1, C∗(x) = 0 for all x ∈ (Na[u] ∪ Nb[v]) − {v}, and C∗(x) = 1 otherwise. The
uthors of [6] proved the following lemma (SNL) to provide a lower bound on π (G).

emma 1 (Small Neighborhood Lemma [6]). Let G be a graph and u, v ∈ V (G) such that Na[u] ∩ Nb[v] = ∅ for some non-
egative integers a and b. Then C∗ is u-unsolvable. Consequently, π (G) ≥ π (G, u) > |C∗

|. In particular, if Na[u] ∩ Nb[v] = ∅

| | a+b+1
nd Na[u] ∪ Nb[v] < 2 , then G is not Class 0.
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One can see how SNL is, in some sense, a sharpening of the basic exponential lower bound. One immediate consequence
e will use here is the following corollary.

orollary 1. If G is an n-vertex cubic graph, with diameter at least 4 and girth at least 5, then there is an unsolvable
onfiguration of size 15 + (n − 14).

Another consequence we will use here is the following corollary.

orollary 2 ([6]). If G is an n-vertex Class 0 graph with diameter at least 3, then e(G) ≥
5
3n −

11
3 .

A graph H is a retract of a graph G if there is a function φ : V (G) → V (H) that preserves edges; that is, if uv ∈ E(G)
then φ(u)φ(v) ∈ E(H).

We will make use of the following lemma in the proof of the lower bound of Theorem 3, since a subgraph of the
Blanuša graph has a C9 retract, and of the lower bound of Theorem 4, since a subgraph of the Watkins graph has a C15
etract.

emma 2 (Retract Lemma [5]). If H is a retract of G, then π (H) ≤ π (G).

The idea of the proof of Lemma 2 is straightforward, as any solution along edges in G has a corresponding solution
long its retracted edges in H .
Another helpful lemma uses the notion of pebble weights. Given a target vertex r , define the r-weight of a pebble on

a vertex v to be 2−k, where k is the distance from v to r . Furthermore, the r-weight of a configuration C is defined to be
he sum of the r-weights of its pebbles.

emma 3 ([8]). Suppose that a configuration C on a graph G is r-solvable for some target vertex r. Then C has r-weight at
east 1.

The lemma is proved by noting that a pebbling step never increases the r-weight of a configuration, and any
onfiguration with a pebble on the target has r-weight at least 1. In fact, the r-weight is maintained if and only if the
ebbling step decreases the distance to the target r . Hence, when G is a path and r is one of its leaves, r-weight at least
characterizes r-solvable configurations, which is not true for general graphs. However, a generalization of this r-weight
oncept is introduced as weights for upper bounds in Section 2.2.

.2. For upper bounds

Here we describe a linear optimization approach introduced in [9]. For an unknown configuration C on a graph G with
arget vertex r , we consider a connected subgraph H of G that contains r . The intention is to derive a linear inequality in
he variables C(v) with v ∈ V (H) that is satisfied whenever C is r-unsolvable. Given a collection of such inequalities over
arious choices of H , we can then maximize |C | =

∑
v∈V (G) C(v) subject to those constraints, assuming that C(v) ≥ 0 for

ll v ∈ V (G). The optimum value of this linear program is therefore a strict lower bound on π (G, r). This value may be
ight for some graphs; however, this is really an integer optimization problem, and so typically will yield a result less than
he truth. This idea was successfully carried out when H is a tree (generalized to some non-trees in [6]). We introduce
he method now.

Let T be a subtree of a graph G rooted at vertex r , with at least two vertices. For a vertex v ∈ V (T ) let v+ denote the
arent of v; i.e. the T -neighbor of v that is one step closer to r (we also say that v is a child of v+). We call T an r-strategy
hen we associate with it a non-negative weight function wT with the property that wT (r) = 0 and wT

(
v+

)
≥ 2wT (v)

or every other vertex v that is not a neighbor of r (and wT (v) = 0 for vertices not in T ). Let T be the configuration with
(r) = 0, T (v) = 1 for all other v ∈ V (T ), and T (v) = 0 everywhere else. We now define the T -weight of any configuration
(including T ) by wT (C) =

∑
v∈V wT (v)C(v). The following lemma (WFL) is used to provide an upper bound on π (G).

emma 4 (Weight Function Lemma [9]). Let T be an r-strategy of G with associated weight function wT . Suppose that C is an
-unsolvable configuration of pebbles on V (G). Then wT (C) ≤ wT (T ).

One way to view T -weights as a generalization of r-weights is as follows. Consider when T is a path v0v1 · · · vn and let
be a v0-unsolvable configuration on T . Then notice that the formula for v0-weights of pebbles on the vertices of T form
valid weight function wT if we re-weight v0 at 0 instead of 1, which changes nothing in practice because C(v0) = 0.

n this case, WFL states that
∑n

i=1 C(vi)2−i
≤

∑n
i=1 2

−i
= 1 − 2−n. Because C is a non-negative integer-valued function,

his is equivalent to
∑n

i=1 C(vi)2−i < 1; i.e. the v0-weight of C is less than one. Furthermore, the r-weights of a general
raph G can be thought of as the T -weights of a breadth-first-search spanning tree T of G, rooted at the target vertex r .
hen an r-unsolvable configuration C satisfies the WFL inequality and so, by retracting T onto a path of length equal to

he eccentricity of r , we obtain the aforementioned r-weight condition for C .

3
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3. Proofs

3.1. Proof of Theorem 1

Note that every snark has exactly 3n/2 edges, and that the Petersen graph has diameter equal to 2 and all other snarks
have diameter at least 3. Then, by Corollary 2, if n(G) > 22 we get 3n/2 < (5n − 11)/3. Therefore, every snark with
n(G) > 22 is not Class 0. The remaining non-Petersen snarks with fewer vertices and girth at least 5 (among them, the
Flower J5, the Blanušas, and the Loupekines) all have diameter 4 > 2 + 1, so for any vertices u and v at distance 4 from
ach other we have |N2[u]| = 10 and |N1[v]| = 4. Thus |N2[u] ∪ N1[v]| = 14 < 16 = 22+1+1, and so none of these graphs

are Class 0 by SNL. □

3.2. Proof of Theorem 2

First we prove the lower bounds. For these we only need to display a configuration, of size one less than the lower
bound, that cannot reach some target.

The diameter of the Flower graph Jm, m = 2k+ 1, is k+ 2, and the distance between v0 and xk is k+ 2. The rotational
symmetry of the Flower graph Jm gives 2m petals, each of which is in a 6-cycle.

For J5, the diameter is 4 and the girth is 5. The v0-unsolvable configuration C∗
v0,x2 , that is provided by SNL for a = 2

and b = 1 places 15 pebbles on x2 and one pebble on each of the 6 vertices not in set N2[v0] ∩ N[x2], and has size 21.
Notice that we can add a pebble to z−1 to obtain the configuration C in Fig. 1. It is not difficult to argue that C is also
v0-unsolvable, since any supposed solution would need to use the pebble at z−1.

For m ≥ 7 (i.e. k ≥ 3), we will use C∗
= C∗

v0,xk only. In this case, the girth is equal to 6. So |N2[v0]| = 1 + 3 + 6,
and for any integer 3 ≤ i ≤ k, the set of vertices at distance i from v0 is {vi, v−i, zi−1, z−(i−1), xi−2, yi−2, x−(i−2), y−(i−2)}.
Hence, for any integer 2 ≤ i ≤ k, we have |Ni[v0]| = 1 + 3 + 6 + (i − 2)8 = 8i − 6. Similarly, one can enumerate
|Ni[u]| = 1 + 3 + 6 + (i − 2)8 = 8i − 6 for any vertex u. Let a and b be non-negative integers that are at least
2 and such that a + b = k + 1. Vertices v0 and xk are at distance k + 2, which is the diameter of Jm, from which
follows |Na[v0]| + |Nb[xk]| = 8(a + b) − 12 = 8k − 4 and n − |Na[v0]| − |Nb[xk]| = 8. In fact, one can check that
V (Jm) − (Na[v0] ∪ Nb[xk]) = {ya−1, ya, x−(a−1), y−(a−1), x−a, z−a, x−(a+1), v−(a+1)}. This yields |C∗

| = (2a+b+1
− 1) + (n −

|Na[v0]| − |Nb[xk]|) = 2k+2
+ 7.

Now we prove the upper bounds, using WFL. We shall define strategies with root z0. We refer to the Appendix for the
strategies with roots v0 and x0, that give values not larger than the ones given by strategies presented for root z0.

For J3, we define three z0-strategies T 0, T 1, and T−1 by

• T 0(v0, v1, v−1, z1, z−1, x1, y1, x−1, y−1) = (8, 4, 4, 2, 2, 1, 1, 1, 1),
• T 1(x0, x1, x−1, z1, z−1, v−1) = (8, 4, 4, 1, 2, 1) and
• T−1(y0, y1, y−1, z1, z−1, v1) = (8, 4, 4, 2, 1, 1),

giving rise to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 64/5 whenever C is v0-unsolvable. Hence π (J3, z0) ≤ 13. Using

he strategies presented in the Appendix for targets v0 and x0, we may conclude that π (J3) ≤ 13.
For J5, we define three z0-strategies T 0, T 1, and T−1 by

• T 0(v0, v1, v−1, v2, v−2, z1, z−1, z2, z−2, x2, y2, x−2, y−2) = (16, 8, 8, 4, 4, 4, 4, 2, 2, 1, 1, 1, 1),
• T 1(x0, x1, x−1, x2, x−2, z2, z−2, v2, z−1) = (16, 8, 8, 4, 4, 2, 1, 1, 1) and
• T−1(y0, y1, y−1, y2, y−2, z2, z−2, v−2, z1) = (16, 8, 8, 4, 4, 1, 2, 1, 1),

giving rise to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 146/5 whenever C is v0-unsolvable. Hence π (J5, z0) ≤ 30. Using

he strategies presented in the Appendix for targets v0 and x0, we may conclude that π (J5) ≤ 30.
For m ≥ 5 (i.e. k ≥ 2), please refer to Fig. 2 to see m = 11. Using the same pattern we have defined above for the

hree z0-strategies for J5, we define three corresponding z0-strategies by

• T 0(v0, v1, v−1, v2, v−2, . . . , vk, v−k, zk, z−k, xk, yk, x−k, y−k)
= (2k+2, 2k+1, 2k+1, 2k, 2k, . . . , 4, 4, 2, 2, 1, 1, 1, 1) and
T 0(z1, z−1, . . . , zk−2, z2−k, zk−1, z1−k) = (5, 5, . . . , 5, 5, 4, 4);

• T 1(x0, x1, x−1, . . . , xk, x−k, zk, vk)
= (2k+2, 2k+1, 2k+1, . . . , 4, 4, 2, 1) and T 1(z−k, z1−k) = (1, 1); and

• T−1(y0, y1, y−1, . . . , yk, y−k, z−k, v−k)
= (2k+2, 2k+1, 2k+1, . . . , 4, 4, 2, 1) and T−1(zk, zk−1) = (1, 1).

The sum T 0 + T 1 + T−1 has 3 vertices with coefficient 2k+2, 6 with 2i (for each 3 ≤ i ≤ k + 1), and 2k + 6 with
coefficient 5, giving rise to the inequality

5|C | ≤ T 0 + T 1 + T−1

= 3(2k+2) + 6(23
+ · · · + 2k+1) + 5(2k + 6)
4
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Fig. 2. The graph J11 and its three z0-strategies T 0 (in red), T 1 (in blue), and T−1 (in green). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

= 6(23
+ · · · + 2k+2) − 3(2k+2) + 5(2k + 6)

= 48(2k
− 1) − 3(2k+2) + 10k + 30

= 36(2k) + 10k − 18

= 9(2k+2) + 10k − 18,

whenever C is z0-unsolvable. Hence |C | ≤ 2k+29/5+ 2k− 18/5, and so π (Jm, z0) ≤ ⌊2k+29/5+ 2k− 18/5⌋ + 1. Using the
strategies presented in the Appendix for targets v0 and x0, we may conclude that π (Jm) ≤ ⌊2k+29/5 + 2k − 18/5⌋ + 1. In
particular, π (J7) ≤ 61. □

3.3. Proof of Theorem 3

First we prove the lower bounds. Corollary 1 gives the same lower bound 20 ≤ π (G), for an arbitrary diameter 4, girth
5, cubic graph G with 18 vertices, like B1 and B2, by defining an unsolvable configuration C∗ of size 19, as follows. Consider
a pair of vertices u and v at distance 4 in such a graph G. Define C∗(v) = 15, C∗(x) = 0 for all x ∈ (N2[u] ∪ N1[v]) − {v},
and C∗(x) = 1 otherwise. Hence, |C∗

| = 19.
Please refer to Fig. 3. Analogous arguments can be done for B1 and B2, so we present with no loss of generality the

arguments for B2. We can establish the non trivial lower bound 21 ≤ π (B2), as an application of the Retract Lemma 2,
since a subgraph of B2 has a C9 retract and π (C9) = 21. We can actually define an x3-unsolvable configuration of size 22,
by organizing B2 by distance from target x3. Consider the C9 induced by x3, x1, z1, z2, z ′

2, x
′

2, x
′

5, x
′

3, z3. Adjacent vertices z ′

2
and x′

2 are at distance 4 from target x3. Place 10 pebbles on z ′

2 and 10 pebbles on x′

2 to get a x3-unsolvable configuration
of size 20. Additionally, place 1 pebble on z ′

5 and 1 pebble on x′

1, to get the desired x3-unsolvable configuration of size 22,
since z ′

5 and x′

1 are among the vertices at distance 3 from target x3, that are not in a cycle C9 together with x3, z ′

2 and x′

2.
Hence 23 ≤ π (B2).

Now we prove the upper bound π (B2) ≤ 34, using WFL. Note that we have six different roots, by considering: z1 = z ′

1,
z2 = z ′

2 = z5 = z ′

5, x1 = x′

1, x2 = x′

2 = x5 = x′

5, x3 = x′

3 = x4 = x′

4, and z3 = z4. We shall define strategies with root x3,
since this root gave us the largest upper bound. We refer to the Appendix for the strategies with the other five roots that
give values not larger than the ones given by strategies presented for root x3.

For B2, we define three x3-strategies T 1, T 2, and T 3 by

• T 1(x1, z1, x4, z2, z4, z ′

2, x
′

4, x
′

2) = (32, 16, 16, 8, 8, 4, 4, 2),
• T 2(x5, x2, z5, z ′

5, z
′

1, z
′

2, x
′

2) = (32, 7, 16, 8, 4, 2, 1) and
′ ′ ′ ′ ′ ′
• T 3(z3, x3, x1, x5, z1, x2, x4) = (32, 16, 8, 8, 4, 4, 3),
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Fig. 3. Blanuša 2 and its labeling.

Fig. 4. The Watkins graph, shown in its traditional drawing. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

giving rise to the inequality |C | ≤
1
7 (T 1 + T 2 + T 3) ≤ 236/7 whenever C is x3-unsolvable. Hence π (B2, x3) ≤ 34. Using

the strategies presented in the Appendix for the other five targets, we may conclude that π (B2) ≤ 34. □

.4. Proof of Theorem 4

We first observe an isomorphism between the traditional drawing of W shown in Fig. 4 and the drawing of W in Fig. 5
hat partitions its vertices by distance from a1 (those of distance i are in Vi). Indeed, one can check that, in both drawings,

contains the 25-cycle a , a , . . . , a , a (shown with blue edges in Fig. 4 and circular vertex shapes in Fig. 5), five
1 2 25 1
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Fig. 5. The Watkins graph, organized by distance from target a1 , along with an a1-unsolvable configuration C of size 182. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

ertex-disjoint 5-cycles on the vertices b1, . . . , b25 (shown with green edges in Fig. 4 and square vertex shapes in Fig. 5),
and the perfect matching using the 25 pairs {ai, bi} (shown with red edges in Fig. 4). The point of showing Fig. 4 is to
recognize W and its symmetries; the point of showing Fig. 5 is to make lower bound arguments about π (W ).

Next we prove the lower bound by displaying an a1-unsolvable configuration of size 182; such a configuration C is
shown in Fig. 5, with each vertex of V7 having 85 pebbles and 12 other vertices (7 orange, 3 blue, and 2 green) having
one pebble each. The argument we give will make use of the vertex colors in Fig. 5.

For two vertices u and v, we call a uv-path of minimal length a uv-geodesic. Define VB (resp. VG) to be the set of vertices
in the union of all a13a1-geodesics (resp. a14a1-geodesics); these are shown in Fig. 5 with blue (resp. green) shapes, except
for the target vertex a1 in red. Note that the path P8 is a retract of the subgraph of W induced by VB (resp. VG), and so the
graph WBG induced by VB ∪ VG has the cycle C15 as a retract. Hence π (WBG) ≥ π (C15) = 171. In particular, by Lemma 2,
the configuration CBG — the restriction of the configuration C shown in Fig. 5 to VB ∪ VG — is a1-unsolvable in WBG.

Suppose that CBG has a minimal a1-solution σ in W . If σ uses the edge e2 = a2a1 then it does not use either of the
dges b1a1 or a25a1; hence σ is an a1-solution in the subgraph W2 = W − e2. However the distance from a14 to a2 is
, and so the a1-weight of CBG equals 85(3)/28

= 255/256 < 1, a contradiction. Similarly, if σ uses the edge e1 = b1a1
hen we obtain the same a1-weight calculation, while if σ uses the edge e25 = a25a1 then we obtain a smaller a1-weight
calculation; in both cases we have a contradiction. Hence CBG is not a1-solvable in W . (This already invalidates the claim
of [16] that π (W ) = 166.) Therefore, if C is a1-solvable in W , then any solution must use some of the pebbles in the
configuration S = C − CBG of singletons of C .

Now let σ be any minimal a1-solution and let Sσ denote the set of singletons of S used by σ . We may rearrange the
order of pebbling moves so that those moves involving Sσ are performed as early as possible. Now let Cσ denote the
configuration that results from halting future pebbling moves of σ once the moves involving S have been performed.
σ

7
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Additionally, denote by C ′
σ the configuration Cσ − (S − Sσ ); that is, from Cσ , throw away the singletons of S that were not

sed by σ . Obviously C ′
σ is a1-solvable. We argue that this is impossible by showing that the a1-weight of C ′

σ is less than 1.
A uv-slide is a path ua1 · · · akv in which u is big and each ai is nonempty, the use of which allows for a pebble to move

from u to v along the slide. A potential slide ignores the requirement that u is big; it is ‘‘potential’’ because it becomes a
lide if u becomes big. Notice that every singleton vertex is part of a potential slide. Because the a1-weight of CBG in W
equals 1 − 2−8, C ′

σ can only be a1-solvable if we are able to increase the a1-weight of CBG by at least 2−8 by using the
lides of S. In other words, it must be that the a1-weight of a pebble in C ′

σ must be greater than the sum of the a1-weight
f the pebbles of CBG that were used to create it. We show that this cannot happen.
Partition S = S6 ∪ SB ∪ SG, where S6 = S ∩V6 (the orange pebbles in Fig. 5), SB = S ∩VB (the blue pebbles in Fig. 5), and

G = S ∩ VG (the green pebbles in Fig. 5). Using a slide in S6 requires two pebbles from V5 ∪ V6 and places one pebble in
either V5 ∪V6. Such a pebble has the same or lesser a1-weight than the total a1-weight of the original two pebbles. Using
a slide in SB requires two pebbles from V3 ∪ V4 and places one pebble in V3 ∪ V4; this also cannot increase the a1-weight.
Using a slide in SG, however, can increase the a1-weight only if the two pebbles originate from b21 and the resulting pebble
lands on b20. Still, the resulting pebble must be used in σ to achieve this a1-weight increase (of 1/23

− 2/25
= 1/24),

although to do so requires at least 26 pebbles from V7, resulting in a a1-weight loss of 27/27
− 1/23 > 1/24. Hence it is

impossible to increase the a1-weight of C ′
σ via pebbling steps, and so C ′

σ , and thus C , is a1-unsolvable. □

4. Final remarks

The previous work of [13] on Flower snarks and of [16] on the Watkins snark are at the foundation of our findings,
since after reading their published papers, we have realized we were able to contribute to the subject. We hope the
developed techniques and results will motivate more researchers to achieve better bounds on the pebbling numbers of
snarks. Table 1 shows the state of art of the pebbling numbers of several well known snarks, using the basic bounds
mentioned in the introduction, as well as Lemma 1, and Theorems 1, 2, 3 and 4.
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Appendix

Missing cases for the proof of Theorem 2

Regarding the upper bounds of Theorem 2, for the two other possible roots v0 and x0, we have obtained below strategies
that give values not larger than the ones given by strategies presented for root z0.

For J3, we define three v0-strategies T 0, T 1, and T−1 by

• T 0(z0, x0, y0, x1, y1, x−1, y−1, z1, z−1) = (8, 4, 4, 2, 2, 2, 2, 1, 1),
• T 1(v1, z1, x1, y1, x0, x−1, y−1) = (8, 4, 2, 2, 1, 1, 1) and
• T−1(v−1, z−1, x−1, y−1, y0, x1, y1) = (8, 4, 2, 2, 1, 1, 1),

giving rise to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 64/5 whenever C is v0-unsolvable. Hence π (J3, v0) ≤ 13.

And we define three x0-strategies T 0, T 1, and T−1 by

• T 0(z0, v0, y0, v−1, v1, y−1, y1) = (8, 4, 4, 2, 2, 1, 1),
• T 1(x1, z1, y−1, v1, z−1, y0, v−1, v0) = (8, 4, 4, 2, 1, 1, 1, 1) and
• T−1(x−1, z−1, y1, v−1,z1, v1) = (8, 4, 4, 2, 1, 1),

iving rise again to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 64/5 whenever C is x0-unsolvable. Hence π (J3, x0) ≤ 13. We

ay conclude that π (J3) ≤ 13.
For J5, we define three v0-strategies T 0, T 1, and T−1 by

• T 0(z0, x0, y0, x1, y1, x−1, y−1, x2, y2, x−2, y−2, z2, z−2)
= (16, 8, 8, 4, 4, 4, 4, 2, 2, 1, 1, 1, 1),

• T (v , v , z , z , x , y , x , y , x , y ) = (16, 8, 8, 4, 2, 2, 1, 1, 1, 1) and
1 1 2 1 2 2 2 1 −2 −2 1
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• T−1(v−1, v−2, z−1, z−2, x−2, y−2, x−1, y2, x2, y−1) =

(16, 8, 8, 4, 2, 2, 1, 1, 1, 1),

giving rise to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 146/5 whenever C is v0-unsolvable. Hence π (J5, v0) ≤ 30.

And we define three x0-strategies T 0, T 1, and T−1 by

• T 0(z0, v0, y0, v−1, v1, y−1, y1, v2, v−2, y2, y−2, z2)
= (16, 8, 8, 4, 4, 4, 4, 2, 2, 1, 1, 1),

• T 1(x1, z1, x2, y−2, z2, y−1, z−2, y2, v2, v1, v−2)
= (16, 8, 8, 4, 4, 1, 1, 1, 2, 1, 1) and

• T−1(x−1, z−1, x−2, z−2, y2, v−2, y1, v2, v−1) = (16, 8, 8, 4, 4, 2, 1, 1, 1),

giving rise again to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 146/5 whenever C is x0-unsolvable. Hence π (J5, x0) ≤ 30.

We may conclude that π (J5) ≤ 30.
For J7, we define three v0-strategies T 0, T 1, and T−1 by

• T 0(z0, x0, y0, x1, y1, x−1, y−1, x2, z1, z−1, x−2, y2, y−2, x3, x−3,
y3, y−3, z3, z−3) = (32, 16, 16, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 1, 1),

• T 1(v1, v2, z1, v3, z2, z3, x2, y2, x3, y3, x−3, y−3)
= (32, 16, 1, 8, 5, 4, 1, 1, 2, 2, 1, 1) and

• T−1(v−1, v−2, z−1, v−3, z−2, z−3, x−2, y−2, x−3, y−3, y3, x3)
= (32, 16, 1, 8, 5, 4, 1, 1, 2, 2, 1, 1),

giving rise to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 278/5 < 56 whenever C is v0-unsolvable. Hence π (J7, v0) ≤ 56.

And we define three x0-strategies T 0, T 1, and T−1 by

• T 0(z0, v0, y0, v1, v−1, y1, y−1, v2, v−2, y2, y−2, v3, v−3, y3, y−3, z3)
= (32, 16, 16, 8, 8, 8, 8, 4, 4, 4, 4, 2, 2, 1, 1, 1),

• T 1(x1, z1, x2, z2, x3, v2, y−3, z3, z−3, y3, v3, v−3)
= (32, 5, 16, 8, 8, 1, 4, 4, 1, 1, 2, 1) and

• T−1(x−1, z−1, x−2, z−2, x−3, y−2, v−2, z−3, y3, v−3, y2, v3)
= (32, 5, 16, 8, 8, 1, 1, 4, 4, 2, 1, 1),

iving rise to the inequality |C | ≤
1
5 (T 0 + T 1 + T−1) ≤ 284/5 < 57 whenever C is x0-unsolvable. Hence π (J7, x0) ≤ 57.

We may conclude that π (J7) ≤ 61.
For J9, we define three x0-strategies T 0, T 1, and T−1 by

• T 0(z0, v0, y0, v1, v−1, y1, y−1, v2, v−2, y2, y−2, v3, v−3, y3, y−3, v4,
v−4, y4, y−4, z4)
= (64, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8, 4, 4, 4, 4, 2, 2, 2, 1, 1),

• T 1(x1, z1, x2, z2, x3, z3, x4, v3, y−4, z4, z−4, y4, v4, v−4)
= (64, 5, 32, 16, 16, 5, 8, 1, 2, 4, 1, 1, 2, 1) and

• T−1(x−1, z−1, x−2, z−2, x−3, v−2, z−3, x−4, y−3, v−3, z−4, y4, v−4,
y3, v4) = (64, 5, 32, 16, 16, 8, 5, 8, 1, 1, 4, 2, 2, 1, 1).

For m ≥ 7 (i.e. k ≥ 3), using the same pattern we have defined above for the three v0-strategies for J7, we define three
corresponding v0-strategies giving rise to the inequality

5|C | ≤ T 0 + T 1 + T−1

= 3(2k+2) + 4(2k+1) + 6(2k
+ · · · + 23) + 5(2k + 8)

≤ 3(2k+2) + 6(23
+ · · · + 2k+1) + 5(2k + 6),

whenever C is v0-unsolvable.
For m ≥ 9 (i.e. k ≥ 4), using the same pattern we have defined above for the three x0-strategies for J9, we define three

corresponding x0-strategies giving rise to the inequality

5|C | ≤ T 0 + T 1 + T−1

= 3(2k+2) + 4(2k+1) + 8(2k) + 6(2k−1
+ · · · + 23) + 5(2k + 6)

≤ 3(2k+2) + 6(23
+ · · · + 2k+1) + 5(2k + 6),

whenever C is x0-unsolvable.
We may conclude that for m ≥ 3 (i.e. k ≥ 1), π (J ) ≤ ⌊2k+29/5 + 2k − 18/5⌋ + 1.
m
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Missing cases for the proof of Theorem 3

Regarding the upper bounds of Theorem 3, for the five other possible roots z1, x1, z2, x2, and z3, we have obtained
below strategies that give values not larger than the ones given by strategies presented for root x3.

For B2, we define three x1-strategies T 1, T 2, and T 3 by

• T 1(x3, z3, x′

3, x
′

1, x
′

5, z
′

1) = (32, 16, 16, 8, 8, 4),
• T 2(z1, z2, z5, x2, x5, z ′

2, z
′

5, x
′

2, x
′

5, z
′

1) = (16, 8, 8, 4, 4, 4, 4, 2, 2, 2) and
• T 3(x4, z4, x′

4, x
′

1, x
′

2) = (32, 16, 8, 8, 4)

giving rise to the inequality |C | ≤
1
4 (T 1 + T 2 + T 3) ≤ 120/4 whenever C is x1-unsolvable. Hence π (B2, x1) ≤ 31.

For B2, we define three x2-strategies T 1, T 2, and T 3 by

• T 1(x4, z4, x′

4, x
′

1, x
′

3) = (16, 8, 4, 2, 1),
• T 2(z2, z1, z ′

2, x1, x
′

2, z
′

1, x
′

1, x
′

5, x
′

3) = (16, 8, 8, 4, 4, 4, 2, 2, 1) and
• T 3(x5, x3, z5, z3, z ′

5, x
′

3, x
′

5) = (16, 8, 4, 4, 2, 2)

iving rise to the inequality |C | ≤
1
4 (T 1 + T 2 + T 3) ≤ 124/4 whenever C is x2-unsolvable. Hence π (B2, x2) ≤ 32.

For B2, we define three z1-strategies T 1, T 2, and T 3 by

• T 1(x1, x3, x4, z3, z4, x′

3, x
′

4, x
′

1) = (16, 8, 8, 4, 4, 2, 2, 1),
• T 2(z2, x2, z ′

2, x
′

1, z
′

1, x
′

4, x
′

1, x
′

3, z4) = (16, 5, 8, 4, 4, 2, 2, 2, 1) and
• T 3(z5, x5, z ′

5, z
′

1, x
′

5, x
′

1, x
′

3, x
′

4, z3) = (16, 5, 8, 4, 4, 2, 2, 1, 1)

giving rise to the inequality |C | ≤
1
5 (T 1 + T 2 + T 3) ≤ 133/5 whenever C is z1-unsolvable. Hence π (B2, z1) ≤ 27.

For B2, we define three z2-strategies T 1, T 2, and T 3 by

• T 1(z ′

2, z
′

1, x
′

2, z
′

5, x
′

1, x
′

4, x
′

5, x
′

3) = (16, 8, 8, 4, 4, 4, 4, 2),
• T 2(z1, z5, x1, x3, z3, x′

3) = (16, 4, 8, 4, 2, 1) and
• T 3(x2, x5, x4, z4, z3, x′

3) = (16, 4, 8, 4, 2, 1)

iving rise to the inequality |C | ≤
1
4 (T 1 + T 2 + T 3) ≤ 120/4 whenever C is z2-unsolvable. Hence π (B2, z2) ≤ 31.

For B2, we define three z3-strategies T 1, T 2, and T 3 by

• T 1(z4, x4, x′

4, x2, x
′

2, z2, z
′

2) = (32, 16, 16, 8, 8, 4, 4),
• T 2(x′

3, x
′

1, x
′

5, z
′

1, z
′

5, z
′

2) = (32, 16, 16, 8, 8, 4) and
• T 3(x3, x1, x5, z1, z5, z2) = (32, 16, 16, 8, 8, 4)

iving rise to the inequality |C | ≤
1
8 (T 1 + T 2 + T 3) ≤ 133/5 whenever C is z3-unsolvable. Hence π (B2, z3) ≤ 33.
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