
Journal of Algorithms 37, 505–521 (2000)
doi:10.1006/jagm.1999.1122, available online at http://www.idealibrary.com on

Finding Skew Partitions Efficiently1

Celina M. H. de Figueiredo and Sulamita Klein

Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro,
Caixa Postal 68530, 21945-970 Rio de Janeiro, RJ, Brazil

E-mail: celina@cos.ufrj.br, sula@cos.ufrj.br

Yoshiharu Kohayakawa

Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,
Rua do Matão 1010, 05508-900 São Paulo, SP, Brazil

E-mail: yoshi@ime.usp.br

and

Bruce A. Reed

CNRS, Institut Blaise Pascal, Université Pierre et Marie Curie,
case 189 - Combinatoire, 4 Place Jussieu, 75252 Paris Cedex 5, France

E-mail: reed@ecp6.jussieu.fr

Received January 31, 2000

A skew partition as defined by Chvátal is a partition of the vertex set of a graph
into four nonempty parts A�B�C�D such that there are all possible edges between
A and B and no edges between C and D. We present a polynomial-time algorithm
for testing whether a graph admits a skew partition. Our algorithm solves the more
general list skew partition problem, where the input contains, for each vertex, a
list containing some of the labels A�B�C�D of the four parts. Our polynomial-
time algorithm settles the complexity of the original partition problem proposed by
Chvátal in 1985 and answers a recent question of Feder, Hell, Klein, and Motwani.
© 2000 Academic Press

1Research partially supported by CNPq, MCT/FINEP PRONEX Project 107/97,
CAPES(Brazil)/COFECUB(France) Project 213/97, FAPERJ, and FAPESP Proc. 96/04505-2.

505

0196-6774/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.

506 de figueiredo et al.

1. INTRODUCTION

A skew partition is a partition of the vertex set of a graph into four
nonempty parts A�B�C�D such that there are all possible edges between
A and B and no edges between C and D. We present a polynomial-time
algorithm for testing whether a graph admits a skew partition, as well as
for the more general list skew partition problem, where the input contains,
for each vertex, a list containing some of the four parts.
Many combinatorial problems can be described as finding a partition of

the vertices of a given graph into subsets satisfying certain properties inter-
nally (some parts may be required to be independent or sparse in some
other sense, while others may conversely be required to be complete or
dense) and externally (some pairs of parts may be required to be completely
nonadjacent, others completely adjacent). Feder et al. [10] defined a param-
eterized family of graph problems of this type. The basic family of problems
they considered is as follows: partition the vertex set of a graph into k parts
A1�A2� � � � �Ak with a fixed pattern of requirements in which Ai are inde-
pendent or complete and in which pairs Ai�Aj are completely nonadjacent
or completely adjacent. These requirements may be conveniently encoded
by a symmetric k× k matrix M in which the diagonal entry Mi�i is 0 if Ai

is required to be independent, 2 if Ai is required to be a clique, and 1 oth-
erwise (no restriction). Similarly, the off-diagonal entry Mi�j is 0, 1, or 2, if
Ai and Aj are required to be completely nonadjacent, have arbitrary con-
nections, or are required to be completely adjacent, respectively. Feder et
al. [10] call such a partition an M-partition.
Many combinatorial problems just ask for an M-partition. For instance,

a k-coloring is an M-partition where M is the adjacency matrix of the
complete k-graph. More generally, an H-coloring (homomorphism to a
fixed graph H [12]) is anM-partition whereM is the adjacency matrix of H.
It is known that H-coloring is polynomial-time solvable when H is bipartite
and NP-complete otherwise [12]. WhenM is the adjacency matrix of H plus
twice the identity matrix (all diagonal elements are 2), M-partitions reduce
to the so-called �H�K�-partitions, which were studied by MacGillivray and
Yu [15]. When H is triangle-free, the �H�K�-partition is polynomial-time
solvable, otherwise it is NP-complete.
Other well-known problems ask for M-partitions in which all parts are

restricted to being nonempty (e.g., skew partitions, clique cutsets, stable
cutsets). In yet other problems there are additional constraints, such as
those in the definition of a homogeneous set (requiring one of the parts
to have at least 2 and at most n− 1 vertices). For instance, Winkler asked
for the complexity of deciding the existence of an M-partition, where M
has the rows 1101� 1110� 0111, and 1011, such that all parts A, B, C, D are
nonempty and there is at least one edge between parts A and B, B and C,

finding skew partitions efficiently 507

C and D, and D and A. This has recently been shown to be NP-complete
by Vikas [17].
The most convenient way to express these additional constraints is to

allow specifying (as part of the input) for each vertex a list of parts in which
the vertex is allowed. Specifically, the list-M-partition problem asks for anM-
partition of the input graph in which each vertex is placed in a part which
is in its list. Both the basic M-partition problem (“Does the input graph
admit an M-partition?”) and the problem of existence of an M-partition
with all parts nonempty admit polynomial-time reductions to the list-M-
partition problem, as do all of the above problems with the “additional”
constraints. List partitions generalize list-colorings, which have proved very
fruitful in the study of graph colorings [1, 11]. They also generalize list-
homomorphisms, which were studied earlier [8, 9].
Feder et al. [10] were the first to introduce and investigate the list ver-

sion of these problems. It turned out to be a useful generalization, since list
problems recurse more conveniently. This enabled them to classify the com-
plexity (as polynomial-time solvable or NP-complete) of list-M-partition
problems for all 3× 3 matrices M and some 4× 4 matrices M . For other
4× 4 matrices M , they were able to produce subexponential algorithms—
including one for the skew partition problem described below. This was the
first sub-exponential algorithm for the problem and an indication that the
problem was not likely to be NP-complete. Motivated by their approach, we
show in this paper that in fact one can use the mechanism of list partitions
to give a polynomial-time algorithm for the problem.
A skew partition is an M-partition where M has the rows 1211, 2111,

1110, and 1101, such that all parts are nonempty. The list skew partition
problem (LSP) is simply the list-M-partition problem for this M . We can
solve skew partition by solving at most n4 LSP problems such that vi ∈ Ai

for 1 ≤ i ≤ 4, for all possible quadruples �v1� v2� v3� v4� of vertices of the
input graph.
The skew partition problem has interesting links to perfect graphs and is

one of the main problems in the area. Before presenting our two algorithms
we discuss perfect graphs and their link to skew partition.

2. SKEW CUTSETS AND THE STRONG
PERFECT GRAPH CONJECTURE

A graph is perfect if each induced subgraph admits a vertex coloring and
a clique of the same size. A graph is minimal imperfect if it is not perfect but
all its properly induced subgraphs are perfect. Perfect graphs were defined
in 1960 by Berge [2], who proposed the strong perfect graph conjecture: the
only minimal imperfect graphs are the odd chordless cycles of length at

508 de figueiredo et al.

least 5 and their complements. Since then researchers have enumerated a
list of properties of minimal imperfect graphs. The strong perfect graph
conjecture remains open and is considered a central problem in graph the-
ory. The recognition of perfect graphs is a famous open problem [14].
In 1985, Chvátal [4] proved that no minimal imperfect graph contains

a star cutset: a vertex cutset consisting of a vertex and some of its neigh-
bors. Chvátal exhibited a polynomial-time recognition algorithm for graphs
with a star cutset. He also defined the following generalization of star cut-
sets: A skew partition is a partition of the vertex set of a graph into four
nonempty parts A�B�C�D such that there are all possible edges between A
and B and no edges between C and D. We call each of the four nonempty
parts A�B�C�D a skew partition set and we say that A ∪ B is a skew cut-
set. Chvátal [4] proposed the skew partition conjecture: no minimal imper-
fect graph contains a skew partition. This conjecture and the complexity
of testing for the existence of a skew cutset attracted some attention in
recent years [6, 5, 10, 13, 16]. In particular, Feder et al. [10] described a
quasi-polynomial algorithm for testing whether a graph admits a skew par-
tition, which strongly suggested that this problem was not NP-complete. In
this paper, we present a polynomial-time recognition algorithm for testing
whether a graph admits a skew partition.
Hoàng [13] proved that no minimal imperfect graph contains a three-

pair: a pair of nonadjacent vertices such that all chordless paths joining
them have exactly three edges. On the way to establishing this property of
minimal imperfect graphs, Hoàng obtained several partial results on the
skew partition conjecture.
Cornuéjols and Reed [5] proved that no minimal imperfect graph con-

tains a skew partition in which A and B are both stable sets. Actually, they
proved the following more general result. Let a complete multipartite graph
be one whose vertex set can be partitioned into stable sets S1� � � � � Sk, such
that there are all possible edges between Si and Sj , for i
= j. They proved
that no minimal imperfect graph contains a skew cutset that induces a com-
plete multipartite graph. Their work raised questions about the complexity
of testing for the existence of either a complete bipartite cutset or a com-
plete multipartite cutset in a graph.
Subsequently, Klein and de Figueiredo [16] showed how to use a result of

Chvátal [3] on matching cutsets in order to establish the NP-completeness
of recognizing graphs with a stable cutset. In addition, they established the
NP-completeness of recognizing graphs with a complete multipartite cutset.
In particular, their proof showed that it is NP-complete to test for the
existence of a complete bipartite cutset, even if the cutset induces a K1�p.
As shown by Chvátal [4], to test for the existence of a star cutset is

in P, whereas to test for the existence of the special star cutset K1�p is
NP-complete [16]. The polynomial-time algorithm described in this paper

finding skew partitions efficiently 509

offers an analogous complexity situation: to test for the existence of a skew
cutset is in P, whereas to test for the existence of a complete bipartite cutset
is NP-complete [16].

3. OVERVIEW

The goal of this paper is to present a polynomial-time algorithm for the
following decision problem:

Skew Partition Problem

Input: a graph G = �V�E�.
Question: Is there a skew partition A�B�C�D of G?

We actually consider LSP problems, stated as decision problems, as
follows:

List Skew Partition Problem

Input: a graph G = �V�E� and, for each vertex v ∈ V , a subset Lv of
�A�B�C�D�.

Question: Is there a skew partition A�B�C�D of G such that each v
is contained in some element of the corresponding Lv?

Throughout the algorithm, we have a partition of V into at most 15
sets SL, indexed by the nonempty subsets L of �A�B�C�D�, such that
Property 1 below is always satisfied. Note that the relevant inputs for LSP
have SA, SB, SC , and SD nonempty.

Property 1. If the algorithm returns a skew partition, then if v is in SL,
then the returned skew partition set containing v is in L.

Initially, we set SL = �v � Lv = L�, for each L ⊆ �A�B�C�D�.
We also restrict our attention to LSP instances that satisfy the following

property:

Property 2. If v ∈ SL, for some L with A ∈ L, then v is adjacent to every
vertex of SB. If v ∈ SL, for some L with B ∈ L, then v is adjacent to every
vertex of SA. If v ∈ SL, for some L with C ∈ L, then v is nonadjacent to
every vertex of SD. If v ∈ SL, for some L with D ∈ L, then v is nonadjacent
to every vertex of SC .

Both Properties 1 and 2 hold throughout the algorithm.

510 de figueiredo et al.

Remark 1. Since SB must be contained in B, we know that if v is to
be in A for some solution to the problem, then v must be adjacent to all
of SB. Thus if some v ∈ SA is not adjacent to a vertex of SB, then there is
no solution to the problem and we need not continue. If there is some L
with A properly contained in L and a vertex v in SL which is not adjacent
to a vertex of SB, then we know that in any solution to the problem v must
be contained in some element of L\A. So we can reduce to a new problem
where we replace SL by SL\v, we replace SL\A by SL\A + v, and all other SL
are as before. Such a reduction reduces

∑
L �SL��L� by 1. Since this sum is

at most 4n, after O�n� similar reductions we must obtain an LSP problem
satisfying Property 2 (or halt because the original problem has no solution).

In our discussion we often create new LSP instances and whenever we
do so, we always perform this procedure to reduce to an LSP problem
satisfying Property 2.
For an instance I of LSP we have �SL�I� � L ⊆ �A�B�C�D��, but we

drop the �I� when it is not needed for clarity.
We consider a number of restricted versions of the LSP problems:

• MAX-3-LSP: an LSP problem satisfying Property 2 such that
SABCD = �;

• MAX-2-LSP: an LSP problem satisfying Property 2 such that if �L� >
2, then SL = �;

• AC-TRIV LSP: an LSP problem satisfying Property 2 such that
SAC = �;

Remark 2. Recall that the relevant inputs for LSP have SA, SB, SC ,
and SD nonempty. It is easy to obtain a solution to an instance of AC-TRIV-
LSP as follows: A = SA�B = ⋃

B∈L SL�C = SC� and D = ⋃
D∈L�B
∈L SL� By

Property 2 this is indeed a skew partition.

• BD-TRIV LSP, AD-TRIV LSP, BC-TRIV-LSP; these problems are
defined and solved similar to AC-TRIV LSP.

Our algorithm for solving LSP requires four subalgorithms which replace
an instance of LSP by a polynomial number of instances of more restricted
versions of LSP.

Algorithm 1. This algorithm takes an instance of LSP and returns in
polynomial time a list � of a polynomial number of instances of MAX-3-
LSP such that

(i) a solution to any problem in � is a solution of the original prob-
lem, and

(ii) if none of the problems in � have a solution, then the original
problem has no solution.

finding skew partitions efficiently 511

Algorithm 2. This algorithm takes an instance of MAX-3-LSP and
returns in polynomial time a list � of a polynomial number of instances
of MAX-3-LSP such that

(i) and (ii) of Algorithm 1 hold, and
(iii) for each problem in � , either SABC = � or SABD = �.

Algorithm 3. This algorithm takes an instance of MAX-3-LSP and
returns in polynomial time a list � of a polynomial number of instances
of MAX-3-LSP such that

(i) and (ii) of Algorithm 1 hold, and
(iii) for each problem in � , either SBCD = � or SACD = �.

Algorithm 4. This algorithm takes an instance of MAX-3-LSP such
that

(a) either SABC or SABD is empty, and
(b) either SBCD or SACD is empty

and returns in polynomial time a list � of a polynomial number of prob-
lems each of which is an instance of one of MAX-2-LSP, AC-TRIV-LSP,
AD-TRIV-LSP, BC-TRIV-LSP, or BD-TRIV-LSP such that (i) and (ii) of
Algorithm 1 hold.

We also need two additional algorithms for dealing with the most basic
instances of LSP.

Algorithm 5. This algorithm takes an instance of MAX-2-LSP and
returns either

(i) a solution to this instance of MAX-2-LSP, or
(ii) the information that this problem instance has no solution.

Remark 3. Algorithm 5 simply applies 2-SAT as discussed in [7]; we
omit the details.

Algorithm 6. This algorithm takes an instance of AC-TRIV LSP, AD-
TRIV LSP, BC-TRIV LSP, or BD-TRIV LSP and returns a solution using
the partitions discussed in Remark 2.

To solve an instance of LSP, we first apply Algorithm 1 to obtain a list L1
of instances of MAX-3-LSP. For each problem instance I on L1, we apply
Algorithm 2 and let LI be the output list of problem I. We let L2 be
the concatenation of the lists �LI � I ∈ L1�. For each I in L2, we apply
Algorithm 3. Let L3 be the concatenation of the lists �LI � I ∈ L2�. For
each problem instance I on L3, we apply Algorithm 4. Let L4 be the con-
catenation of the lists �LI � I ∈ L3�. Each element of L4 can be solved in

512 de figueiredo et al.

polynomial time using either Algorithm 5 or Algorithm 6. If any of these
problems has a solution S, then by the specifications of the algorithms, S is
a solution to the original problem. Otherwise, by the specifications of the
algorithms, there is no solution to the original problem. Clearly, the whole
algorithm runs in polynomial time.

4. SOME RECURSIVE PROCEDURES

Algorithm 1 recursively applies Procedure 1, which runs in polynomial
time.

Procedure 1.

Input: An instance I of LSP.
Output: Four instances I1� I2� I3� I4 of LSP such that, for 1 ≤ j ≤ 4,

we have �SABCD�Ij�� ≤ 9
10 �SABCD�I��.

It is easy to prove inductively that applying Procedure 1 recursively yields
a polynomial-time implementation of Algorithm 1 which when applied to
an input graph with n vertices creates as output a list � of instances of LSP
such that ��� ≤ 4log10/9 n = nlog10/9 4 ≤ n14.
Algorithm 2 recursively applies Procedure 2, which runs in polynomial

time.

Procedure 2.

Input: An instance I of MAX-3-LSP.
Output: Four instances I1� I2� I3� I4 of MAX-3-LSP such that, for 1 ≤

j ≤ 4, we have �SABC�Ij���SABD�Ij�� ≤ 9
10 �SABC�I���SABD�I��.

It is easy to prove that applying Procedure 2 recursively to an input graph
with n vertices yields a polynomial-time implementation of Algorithm 2
which creates an output list � with at most 4log10/9 n

2 ≤ n28 elements.
Algorithm 3 recursively applies Procedure 3, which runs in polynomial

time.

Procedure 3.

Input: An instance I of MAX-3-LSP.
Output: Four instances I1� I2� I3� I4 of MAX-3-LSP such that, for 1 ≤

j ≤ 4, we have �SBCD�Ij���SACD�Ij�� ≤ 9
10 �SBCD�I���SACD�I��.

It is easy to prove that applying Procedure 3 recursively to an input graph
with n vertices yields a polynomial-time implementation of Algorithm 3
which creates an output list � with at most 4log10/9 n

2 ≤ n28 elements.
Algorithm 4 recursively applies Procedure 4, which runs in polynomial

time.

finding skew partitions efficiently 513

Procedure 4.

Input: An instance I of MAX-3-LSP such that SABD is empty and
SACD is empty.

Output: Four instances I1� I2� I3� I4 of MAX-3-LSP such that, for 1 ≤
j ≤ 4, we have �SABC�Ij���SAD�Ij�� ≤ 9

10 �SABC�I���SAD�I��.
Algorithm 4 also recursively applies three procedures whose definitions

are similar. We will not need to give formal specifications for them. It is
easy to see that recursively applying Procedure 4 or one of its variants, as
appropriate, yields a polynomial-time implementation of Algorithm 4 which
when applied to an input graph with n vertices yields an output list with at
most n28 elements. It remains only to describe the four procedures.

5. THE DETAILS

Procedure 1.

Let n = �SABCD�I��. For a skew partition �A�B�C�D�, let A′ = A ∩
SABCD�I�, B′ = B ∩ SABCD�I�, C ′ = C ∩ SABCD�I�, and D′ = D∩ SABCD�I�.
Case 1: There exists a vertex v in SABCD such that n

10 ≤ �SABCD ∩
N�v�� ≤ 9n

10 .
Branch according to whether v ∈ A, v ∈ B, v ∈ C, or v ∈ D with

instances IA� IB� IC� ID, respectively. Define IA by initially setting SA�IA� =
v+ SA�I� and reducing so that Property 2 holds. Define IB� IC� ID similarly.
Note that by Property 2, if v ∈ C, then D ∩ N�v� = �. So, SABCD�IC� ⊂
SABCD�I�\N�v�. Because there are at least n

10 vertices in SABCD ∩ N�v�,
this means �SABCD�IC�� ≤ 9n

10 . Symmetrically, �SABCD�ID�� ≤ 9n
10 .

Similarly, by Property 2, SABCD�IA� ⊂ SABCD�I� ∩N�v�, so �SABCD�IA��
≤ 9n

10 . Symmetrically �SABCD�IB�� ≤ 9n
10 .

Let W = �v ∈ SABCD � �SABCD ∩ N�v�� > 9n
10� and X = �v ∈ SABCD �

�SABCD ∩N�v�� < n
10�.

Case 2: There are at least n
10 vertices in X and there are at least n

10
vertices in W .
Branch according to �A′� ≥ n

10 � �B′� ≥ n
10 � �C ′� ≥ n

10 , or �D′� ≥ n
10 with

corresponding instances IA′� IB′� IC ′ , and ID′ . Each of these choices forces
either all the vertices in W or all the vertices in X to have smaller label sets,
as follows. If �A′� ≥ n

10 , then every vertex in B has n
10 neighbors in SABCD�I�,

so B ∩X = �. Thus, SABCD�IA′ � = SABCD�I�\X, and �SABCD�IA′ �� ≤ 9n
10 .

If �B′� ≥ n
10 , then a symmetrical argument shows that X ∩A = �. Thus,

SABCD�IB′ � = SABCD�I�\X and �SABCD�IB′ �� ≤ 9n
10 . If �C ′� ≥ n

10 , then every

514 de figueiredo et al.

vertex in D has at least n
10 nonneighbors in SABCD�I�. Hence W ∩D = �,

SABCD�IC ′ � = SABCD�I�\W , and so �SABCD�IC ′ �� ≤ 9n
10 . If �D′� ≥ n

10 , then a
symmetrical argument shows that �SABCD�ID′ �� ≤ 9n

10 .

Case 3: There are more than 9n
10 vertices in W .

We will repeatedly apply the following procedure to various W ′ ⊆ W
with �W ′� ≥ 8n

10 . We recursively define a partition of W ′ into three sets O,
T , and NT such that:

• There are all edges between O and T ;

• For every w in NT , there exists v in O such that w is not adjacent
to v;

• The complement of O is connected.

Start by choosing v1 in W ′ and setting O = �v1�, T = N�v1� ∩W ′, and
NT = W ′\�N�v1� ∪ �v1��. Note that for each vertex v of W ′, since v is not
adjacent to at most n

10 vertices of SABCD, we have �N�v� ∩W ′� > �W ′� − n
10 .

So �NT � = �W ′\�N�v1� ∪ �v1��� < n
10 . Increase O by moving an arbitrary

vertex v from NT to O and by moving T\N�v� from T to NT , until:

(i) �O� + �NT � ≥ n
10 ; or

(ii) NT = �.

If the growth process stops with condition (i), i.e., �O� + �NT � ≥ n
10 , and

vi was the last vertex added to O, then adding vi to O increased �NT � by
at most �W ′\�N�vi� ∪ �vi��� < n

10 . Thus, �O� + �NT � < n
10 + n

10 = 2n
10 . So,

�T � ≥ 8n
10 − 2n

10 = 6n
10 ≥ n

10 .
Our first application of the procedure is with W ′ = W . If we stop because

(i) holds, then we define four new instances of LSP according to the inter-
section of the skew partition sets A�B�C, or D with O, as follows:

(a) I1 : C ∩O
= �,
(b) I2 : C ∩O = �, D ∩O
= �,
(c) I3 : O ⊆ A,
(d) I4 : O ⊆ B.

Recall that the complement of O is connected, which implies that if O ∩
�C ∪ D� = �, then either O ⊆ A or O ⊆ B. If O ⊆ A, then NT ∩ B =
� since for every w ∈ NT there is a vertex v ∈ O such that vw
∈ E.
Thus, �O ∪NT � ∩ SABCD�I3� = �. Hence �SABCD�I3�� ≤ 9n

10 . A symmetrical
argument shows that �SABCD�I4�� ≤ 9n

10 .
If C ∩O
= �, then D∩ T = �. Thus, T ∩ SABCD�I1� = �, which implies

�SABCD�I1�� ≤ 9n
10 . A symmetrical argument shows that �SABCD�I2�� ≤ 9n

10 .
Thus, if our application of the above procedure halts with output (i), then
we have found the four desired output instances of LSP.

finding skew partitions efficiently 515

Otherwise, the growth process stops with condition (ii), i.e., NT = �
and �O� < n

10 . Set O1 = O and reapply the algorithm to W ′ = W \O1
to obtain O2. More generally, having constructed disjoint sets O1� � � � � Oi
with �⋃i

j=1Oj� < n
10 , we construct Oi+1 by applying the algorithm to Wi =

W \⋃i
j=1Oj . Note �Wi� > 8n

10 .
We continue until �⋃i

j=1Oj� ≥ n
10 or condition (i) occurs. If condition (i)

ever occurs, then we proceed as above. Otherwise, we stop after some iter-
ation i∗ such that �⋃i<i∗ Oi� < n

10 and �⋃i≤i∗ Oi� ≥ n
10 . Since �Oi∗ � < n

10 , we
have that �⋃i≤i∗ Oi� ≤ 2n

10 . Also, all the edges between sets Z = ⋃i
j=1Oj and

Y = W \⋃i
j=1Oj exist, which implies that C ∩ Z = � or D ∩ Y = �.

We now define two new instances of LSP according to the intersection
of skew partition sets C or D with Z, as follows:

(a) I1: C ∩ Z = �,

(b) I2: D ∩ Y = �.

In either output instance Ii, �SABCD�Ii�� ≤ 9n
10 .

The case �X� > 9n
10 is symmetric to Case 3 (consider G) and is omitted.

This ends Procedure 1.

Procedure 2.

Let S1 = SABC�I� and S2 = SABD�I�. Let n1 = �S1� and n2 = �S2�. Given
v ∈ S1 ∪ S2, let di�v� = �N�v� ∩ Si�, i = 1� 2.

Case 1: There exists a vertex v ∈ S1 with n2/10 ≤ d2�v� ≤ 9n2/10.
This case is analogous to Case 1 of Procedure 1: we create three

new instances IA� IB� IC according to whether v ∈ A, v ∈ B, or v ∈ C.
SABD�IA� ⊆ S2 ∩ N�v� and hence �SABD�IA�� ≤ 9n2/10. The other two
cases are handled similarly.

The case “there exists a vertex v ∈ S2 with n1/10 ≤ d1�v� ≤ 9n1/10”,
symmetric to Case 1, is omitted.

Case 2: Every vertex v in S1 satisfies d2�v� < n2/10 or d2�v� > 9n2/10.
Every vertex v in S2 satisfies d1�v� < n1/10 or d1�v� > 9n1/10.
Define four auxiliary sets, as follows:

X1 =
{
v ∈ S1 � d2�v� <

n2
10

}
�

X2 =
{
v ∈ S2 � d1�v� <

n1
10

}
�

516 de figueiredo et al.

W1 =
{
v ∈ S1 � d2�v� >

9n2
10

}
�

W2 =
{
v ∈ S2 � d1�v� >

9n1
10

}
�

Note that Case 2 means that S1 = X1 ∪W1 and S2 = X2 ∪W2. We handle
Case 2 according to the following three possibilities.

Case 2.1: �X1�� �W1� ≥ n1/10.
This case is analogous to Case 2 of Procedure 1. We create three new

instances of LSP according to the size of skew partition sets, as follows:

(a) I1: �A ∩ S2� ≥ n2/10,

(b) I2: �B ∩ S2� ≥ n2/10,

(c) I3: �D ∩ S2� ≥ n2/10.

If �A ∩ S2� ≥ n2/10, then as every vertex in B is adjacent to every vertex
of A, we have B ∩X1 = �. Thus, SABC�I1� ≤ 9n1/10. Similarly, SABC�I2� ∩
X1 = � and SABC�I3� ∩W1 = �. So, for all three output instances, we have
�SABC � ≤ 9n1/10, as required.

The case “otherwise �X2�� �W2� ≥ n2/10”, symmetric to Case 2.1, is
omitted.

Case 2.2: �X1� > 9n1/10.
Let v ∈ X1. Recursively define three sets O, M , and NM such that:

• O ⊆ X1, S2 =M ∪NM;

• There are no edges between O and M;

• For every u ∈ NM , there is a w ∈ O with wu ∈ E;
Start by setting O = �v�, M = S2\�N�v� ∪ �v��, and NM = S2 ∩N�v�.

Increase O in X1 until:

(i) �M� ≤ n2/2; or

(ii) �O� ≥ 3n1/10.

If the growth process stops with condition (ii), i.e., �O� ≥ 3n1/10 and
�M� > n2/2, then define two new instances of LSP as follows:

(a) I1 : O ∩A = �,

(b) I2 : O ∩A
= �.

Clearly, SABC�I1� ⊆ S1\O, and so �SABC�I1�� ≤ 9n1/10. Further, if O ∩
A
= �, then M ∩ B = �, so �SABD�I2�� ≤ 9n2/10.

finding skew partitions efficiently 517

If the growing process stops with condition (i), i.e., �M� ≤ n2/2, then we
define three new LSP instances:

(a) I1 : O ∩A
= �,

(b) I2 : O ∩ B
= �,

(c) I3 : O ⊆ C.

Because the last vertex added to O was in X1, we have n2/2 − n2/10 =
4n2/10 < �M� ≤ n2/2. In addition, note that �NM� ≥ n2/2.
If O ∩ A
= �, then B ⊆ �S2\M�, so �SABD�I1�� ≤ 9n2/10. Similarly

�SABD�I2�� ≤ 9n2/10. Finally, if O ⊆ C then NM ∩D = �, so �SABD�I3�� ≤
n2/2.

The case “otherwise �X2� > 9n2/10,” symmetric to Case 2.2, is omitted.

Case 2.3: �W1� > 9n1
10 , and �W2� > 9n2

10 .
Let W = W1 ∪W2. We claim that each vertex v ∈ W1 has d1�v� ≥ 9n1/10.

Suppose there exists v ∈ W1 with d1�v� < 9n1/10. Consider instances IA:
v ∈ A, IB: v ∈ B, and IC : v ∈ C. If v ∈ A, then there are at least n1/10 ver-
tices in S1 that are nonadjacent to v, which cannot be in B. So �SABC�IA�� ≤
9n1/10. Similarly �SABC�IB�� ≤ 9n1/10. Finally, if v ∈ C, then there at least
n2/10 vertices adjacent to v in S2 which cannot be in D so �SABD�I2�� ≤
9n2/10. Thus, if d1�v� < 9n1/10 for some v ∈ S1, then we are done. Analo-
gously, each vertex v ∈ W2 has d2�v� ≥ 9n2/10.
Recursively define a partition of W into three sets O, T , and NT such

that:

• The complement of O is connected;

• There are all edges between O and T ;

• For every w ∈ NT , there exists u ∈ O such that uw
∈ E.
Start by setting for some v1 ∈ W : O = �v1�, T = N�v1� ∩W , and NT =

W \�N�v1� ∪ �v1��. Note that �NT ∩ S1� < n1/10 and �NT ∩ S2� < n2/10.
Increase O by moving an arbitrary vertex v from NT to O and by moving
T\N�v� from T to NT until either:

(i) �O ∩ S1� + �NT ∩ S1� ≥ n1/10, or �O ∩ S2� + �NT ∩ S2� ≥ n2/10; or

(ii) NT = �.

If the growth process stops with condition (i), say with no loss of general-
ity that �O ∩ S1� + �NT ∩ S1� ≥ n1/10, and vi was the last vertex added to O,
then adding vi to O increased �NT ∩ S1� by less than n1/10 and increased
�NT ∩ S2� by less than n2/10. Thus, �O ∩ S1� + �NT ∩ S1� < 2n1/10, and
�O ∩ S2� + �NT ∩ S2� < 2n2/10. On the other hand, �T ∩ S1� ≥ 8n1/10 −
2n1/10 ≥ n1/10 and �T ∩ S2� ≥ 8n2/10− 2n2/10 ≥ n2/10.

518 de figueiredo et al.

Since the complement of O is connected, if O ∩ �C ∪D� = �, then O ⊆
A or O ⊆ B. So, we consider the following four LSP instances:

(a) I1: C ∩O
= �,
(b) I2: D ∩O
= �,
(c) I3: O ⊆ A,
(d) I4: O ⊆ B.

If C ∩O
= �, then �T ∩ S2� ∩D = �, so �SABD�I1�� ≤ 9n2/10. If D∩O
=
�, then �T ∩ S1� ∩C = �, and analogously �SABC�I2�� ≤ 9n1/10. If O ⊆ A,
then �NT ∩ S1� ∩ B = �. Thus, �SABC�I3�� ≤ 9n1/10. If O ⊆ B, then a
symmetrical argument shows that �SABC�I4�� ≤ 9n1/10.
Now suppose the growing process stops with con dition (ii), i.e., NT =

� and both �O ∩ S1� + �NT ∩ S1� < n1/10 and �O ∩ S2� + �NT ∩ S2� <
n2/10. Set O1 = O and reapply the algorithm to W ′ = W \O1 to obtain
O2 and continue until you reach situation (i), �⋃i

j=1�Oj ∩ S1�� ≥ n1/10, or
�⋃i

j=1�Oj ∩ S2�� ≥ n2/10. If n1/10 ≤ �⋃i
j=1�Oj ∩ S1�� ≤ 2n1/10, then we

have all edges between sets Z = �⋃Oi� ∩ S1 and Y = W \⋃Oi, which
implies that C ∩ Z = � or D ∩ Y = �.
We now define three new instances of LSP according to the intersection

of skew partition sets C or D with Z, as follows:

(a) I1: C ∩ Z
= �,
(b) I2: D ∩ Z
= �,
(c) I3: Z ⊆ A ∪ B.

If C ∩ Z
= �, then D ∩ Y = �. Thus, �Y ∩ S2� ⊆ A ∪ B, which implies
that �SABD�I1�� ≤ 9n2/10. If D ∩ Z
= �, then an argument symmetric to
C ∩ Z
= � shows that �SABC�I2�� ≤ 9n1/10. Otherwise, Z ⊆ A ∪ B, which
implies that �SABC�I3�� ≤ 9n1/10.

This ends the description of Procedure 2.

Procedure 3 is a mirror image of Procedure 2 and is omitted.

Procedure 4.

Let SABC = S1 with �SABC � = n1 and SAD = S2 with �SAD� = n2. Given
v ∈ S1 ∪ S2, let di�v� = �N�v� ∩ Si�, i = 1� 2.

Case 1: There exists a vertex v in S2 such that n1/10 ≤ d1�v� ≤ 9n1/10.
This case is analogous to Case 1 of Procedure 1. Define two new instances

of LSP, as follows:

(a) I1: v ∈ A,
(b) I2: v ∈ D.

finding skew partitions efficiently 519

If v ∈ A, then every vertex of S1 that is nonadjacent to v cannot be
placed in B, and so �SABC�I1�� ≤ 9n1/10. If v ∈ D, then every vertex of S1
that is adjacent to v cannot be placed in C, and so �SABC�I2�� ≤ 9n1/10, as
required.

Case 2: Every vertex v in S2 satisfies either d1�v� < n1/10 or d1�v� >
9n1/10.
Let W = �v ∈ S2 � �N�v� ∩ S1� > 9n1/10�. We handle Case 2 according

to the following two possibilities.

Case 2.1: �W � > n2/2.
Let v1 ∈ W . Recursively define three sets O, T , and NT such that:

• O is contained in W ;

• S1 = T ∪NT ;
• There are all edges between O and T ;

• For every w in NT , there exists v in O such that v is not adjacent
to w.

Start by setting O = �v1�, T = N�v1� ∩ S1, and NT = S1\�N�v1� ∪ �v1��.
Increase O inside W by adding an arbitrary vertex v of W to O and by
moving T\N�v� from T to NT until:

(i) �T � ≤ 9n1/10; or
(ii) �O� ≥ n2/10.

If the growth process stops with condition (i), i.e., �T � ≤ 9n1/10, then
�NT � ≥ n1/10. In addition, if vi was the last vertex added to O, then because
vi ∈ W , we have d1�vi� > 9n1/10, and adding vi to O caused us to remove
fewer than n1/10 vertices from T , which implies �T � > 8n1/10.
Consider two new instances of LSP as follows:

(a) I1: D ∩O
= �,
(b) I2: O ⊆ A.

If D ∩ O
= �, then T ∩ C = �, which implies �SABC�I1�� ≤ 9n1/10.
Otherwise, O ⊆ A, and NT ∩ B = �, since for every w ∈ NT there is a
vertex v ∈ O such that vw
∈ E. Thus �SABC�I2�� ≤ 9n1/10.
Now suppose that the growing process stops with condition (ii), i.e., �O� ≥

n2/10 and �T � > 9n1/10. Consider two new instances of LSP as follows.

(a) I1: C ∩ T
= �,
(b) I2: T ⊂ �A ∪ B�.

Clearly, T ∩ SABC�I2� = �, and so �SABC�I2�� ≤ 9n1/10. If C ∩ T
= �,
then O ∩D = �, and so �SAD�I2�� ≤ 9n1/10.

520 de figueiredo et al.

Case 2.2: �S2\W � > n2/2.
Let X = S2\W and v ∈ X. Recursively define two sets O and M such

that:

• O ⊆ X, M ⊆ S1;

• There are no edges between M and O.

Start by setting O = �v� and M = S1\�N�v� ∪ �v��. Increase O in X
until either:

(i) �M� ≤ 9n1/10; or
(ii) �O� ≥ n2/10.

If the growth process stops with condition (i), i.e., �M� ≤ 9n1/10, and vi
was the last vertex added to O, then, as vi ∈ X, adding vi decreased �M� by
less than n1/10, and we have �M� > 8n1/10. Then, in either case (i) or (ii),
we have �M� > 8n1/10.
Define two new LSP instances as follows;

(a) I1: A ∩O
= �,
(b) I2: O ⊆ D.

If A ∩ O
= �, then M ∩ B = �. Hence because �M� > 8n1/10, we
have �SABC�I1�� < 2n1/10 ≤ 9n1/10. Otherwise, O ⊆ D. In case (i), �M� ≤
9n1/10, which implies �S1\M� ≥ n1/10, so we have �SABC�I2�� ≤ 9n1/10.
In case (ii), �O� ≥ n2/10, which implies �SAD�I2�� ≤ 9n2/10. So, for either
output instance Ii, we have �SABC�Ii���SAD�Ii�� ≤ 9n1n2/10, as required.

This ends the description of Procedure 4 and the paper.

ACKNOWLEDGMENTS

We thank Pavol Hell for discussions on skew partitions and the anonymous referee for
carefully reading a previous version of this paper.

REFERENCES

1. N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992),
125–134.

2. C. Berge, Les problèmes de coloration en théorie des graphes, Publ. Inst. Stat. Univ. Paris
9 (1960), 123–160.

3. V. Chvátal, Recognizing decomposable graphs, J. Graph Theory 8 (1984) 51–53.
4. V. Chvátal, Star-cutsets and perfect graphs, J. Combin. Theory Ser. B 39 (1985), 189–199.
5. G. Cornuéjols and B. Reed, Complete multi-partite cutsets in minimal imperfect graphs,

J. Combin. Theory Ser. B 59 (1993), 191–198.

finding skew partitions efficiently 521

6. Problem session on minimal imperfect graphs, in “DIMACS Workshop on Perfect
Graphs,” (V. Chvátal and L. Lovász, Organizers), Princeton University, NJ, June 1993.

7. H. Everett, S. Klein, and B. Reed, An optimal algorithm for finding clique-cross partitions,
Congr. Numer. 135 (1998), 171–177.

8. T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B
72 (1998), 236–250.

9. T. Feder, P. Hell, and J. Huang, List homomorphisms and circular arc graphs, Combina-
torica 19 (1999), 487–505.

10. T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of graph partition problems,
in “Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,”
pp. 464–472, 1999.

11. H. Fleischner and M. Stiebitz, A solution of a coloring problem of P. Erdős, Discrete Math.
101 (1992), 39–48.

12. P. Hell and J. Nešeťril, On the complexity of H-coloring, J. Combin. Theory Ser. B 48
(1990), 92–110.

13. C. T. Hoàng, Some properties of minimal imperfect graphs, Discrete Math. 160 (1996),
165–175.

14. D. S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 6 (1985),
434–451.

15. G. MacGillivray and M. L. Yu, Generalized partitions of graphs, Discrete Appl. Math. 91
(1999), 143–153.

16. S. Klein and C. M. H. de Figueiredo, The NP-completeness of multipartite cutset testing,
Congr. Numer. 119 (1996), 216–222.

17. N. Vikas, Computational complexity of graph compaction, in “Proceedings of the Tenth
ACM-SIAM Symposium on Discrete Algorithms,” pp. 977–978, 1999.

	1.INTRODUCTION
	2.SKEW CUTSETS AND THE STRONG PERFECT GRAPH CONJECTURE
	3.OVERVIEW
	4.SOME RECURSIVE PROCEDURES
	5.THE DETAILS
	ACKNOWLEDGMENTS
	REFERENCES

